
Adaptation,
Optimality, and

Synthesis

Adaptation, Optimality, and Synthesis

• Approximately optimal control methods for
forward and inverse decision-making problems

• Real-time optimal control methods that can
handle uncertainty, complex mission
specifications, and rely on sophisticated
approximation, learning, and sampling
techniques to enhance scalability (avoid
explicit discretization of continuous dynamics)

• Tractable optimal control methods under complex mission specifications captured by
temporal logic (TL) formulas, and extend them to systems with unknown uncertainties
and run-time computational limitations

Adaptation, Optimality, and Synthesis

• Reinforcement learning (RL) for
approximate dynamic
programming (ADP)
oUncertainty in the dynamics
oUnknown cost-to-go

• Exploration while Exploitation
oSimulation of experience
oBellman Error extrapolation

• Computational Considerations
oState following (StaF) methods
oSparsity

Adaptation, Optimality, and Synthesis

• ADP differential games
• Game structures

Adaptation, Optimality, and Synthesis

• Temporal-Logic (TL)-Constrained
Synthesis and Verification without
Discretization

• Controls with formal methods
o Hierarchal structure

• Specifying behavior with TL
• Automaton representation for TL
• ADP approach

Adaptation, Optimality, and Synthesis

• Integration of high level
tasks (via temporal
logic) with motion
planning

• Synthesizing motion
plans

• Automatons to graphs

Reinforcement Learning Based ADP:

Computational reductions, faster
learning, and more complex problems

Optimal Control Problem

Typical RL-based ADP Approach

Environment Critic

Actor

State Action Action

State

Reward

Challenges

Uncertainty
• How to make the best possible decision in the presence of uncertainty, right now
• How to solve the exploration vs. exploitation problem, while also performing

system identification
o Bellman Error extrapolation (simulation of experience) = simultaneous

exploration and exploitation
o Concurrent learning = on-line data-based system identification

Expensive
• Curse of dimensionality – large computational cost

o StaF approximation
o Sparse NN approximation

More complex problems
• How to include constraints, embed logic-based decision making, intermittency, ….

o Formal methods, hybrid/switched systems ADP, scalability

Approximate BE Extrapolation

Uncertainty

Simulated Experience

Environment Critic

Actor

Identifier

State Action Action

State

Reward

State

Action

Simulated
State-derivative-
action-reward
tuples

Simulated Experience

Environment Critic

Actor

Identifier

Memory

State Action Action

State

Reward

State

Action

Concurrent learning

State

Action

Simulated
State-derivative-
action-reward
tuples

Simulation: Known Optimal Solution

StaF Approach
Computational Cost

Optimal regulation problem is to drive the state to the origin

Combined Approach

• Divide the global space into
regions

• Concurrently approximate the
value function

– Near state using StaF
– Near the origin using SGMBRL

• Also include a transition region to
marry the approximation regions

Goal

A

B
A’

StaF
SGMBRL Transition Function

Learning with Sparse Kernels

Update Laws

�̇𝑊𝑊𝑐𝑐 𝑡𝑡 = −𝜂𝜂𝑐𝑐1Γ
𝜔𝜔 𝑡𝑡
𝜌𝜌 𝑡𝑡

𝛿𝛿 𝑡𝑡 −𝜂𝜂𝑐𝑐𝑐�
𝑐𝑐

𝑗𝑗
𝑡𝑡

Γ̇ 𝑡𝑡 = 𝜆𝜆Γ 𝑡𝑡 − 𝜂𝜂𝑐𝑐1
Γ 𝑡𝑡 𝜔𝜔 𝑡𝑡 𝜔𝜔 𝑡𝑡 𝑇𝑇Γ 𝑡𝑡

𝜌𝜌 𝑡𝑡
− Γ 𝑡𝑡 𝜂𝜂𝑐𝑐𝑐 �

Γ

𝑗𝑗
𝑡𝑡 Γ 𝑡𝑡 𝟏𝟏 𝚪𝚪≤ 𝚪𝚪 ≤𝚪𝚪

�̇𝑊𝑊𝑎𝑎 𝑡𝑡 = −𝜂𝜂𝑎𝑎1 �𝑊𝑊𝑎𝑎 𝑡𝑡 − �𝑊𝑊𝑐𝑐 𝑡𝑡 −𝜂𝜂𝑎𝑎𝑐 �𝑊𝑊𝑎𝑎 𝑡𝑡 +
𝜂𝜂𝑐𝑐1𝐺𝐺𝜎𝜎 𝑡𝑡 𝑇𝑇 �𝑊𝑊𝑎𝑎 𝑡𝑡 𝜔𝜔 𝑡𝑡 𝑇𝑇

4𝜌𝜌 𝑡𝑡
�𝑊𝑊𝑐𝑐 𝑡𝑡 + 𝜂𝜂𝑐𝑐𝑐�

𝑎𝑎

𝑗𝑗
𝑡𝑡 �𝑊𝑊𝑐𝑐 𝑡𝑡

• Domain is partitioned into
segments

• Each segment has a history
stack

• Regional data switching
• Characterizes regions with

varying dynamics or
uncertainties

• A further step towards
including memory (cognition)

