Making Connected Unions of Random Graphs

Matthew Hale

Department of Mechanical and Aerospace Engineering University of Florida

Duke

AFOSR Center of Excellence Kickoff May 13, 2019

Time-Varying Graphs are Common

▶ With autonomous agents, communication graphs may look like

GRUZ

Time-Varying Graphs are Common

With autonomous agents, communication graphs may look like

No single graph is connected

Time-Varying Graphs are Common

With autonomous agents, communication graphs may look like

No single graph is connected, but their union is

Common Assumption

There exists an N such that

$$\bigcup_{k=t+1}^{t+N} G(k)$$

is connected for any t.

Common Assumption

There exists an N such that

$$\bigcup_{k=t+1}^{t+N} G(k)$$

is connected for any t.

Question 1

Q1: When is the "average union" connected? A1: $N \ge f(\text{graph parameters})$

Common Assumption

There exists an N such that

$$\bigcup_{k=t+1}^{t+N} G(k)$$

is connected for any t.

Question 1

Q1: When is the "average union" connected?

A1: $N \ge f(\text{graph parameters})$

Question 2

Q2: What is the probability that a specific union is connected? A2: $\mathbb{P}\left[\bigcup_{k=t+1}^{t+N} G(k) \text{ connected}\right] \ge h(\text{graph parameters})$

Common Assumption

There exists an N such that

$$\bigcup_{k=t+1}^{t+N} G(k)$$

is connected for any t.

Question 1

Q1: When is the "average union" connected?

A1: $N \ge f(\text{graph parameters})$

Question 2

Q2: What is the probability that a specific union is connected? A2: $\mathbb{P}\left[\bigcup_{k=t+1}^{t+N} G(k) \text{ connected}\right] \ge h(\text{graph parameters})$

Randomness models unknown and uncontrollable adversarial impacts on communications

Duke

CR17

- Randomness models unknown and uncontrollable adversarial impacts on communications
- 2 Randomness captures unpredictable information flows among agents

- Randomness models unknown and uncontrollable adversarial impacts on communications
- 2 Randomness captures unpredictable information flows among agents

Erdős-Rényi Graphs

 \blacktriangleright Defined by parameters $n\in\mathbb{N}$ and $p\in(0,1)$

- Randomness models unknown and uncontrollable adversarial impacts on communications
- 2 Randomness captures unpredictable information flows among agents

Erdős-Rényi Graphs

- \blacktriangleright Defined by parameters $n\in\mathbb{N}$ and $p\in(0,1)$
- ▶ Graphs are on *n* nodes:

- Randomness models unknown and uncontrollable adversarial impacts on communications
- 2 Randomness captures unpredictable information flows among agents

Erdős-Rényi Graphs

 \blacktriangleright Defined by parameters $n\in\mathbb{N}$ and $p\in(0,1)$

- We require innovations beyond the existing literature for two reasons:
 - Common to take $n \to \infty$, but results do not apply to small networks

- We require innovations beyond the existing literature for two reasons:
 - Common to take $n \to \infty$, but results do not apply to small networks

 \blacktriangleright We also avoid assuming $p \sim \frac{\ln n}{n}$ or p = f(n) because p is outside our control

- Define L = D A, and denote its i^{th} eigenvalue by $\ell_i(L)$
- Then

$$\lambda_2(L) = \min_{2 \le i \le n} \ell_i(L) \quad \setminus \quad \ell_1(L) = 0$$

• Define L = D - A, and denote its i^{th} eigenvalue by $\ell_i(L)$

Then

$$\lambda_2(L) = \min_{2 \le i \le n} \ell_i(L) \quad \backslash \quad \ell_1(L) = 0$$

When is

$$\mathbb{E}\left[\lambda_2\left(\bigcup_{k=t+1}^{t+N}G(k)\right)\right] \ge \lambda_{min}(n)?$$

