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Adaptation, Optimality, and Synthesis

• Approximately optimal control methods for 
forward and inverse decision-making problems

• Real-time optimal control methods that can 
handle uncertainty, complex mission 
specifications, and rely on sophisticated 
approximation, learning, and sampling 
techniques to enhance scalability (avoid 
explicit discretization of continuous dynamics)

• Tractable optimal control methods under complex mission specifications captured by 
temporal logic (TL) formulas, and extend them to systems with unknown uncertainties 
and run-time computational limitations 



Adaptation, Optimality, and Synthesis

• Reinforcement learning (RL) for 
approximate dynamic 
programming (ADP)
oUncertainty in the dynamics
oUnknown cost-to-go

• Exploration while Exploitation
oSimulation of experience
oBellman Error extrapolation

• Computational Considerations
oState following (StaF) methods
oSparsity



Adaptation, Optimality, and Synthesis

• ADP differential games
• Game structures



Adaptation, Optimality, and Synthesis

• Temporal-Logic (TL)-Constrained 
Synthesis and Verification without 
Discretization

• Controls with formal methods
o Hierarchal structure

• Specifying behavior with TL 
• Automaton representation for TL
• ADP approach



Adaptation, Optimality, and Synthesis

• Integration of high level 
tasks (via temporal 
logic) with motion 
planning

• Synthesizing motion 
plans

• Automatons to graphs



Reinforcement Learning Based ADP:

Computational reductions, faster 
learning, and more complex problems



Optimal Control Problem



Typical RL-based ADP Approach 
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Challenges

Uncertainty
• How to make the best possible decision in the presence of uncertainty, right now
• How to solve the exploration vs. exploitation problem, while also performing 

system identification
o Bellman Error extrapolation (simulation of experience) = simultaneous 

exploration and exploitation
o Concurrent learning = on-line data-based system identification 

Expensive
• Curse of dimensionality – large computational cost

o StaF approximation
o Sparse NN approximation 

More complex problems
• How to include constraints, embed logic-based decision making, intermittency, ….

o Formal methods, hybrid/switched systems ADP, scalability



Approximate BE Extrapolation

Uncertainty



Simulated Experience
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Simulated Experience
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Simulation: Known Optimal Solution






StaF Approach
Computational Cost



Optimal regulation problem is to drive the state to the origin

Combined Approach

• Divide the global space into 
regions

• Concurrently approximate the 
value function

– Near state using StaF
– Near the origin using SGMBRL

• Also include a transition region to 
marry the approximation regions

Goal

A

B
A’

StaF
SGMBRL Transition Function



Learning with Sparse Kernels

Update Laws
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• Domain is partitioned into 
segments

• Each segment has a history 
stack

• Regional data switching
• Characterizes regions with 

varying dynamics or 
uncertainties

• A further step towards 
including memory (cognition)

Switching 
History Stack
Term

On-going work with Scott Nivison, RW



63 EXAMPLE:
OPTIMAL OBSTACLE AVOID






Agent

HJB requires knowledge of the 
avoidance region dynamics for all time 
(i.e., for the entire operating domain)

Consider an autonomous agent and dynamic avoidance regions

Alleviate the need for knowledge of the avoidance region dynamics outside of the 
detection region

Combined to form the following vehicle-avoidance-region system

Avoidance Region

64
Obstacle Avoidance 



Problem Formulation

Prevents collision with avoidance regions

Control Objective
Design a controller 𝑢𝑢 which minimizes

Exact Solution
Optimal value function

Hamilton Jacobi Bellman equation

Optimal control policy

65

Dynamics

Input saturations

Constraints



Approximate Solution

Concatenated vector of StaF basis 
functions

Only active in detection region

Value function approximation

StaF kernel Optimal Value function representation:

66

StaF kernels centered at 𝑦𝑦 ∈ 𝐵𝐵𝑟𝑟(𝜁𝜁), evaluated at 𝜁𝜁
𝑃𝑃𝑎𝑎: Bounded avoidance function
𝑊𝑊: Ideal StaF weight
𝜖𝜖: Function reconstruction error