Switching
History Stack
Term

On-going work with Scott Nivison, RW

63 EXAMPLE:
OPTIMAL OBSTACLE AVOID

Agent

HJB requires knowledge of the
avoidance region dynamics for all time
(i.e., for the entire operating domain)

Consider an autonomous agent and dynamic avoidance regions

Alleviate the need for knowledge of the avoidance region dynamics outside of the
detection region

Combined to form the following vehicle-avoidance-region system

Avoidance Region

64
Obstacle Avoidance

Problem Formulation

Prevents collision with avoidance regions

Control Objective
Design a controller 𝑢𝑢 which minimizes

Exact Solution
Optimal value function

Hamilton Jacobi Bellman equation

Optimal control policy

65

Dynamics

Input saturations

Constraints

Approximate Solution

Concatenated vector of StaF basis
functions

Only active in detection region

Value function approximation

StaF kernel Optimal Value function representation:

66

StaF kernels centered at 𝑦𝑦 ∈ 𝐵𝐵𝑟𝑟(𝜁𝜁), evaluated at 𝜁𝜁
𝑃𝑃𝑎𝑎: Bounded avoidance function
𝑊𝑊: Ideal StaF weight
𝜖𝜖: Function reconstruction error

Control policy approximation

�𝑊𝑊𝑐𝑐: Critic weight estimate
�𝑊𝑊𝑎𝑎: Actor weight estimate

BE Implementation
67

Value function update laws

Instantaneous Bellman error

Select off-policy trajectories 𝑥𝑥𝑘𝑘:ℝ𝑛𝑛 × ℝ≥0 → ℝ𝑛𝑛
i=1
𝑁𝑁 such that each 𝑥𝑥𝑘𝑘 maps the

current state to a trajectory 𝑥𝑥𝑘𝑘 𝑥𝑥 𝑡𝑡 , 𝑡𝑡 ∈ 𝐵𝐵𝑟𝑟(𝑥𝑥 𝑡𝑡), where 𝜁𝜁𝑘𝑘 = [𝑥𝑥𝑘𝑘𝑇𝑇,𝑍𝑍𝑇𝑇]𝑇𝑇, and Z =
[𝑧𝑧1𝑇𝑇, … , 𝑧𝑧𝑀𝑀𝑇𝑇]𝑇𝑇. Then, evaluate 𝛿𝛿 at 𝑦𝑦 = 𝑥𝑥𝑘𝑘.

Simulation of experience via Bellman error extrapolation

Extrapolated
system

Actual system
exploitation

Exploitation

Exploration

• Need to know the
number of obstacles in
advance

• Discriminate between the
obstacles

• Large number of function
approximations

68

Approximate optimal input

Critic weight estimate Actor weight estimate

• Modifies trajectory when
avoidance regions are
sensed

• Collision avoidance
• Control remains in

saturation region
Phase-space portrait

Results – Experiment 1

69 Uncertain Avoidance Regions

Depends on possibly
uncertain number of
avoidance regions

Interpret 𝑉𝑉# as a time-varying map

Value function representation

Redefined HJB contains
uncertainties:
𝑉𝑉𝜅𝜅#,𝑓𝑓,ℱ𝑖𝑖ℎ𝑖𝑖

Since 𝜅𝜅 ∈ 0,𝛼𝛼 for 𝛼𝛼 ∈ ℝ>0, we can approximate 𝑉𝑉𝜅𝜅# using StaF approximation

70
Results – Experiment 2

Actor estimates

Critic estimatesPhase-space portrait

Control policy

• Less than half the
number of
functions to
approximate

• Estimates do not
grow with number
of obstacles

• No need to
discriminate
between obstacles

• Nearly identical
costs

Example: Herding
71

Goal: Regulated roaming agent
to desired goal location 𝑧𝑧𝑔𝑔

Roaming agent

Influencing agent

Influencing agent does not have direct
control over roaming agent, and the
influencing agent’s state may be non-
affine in roaming agent dynamics.

Virtual state Virtual input

The input mismatch 𝜇𝜇𝜂𝜂(𝑡𝑡) and virtual input 𝜇𝜇𝑑𝑑(𝑡𝑡) are designed to regulate the total state x(t)

The pursuer tracks the virtual state using
the auxiliary error and desired input

Desired influencing agent input

Input mismatch error

Optimal Control Formulation
72

Hamilton Jacobi Bellman equation

Optimal control policy

Design a controller 𝜇𝜇 which minimizes

Dynamic constraints

Control Objective

Use actor-critic with StaF kernel method for
value function approximation.
Use ICL for system ID.

Replace uncertainties in dynamics and
optimal HJB with estimates

Bellman error

Simulation Results
73

Herder input Approximate optimal input

Total state System identification error

Phase-space portrait

Goal:
Regulate roaming
agent (red) to
𝑧𝑧𝑔𝑔 = 0,−0.5 𝑇𝑇 .

Target error

• Goal:
– Regulate roaming agent to a

neighborhood (𝑟𝑟𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔 = 0.5 𝑚𝑚) about the
desired location 𝑧𝑧𝑔𝑔 = −2,0 𝑇𝑇 𝑚𝑚

Experiment
74

• Experiment:
– Parrot Bebop 2.0 quadcopter
‒ Unactuated paper platform

Influencing Agent (Parrot Bebop 2.0)

Roaming Agent (Paper platform)

Target error norm

Experiment
75