• Define L = D - A, and denote its i^{th} eigenvalue by $\ell_i(L)$

Then

$$\lambda_2(L) = \min_{2 \le i \le n} \ell_i(L) \quad \backslash \quad \ell_1(L) = 0$$

We can Bound $\mathbb{E}[\lambda_2]$ with Known Constants

▶ For *L* the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$\mathbb{E}\left[\min_{2\leq i\leq n}\ell_{i}\left(L\right)\right]$$

We can Bound $\mathbb{E}[\lambda_2]$ with Known Constants

▶ For *L* the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$\mathbb{E}\left[\min_{2\leq i\leq n}\ell_{i}\left(L\right)\right]\neq\min_{2\leq i\leq n}\mathbb{E}\left[\ell_{i}(L)\right]$$

▶ For *L* the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$\mathbb{E}\left[\min_{2\leq i\leq n}\ell_{i}\left(L\right)\right]\neq\min_{2\leq i\leq n}\mathbb{E}\left[\ell_{i}(L)\right]$$

Lemma (Arnold & Groeneveld, 1976)

Let X_1,\ldots,X_m be a collection of random variables. If they all have mean μ and variance $\sigma^2,$ then

$$\mu - \sigma \sqrt{\frac{m-k}{k}} \le \mathbb{E} \left[X_{k:m} \right] \le \mu + \sigma \sqrt{\frac{k-1}{m-k+1}}$$

▶ For *L* the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$\mathbb{E}\left[\min_{2\leq i\leq n}\ell_{i}\left(L\right)\right]\neq\min_{2\leq i\leq n}\mathbb{E}\left[\ell_{i}(L)\right]$$

Lemma (Arnold & Groeneveld, 1976)

Let X_1,\ldots,X_m be a collection of random variables. If they all have mean μ and variance $\sigma^2,$ then

$$\mu - \sigma \sqrt{\frac{m-k}{k}} \le \mathbb{E} \left[X_{k:m} \right] \le \mu + \sigma \sqrt{\frac{k-1}{m-k+1}}$$

For
$$\lambda_2(L)$$
: $\mathbb{E}[\lambda_2] \ge \mu - \sigma \sqrt{n-2}$

We want

Lemma

 $\mu:=\mathbb{E}[\ell_i]$ is an eigenvalue of $\mathbb{E}[L]$

What is μ for ℓ_i ?

_emma

- $\mu:=\mathbb{E}[\ell_i]$ is an eigenvalue of $\mathbb{E}[L]$
 - $\mathbb{E}[L]$ takes the form

$$\mathbb{E}[L] = \left(1 - (1 - p)^N\right) \begin{pmatrix} n - 1 & -1 & \cdots & -1 \\ -1 & n - 1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n - 1 \end{pmatrix}$$

What is μ for ℓ_i ?

_emma

- $\mu:=\mathbb{E}[\ell_i]$ is an eigenvalue of $\mathbb{E}[L]$
 - $\mathbb{E}[L]$ takes the form

$$\mathbb{E}[L] = \left(1 - (1 - p)^N\right) \left(\begin{array}{cccc} n - 1 & -1 & \cdots & -1 \\ -1 & n - 1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n - 1 \end{array}\right)$$

Finding μ

For
$$i \in \{2, \ldots, n\}$$
, ℓ_i has mean

$$\mu = n \left(1 - (1 - p)^N \right)$$

• We know that
$$\sigma^2[\ell_i] = \mathbb{E}[\ell_i^2] - \mathbb{E}[\ell_i]^2 = \mathbb{E}[\ell_i^2] - \mu^2$$

Duke

@UC SANTA CRUZ

• We know that
$$\sigma^2[\ell_i] = \mathbb{E}[\ell_i^2] - \mathbb{E}[\ell_i]^2 = \mathbb{E}[\ell_i^2] - \mu^2$$

Lemma

 $\mathbb{E}[\ell_i^2]$ is an eigenvalue of $\mathbb{E}[L^2]$

What is σ for ℓ_i ?