Control policy approximation

�𝑊𝑊𝑐𝑐: Critic weight estimate
�𝑊𝑊𝑎𝑎: Actor weight estimate



BE Implementation 
67

Value function update laws

Instantaneous Bellman error

Select off-policy trajectories 𝑥𝑥𝑘𝑘:ℝ𝑛𝑛 × ℝ≥0 → ℝ𝑛𝑛
i=1
𝑁𝑁 such that each 𝑥𝑥𝑘𝑘 maps the 

current state to a trajectory 𝑥𝑥𝑘𝑘 𝑥𝑥 𝑡𝑡 , 𝑡𝑡 ∈ 𝐵𝐵𝑟𝑟(𝑥𝑥 𝑡𝑡 ), where  𝜁𝜁𝑘𝑘 = [𝑥𝑥𝑘𝑘𝑇𝑇,𝑍𝑍𝑇𝑇]𝑇𝑇, and Z =
[𝑧𝑧1𝑇𝑇, … , 𝑧𝑧𝑀𝑀𝑇𝑇 ]𝑇𝑇. Then, evaluate 𝛿𝛿 at 𝑦𝑦 = 𝑥𝑥𝑘𝑘.

Simulation of experience via Bellman error extrapolation

Extrapolated 
system

Actual system
exploitation

Exploitation

Exploration



• Need to know the 
number of obstacles  in 
advance

• Discriminate between the 
obstacles

• Large number of function 
approximations 
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Approximate optimal input

Critic weight estimate Actor weight estimate

• Modifies trajectory when 
avoidance regions are 
sensed

• Collision avoidance
• Control remains in 

saturation region
Phase-space portrait

Results – Experiment 1



69 Uncertain Avoidance Regions 

Depends on possibly 
uncertain number of 
avoidance regions

Interpret 𝑉𝑉# as a time-varying map 

Value function representation

Redefined HJB contains
uncertainties: 
𝑉𝑉𝜅𝜅#,𝑓𝑓,ℱ𝑖𝑖ℎ𝑖𝑖

Since 𝜅𝜅 ∈ 0,𝛼𝛼 for 𝛼𝛼 ∈ ℝ>0, we can approximate 𝑉𝑉𝜅𝜅# using StaF approximation



70
Results – Experiment 2

Actor estimates

Critic estimatesPhase-space portrait

Control policy

• Less than half the 
number of 
functions to 
approximate

• Estimates do not 
grow with number 
of obstacles

• No need to 
discriminate 
between obstacles

• Nearly identical 
costs



Example: Herding
71

Goal: Regulated roaming agent 
to desired goal location 𝑧𝑧𝑔𝑔

Roaming agent

Influencing agent

Influencing agent does not have direct 
control over roaming agent, and the 
influencing agent’s state may be non-
affine in roaming agent dynamics.

Virtual state Virtual input

The input mismatch 𝜇𝜇𝜂𝜂(𝑡𝑡) and virtual input 𝜇𝜇𝑑𝑑(𝑡𝑡) are designed to regulate the total state x(t)  

The pursuer tracks the virtual state using 
the auxiliary error and desired input

Desired influencing agent input

Input mismatch error



Optimal Control Formulation
72

Hamilton Jacobi Bellman equation

Optimal control policy

Design a controller 𝜇𝜇 which minimizes

Dynamic constraints

Control Objective

Use actor-critic with StaF kernel method for 
value function approximation.
Use ICL for system ID. 

Replace uncertainties in dynamics and 
optimal HJB with estimates

Bellman error



Simulation Results
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Herder input Approximate optimal input

Total state System identification error

Phase-space portrait

Goal:
Regulate roaming 
agent (red) to 
𝑧𝑧𝑔𝑔 = 0,−0.5 𝑇𝑇 .

Target error






• Goal:
– Regulate roaming agent to a 

neighborhood (𝑟𝑟𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔 = 0.5 𝑚𝑚) about the 
desired location 𝑧𝑧𝑔𝑔 = −2,0 𝑇𝑇 𝑚𝑚

Experiment
74

• Experiment:
– Parrot Bebop 2.0 quadcopter
‒ Unactuated paper platform

Influencing Agent (Parrot Bebop 2.0)

Roaming Agent (Paper platform)

Target error norm



Experiment
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