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Time-Varying Graphs are Common

I With autonomous agents, communication graphs may look like

I No single graph is connected
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How to Make Connected Unions of Graphs?

Common Assumption
There exists an N such that

t+N⋃
k=t+1

G(k)

is connected for any t.

Question 1
Q1: When is the “average union”
connected?
A1: N ≥ f(graph parameters)

Question 2
Q2: What is the probability that a
specific union is connected?
A2: P

[⋃t+N
k=t+1 G(k) connected

]
≥ h(graph parameters)
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Why Study Random Graphs?

1 Randomness models unknown and uncontrollable adversarial impacts
on communications

2 Randomness captures unpredictable information flows among agents

Erdős-Rényi Graphs

I Defined by parameters n ∈ N and p ∈ (0, 1)

I Graphs are on n nodes:

· · ·

I Each edge appears with
probability p:

i

i j

j

with probability p

with probability 1− p
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New Analyses Required for Multi-Agent Systems

I We require innovations beyond the existing literature for two
reasons:

I Common to take n→∞, but results do not apply to small networks

I We also avoid assuming p ∼ ln n
n

or p = f(n) because p is outside
our control
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We Study Graphs using Algebraic Connectivity

I Define L = D −A, and denote its ith eigenvalue by `i(L)
I Then

λ2(L) = min
2≤i≤n

`i(L) \ `1(L) = 0

I When is

E

[
λ2

(
t+N⋃
k=t+1

G(k)
)]
≥ λmin(n)?

· · ·

I λmin(n) = λ2(Ln) = 2
(
1− cos πn

)
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We can Bound E[λ2] with Known Constants

I For L the Laplacian of
⋃t+N
k=t+1 G(k), we want

E
[

min
2≤i≤n

`i (L)
]

6= min
2≤i≤n

E [`i(L)]

Lemma (Arnold & Groeneveld, 1976)
Let X1, . . . , Xm be a collection of random variables. If they all have
mean µ and variance σ2, then

µ− σ
√
m− k
k

≤ E
[
Xk:m

]
≤ µ+ σ

√
k − 1

m− k + 1

I For λ2(L): E[λ2] ≥ µ− σ
√
n− 2

I We want

µσ
√
n− 2λmin



We can Bound E[λ2] with Known Constants

I For L the Laplacian of
⋃t+N
k=t+1 G(k), we want

E
[

min
2≤i≤n

`i (L)
]
6= min

2≤i≤n
E [`i(L)]

Lemma (Arnold & Groeneveld, 1976)
Let X1, . . . , Xm be a collection of random variables. If they all have
mean µ and variance σ2, then

µ− σ
√
m− k
k

≤ E
[
Xk:m

]
≤ µ+ σ

√
k − 1

m− k + 1

I For λ2(L): E[λ2] ≥ µ− σ
√
n− 2

I We want

µσ
√
n− 2λmin



We can Bound E[λ2] with Known Constants

I For L the Laplacian of
⋃t+N
k=t+1 G(k), we want

E
[

min
2≤i≤n

`i (L)
]
6= min

2≤i≤n
E [`i(L)]

Lemma (Arnold & Groeneveld, 1976)
Let X1, . . . , Xm be a collection of random variables. If they all have
mean µ and variance σ2, then

µ− σ
√
m− k
k

≤ E
[
Xk:m

]
≤ µ+ σ

√
k − 1

m− k + 1

I For λ2(L): E[λ2] ≥ µ− σ
√
n− 2

I We want

µσ
√
n− 2λmin



We can Bound E[λ2] with Known Constants

I For L the Laplacian of
⋃t+N
k=t+1 G(k), we want

E
[

min
2≤i≤n

`i (L)
]
6= min

2≤i≤n
E [`i(L)]

Lemma (Arnold & Groeneveld, 1976)
Let X1, . . . , Xm be a collection of random variables. If they all have
mean µ and variance σ2, then

µ− σ
√
m− k
k

≤ E
[
Xk:m

]
≤ µ+ σ

√
k − 1

m− k + 1

I For λ2(L): E[λ2] ≥ µ− σ
√
n− 2

I We want

µσ
√
n− 2λmin



What is µ for `i?

Lemma
µ := E[`i] is an eigenvalue of E[L]

I E[L] takes the form

E[L] =
(
1− (1− p)N

)


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1


Finding µ

I For i ∈ {2, . . . , n}, `i has mean

µ = n
(
1− (1− p)N

)



What is µ for `i?

Lemma
µ := E[`i] is an eigenvalue of E[L]

I E[L] takes the form

E[L] =
(
1− (1− p)N

)


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1



Finding µ

I For i ∈ {2, . . . , n}, `i has mean

µ = n
(
1− (1− p)N

)



What is µ for `i?

Lemma
µ := E[`i] is an eigenvalue of E[L]

I E[L] takes the form

E[L] =
(
1− (1− p)N

)


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1


Finding µ

I For i ∈ {2, . . . , n}, `i has mean

µ = n
(
1− (1− p)N

)



What is σ for `i?

I We know that σ2[`i] = E[`2
i ]− E[`i]2 = E[`2

i ]− µ2

Lemma
E[`2

i ] is an eigenvalue of E[L2]

I E[L2] takes the form

E[L2] =
(

(n−2)
[
1−(1−p)N

]2+2
(
1−(1−p)N

)
n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
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Computing σ2

For i ∈ {2, . . . , n}, `i has variance

σ2 = 2n
(
1− (1− p)N

)
(1− p)N
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Answer to Question 1
I We now have the bound

E

[
λ2

(
t+N⋃
k=t+1

G(k)
)]
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σ

Theorem (Answer to Question 1)
A union of N Erdős-Rényi graphs is expected to be connected if

N ≥ 1
ln(1− p) ln

(4n2 + 4n cos πn − 8n− τ(n)
6n2 − 8n

)
,

τ(n) :=
√

16n2(n− 2)
(
1− cos πn

)
+ 32n(2− n)

(
1− cos πn

)2 + 4n2(n− 2)2

I These values of N give

µσ
√
n− 2λmin
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Numerical Results for Question 1

I Dependence on p often dominates dependence on n
I For n = 50:

# Graphs

N

Edge Probability p

10
-5

10
-4

10
-3

10
-2

10
-1

10
1

10
2

10
3

10
4

10
5

10
6

I Order of magnitude increase in p causes ∼order of magnitude
decrease in N
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Working on Question 2

Question 2
Lower bound P

[
λ2

(⋃t+N
k=t+1 G(k)

)
≥ λmin(n)

]
in terms of n and p

µλmin

I Applying the Paley-Zygmund inequality, we find

P
[
λ2(L) ≥ λmin(n)

]
≥
(

1− λmin(n)
E[λ2(L)]

)2 E[λ2(L)]2

E[λ2
2(L)]
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Answer to Question 2

I Fortunately, we have
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Numerical Results for Question 2

I For n = 50 and p = 0.1:

50 100 150 200 250
0.2

0.4

0.6

0.8

1

I P[λ2(L) ≥ λmin(n)] increases rapidly with N



Extensions and Next Steps

I What about time-varying probabilities? What conditions do we need
on {p(k)}k∈N?

I What about directed graphs? What if pij 6= pji?
I How about both? What about {pij(k)}k∈N and {pji(k)}k∈N?
I Key challenge: for all three, symmetry is lost:
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Thank you
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