• We know that
$$\sigma^2[\ell_i] = \mathbb{E}[\ell_i^2] - \mathbb{E}[\ell_i]^2 = \mathbb{E}[\ell_i^2] - \mu^2$$

Lemma

- $\mathbb{E}[\ell_i^2]$ is an eigenvalue of $\mathbb{E}[L^2]$
 - $\mathbb{E}[L^2]$ takes the form

$$\mathbb{E}[L^2] = \left((n-2) \left[1 - (1-p)^N \right]^2 + 2 \left(1 - (1-p)^N \right) \left(\begin{array}{ccccc} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{array} \right)$$

What is σ for ℓ_i ?

• We know that
$$\sigma^2[\ell_i] = \mathbb{E}[\ell_i^2] - \mathbb{E}[\ell_i]^2 = \mathbb{E}[\ell_i^2] - \mu^2$$

Lemma

 $\mathbb{E}[\ell_i^2]$ is an eigenvalue of $\mathbb{E}[L^2]$

• $\mathbb{E}[L^2]$ takes the form

$$\mathbb{E}[L^2] = \left((n-2) \left[1 - (1-p)^N \right]^2 + 2 \left(1 - (1-p)^N \right) \left(\begin{array}{ccccc} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{array} \right)$$

Computing σ^2 For $i \in \{2, \ldots, n\}$, ℓ_i has variance

$$\sigma^{2} = 2n \left(1 - (1-p)^{N} \right) (1-p)^{N}$$

We now have the bound

$$\mathbb{E}\left[\lambda_2\left(\bigcup_{k=t+1}^{t+N}G(k)\right)\right] \ge \underbrace{n\left(1-(1-p)^N\right)}_{\mu} - \sqrt{n-2}\underbrace{\sqrt{2n\left(1-(1-p)^N\right)(1-p)^N}}_{\sigma}$$

Answer to Question 1

We now have the bound

$$\mathbb{E}\left[\lambda_2\left(\bigcup_{k=t+1}^{t+N}G(k)\right)\right] \ge \underbrace{n\left(1-(1-p)^N\right)}_{\mu} - \sqrt{n-2}\underbrace{\sqrt{2n\left(1-(1-p)^N\right)(1-p)^N}}_{\sigma}$$

Theorem (Answer to Question 1)

A union of N Erdős-Rényi graphs is expected to be connected if

$$N \ge \frac{1}{\ln(1-p)} \ln\left(\frac{4n^2 + 4n\cos\frac{\pi}{n} - 8n - \tau(n)}{6n^2 - 8n}\right),$$

$$\tau(n) := \sqrt{16n^2(n-2)\left(1 - \cos\frac{\pi}{n}\right) + 32n(2-n)\left(1 - \cos\frac{\pi}{n}\right)^2 + 4n^2(n-2)^2}$$

Answer to Question 1

We now have the bound

$$\mathbb{E}\left[\lambda_2\left(\bigcup_{k=t+1}^{t+N}G(k)\right)\right] \ge \underbrace{n\left(1-(1-p)^N\right)}_{\mu} - \sqrt{n-2}\underbrace{\sqrt{2n\left(1-(1-p)^N\right)(1-p)^N}}_{\sigma}$$

Theorem (Answer to Question 1)

A union of N Erdős-Rényi graphs is expected to be connected if

$$N \ge \frac{1}{\ln(1-p)} \ln\left(\frac{4n^2 + 4n\cos\frac{\pi}{n} - 8n - \tau(n)}{6n^2 - 8n}\right),$$

$$\tau(n) := \sqrt{16n^2(n-2)\left(1 - \cos\frac{\pi}{n}\right) + 32n(2-n)\left(1 - \cos\frac{\pi}{n}\right)^2 + 4n^2(n-2)^2}$$

Numerical Results for Question 1

- \blacktriangleright Dependence on p often dominates dependence on n
- For n = 50:

 \blacktriangleright Dependence on p often dominates dependence on n

• For n = 50:

 \blacktriangleright Order of magnitude increase in p causes $\sim {\rm order}$ of magnitude decrease in N

Working on Question 2

Question 2 Lower bound $\mathbb{P}\left[\lambda_2\left(\bigcup_{k=t+1}^{t+N}G(k)\right) \geq \lambda_{min}(n)\right]$ in terms of n and p

Working on Question 2

Question 2 Lower bound $\mathbb{P}\left[\lambda_2\left(\bigcup_{k=t+1}^{t+N} G(k)\right) \geq \lambda_{min}(n)\right]$ in terms of n and p

Applying the Paley-Zygmund inequality, we find

$$\mathbb{P}[\lambda_2(L) \ge \lambda_{min}(n)] \ge \left(1 - \frac{\lambda_{min}(n)}{\mathbb{E}[\lambda_2(L)]}\right)^2 \frac{\mathbb{E}[\lambda_2(L)]^2}{\mathbb{E}[\lambda_2^2(L)]}$$

Answer to Question $\ensuremath{2}$

► Fortunately, we have

$$\mathbb{E}[\lambda_2^2] \le \mathbb{E}[\ell_i^2] = n(n-2) \left[1 - (1-p)^N\right]^2 + 2n \left(1 - (1-p)^N\right)$$

UC SANTA CRUZ

► Fortunately, we have

$$\mathbb{E}[\lambda_2^2] \le \mathbb{E}[\ell_i^2] = n(n-2) \left[1 - (1-p)^N\right]^2 + 2n \left(1 - (1-p)^N\right)$$

• Question 2:
$$\mathbb{P}[\lambda_2(L) \ge \lambda_{min}(n)] \ge ?$$

Fortunately, we have

$$\mathbb{E}[\lambda_2^2] \le \mathbb{E}[\ell_i^2] = n(n-2) \left[1 - (1-p)^N\right]^2 + 2n \left(1 - (1-p)^N\right)$$

• Question 2:
$$\mathbb{P}[\lambda_2(L) \ge \lambda_{min}(n)] \ge ?$$

Answer to Question $\ensuremath{2}$

For L the Laplacian of a union of \boldsymbol{N} random graphs, we have

$$\mathbb{P}\left[\lambda_{2}(L) \geq \lambda_{min}(n)\right] \geq \left(1 - \frac{2(1 - \cos\frac{\pi}{n})}{n(1 - (1 - p)^{N})}\right)^{2} \left(\frac{\left[n\left(1 - (1 - p)^{N}\right) - \sqrt{2n(n - 2)\left(1 - (1 - p)^{N}\right)(1 - p)^{N}\right]^{2}}}{n(n - 2)\left(1 - (1 - p)^{N}\right)^{2} + 2n\left(1 - (1 - p)^{N}\right)}\right)$$

Numerical Results for Question 2

• For
$$n = 50$$
 and $p = 0.1$:

• $\mathbb{P}[\lambda_2(L) \ge \lambda_{min}(n)]$ increases rapidly with N

▶ What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?

Duke

CR17

- ▶ What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?
- What about directed graphs? What if $p_{ij} \neq p_{ji}$?

- ▶ What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?
- What about directed graphs? What if $p_{ij} \neq p_{ji}$?
- ▶ How about both? What about $\{p_{ij}(k)\}_{k \in \mathbb{N}}$ and $\{p_{ji}(k)\}_{k \in \mathbb{N}}$?

- ▶ What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?
- What about directed graphs? What if $p_{ij} \neq p_{ji}$?
- ▶ How about both? What about $\{p_{ij}(k)\}_{k \in \mathbb{N}}$ and $\{p_{ji}(k)\}_{k \in \mathbb{N}}$?
- Key challenge: for all three, symmetry is lost:

Thank you

