Making Connected Unions of Random Graphs

Matthew Hale
Department of Mechanical and Aerospace Engineering University of Florida

AFOSR Center of Excellence Kickoff May 13, 2019

Time-Varying Graphs are Common

- With autonomous agents, communication graphs may look like

TEXAS
© UL SANTA RRULZ

Time-Varying Graphs are Common

- With autonomous agents, communication graphs may look like

- No single graph is connected

- With autonomous agents, communication graphs may look like

- No single graph is connected, but their union is

How to Make Connected Unions of Graphs?

Common Assumption

There exists an N such that

$$
\bigcup_{k=t+1}^{t+N} G(k)
$$

is connected for any t.

TEXAS
The Lnversay of tixas at qust.11

How to Make Connected Unions of Graphs?

Common Assumption

There exists an N such that

$$
\bigcup_{k=t+1}^{t+N} G(k)
$$

is connected for any t.

Question 1

Q1: When is the "average union" connected?
A1: $N \geq f$ (graph parameters)
Duke
TEXAS
The Lnversiy of lixas at qust.11

How to Make Connected Unions of Graphs?

Common Assumption

There exists an N such that

$$
\bigcup_{k=t+1}^{t+N} G(k)
$$

is connected for any t.

Question 1

Q1: When is the "average union" connected?
A1: $N \geq f$ (graph parameters)

Question 2

Q2: What is the probability that a specific union is connected?

$$
\text { A2: } \begin{aligned}
& \mathbb{P}\left[\bigcup_{k=t+1}^{t+N} G(k) \text { connected }\right] \\
& \geq h(\text { graph parameters })
\end{aligned}
$$

(4)UC SANIH CRUZ

How to Make Connected Unions of Graphs?

Common Assumption

There exists an N such that

$$
\bigcup_{k=t+1}^{t+N} G(k)
$$

is connected for any t.

Question 1

Q1: When is the "average union" connected?
A1: $N \geq f$ (graph parameters)

TEXAS
The LThersiy of lixas at aist.II
(4)UC SANIH CRUZ

Why Study Random Graphs?

1 Randomness models unknown and uncontrollable adversarial impacts on communications

Why Study Random Graphs?

1 Randomness models unknown and uncontrollable adversarial impacts on communications
2. Randomness captures unpredictable information flows among agents

Duke
皆TEXAS
The Lonversiy bi lixas at qustal

Why Study Random Graphs?

1 Randomness models unknown and uncontrollable adversarial impacts on communications
2. Randomness captures unpredictable information flows among agents

Erdős-Rényi Graphs

- Defined by parameters $n \in \mathbb{N}$ and $p \in(0,1)$

Duke
圆TEXAS

Why Study Random Graphs?

1 Randomness models unknown and uncontrollable adversarial impacts on communications
2 Randomness captures unpredictable information flows among agents

Erdős-Rényi Graphs

- Defined by parameters $n \in \mathbb{N}$ and $p \in(0,1)$
- Graphs are on n nodes:

Why Study Random Graphs?

1 Randomness models unknown and uncontrollable adversarial impacts on communications
2 Randomness captures unpredictable information flows among agents

Erdős-Rényi Graphs

- Defined by parameters $n \in \mathbb{N}$ and $p \in(0,1)$
- Graphs are on n nodes:

- Each edge appears with probability p :
 with probability $1-p$
(4) FAXAS

The Lnversiyot Iixds at aistol
(4LCS SHNTH CRUZ

- We require innovations beyond the existing literature for two reasons:
- Common to take $n \rightarrow \infty$, but results do not apply to small networks

New Analyses Required for Multi-Agent Systems

- We require innovations beyond the existing literature for two reasons:
- Common to take $n \rightarrow \infty$, but results do not apply to small networks

- We also avoid assuming $p \sim \frac{\ln n}{n}$ or $p=f(n)$ because p is outside our control

We Study Graphs using Algebraic Connectivity

- Define $L=D-A$, and denote its $i^{t h}$ eigenvalue by $\ell_{i}(L)$
- Then

$$
\lambda_{2}(L)=\min _{2 \leq i \leq n} \ell_{i}(L) \quad \backslash \quad \ell_{1}(L)=0
$$

We Study Graphs using Algebraic Connectivity

- Define $L=D-A$, and denote its $i^{t h}$ eigenvalue by $\ell_{i}(L)$
- Then

$$
\lambda_{2}(L)=\min _{2 \leq i \leq n} \ell_{i}(L) \quad \backslash \quad \ell_{1}(L)=0
$$

- When is

$$
\mathbb{E}\left[\lambda_{2}\left(\bigcup_{k=t+1}^{t+N} G(k)\right)\right] \geq \lambda_{\min }(n) ?
$$

TEXAS
(4)UC SANIH CRUZ

We Study Graphs using Algebraic Connectivity

- Define $L=D-A$, and denote its $i^{\text {th }}$ eigenvalue by $\ell_{i}(L)$
- Then

$$
\lambda_{2}(L)=\min _{2 \leq i \leq n} \ell_{i}(L) \quad \backslash \quad \ell_{1}(L)=0
$$

- When is

$$
\mathbb{E}\left[\lambda_{2}\left(\bigcup_{k=t+1}^{t+N} G(k)\right)\right] \geq \lambda_{\min }(n) ?
$$

- $\lambda_{\text {min }}(n)=\lambda_{2}\left(L_{n}\right)=2\left(1-\cos \frac{\pi}{n}\right)$

We can Bound $\mathbb{E}\left[\lambda_{2}\right]$ with Known Constants

- For L the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$
\mathbb{E}\left[\min _{2 \leq i \leq n} \ell_{i}(L)\right]
$$

Duke
TEXAS

We can Bound $\mathbb{E}\left[\lambda_{2}\right]$ with Known Constants

- For L the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$
\mathbb{E}\left[\min _{2 \leq i \leq n} \ell_{i}(L)\right] \neq \min _{2 \leq i \leq n} \mathbb{E}\left[\ell_{i}(L)\right]
$$

We can Bound $\mathbb{E}\left[\lambda_{2}\right]$ with Known Constants

- For L the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$
\mathbb{E}\left[\min _{2 \leq i \leq n} \ell_{i}(L)\right] \neq \min _{2 \leq i \leq n} \mathbb{E}\left[\ell_{i}(L)\right]
$$

Lemma (Arnold \& Groeneveld, 1976)

Let X_{1}, \ldots, X_{m} be a collection of random variables. If they all have mean μ and variance σ^{2}, then

$$
\mu-\sigma \sqrt{\frac{m-k}{k}} \leq \mathbb{E}\left[X_{k: m}\right] \leq \mu+\sigma \sqrt{\frac{k-1}{m-k+1}}
$$

Duke
TEXAS
The LThersiy of lixas at qust.]

We can Bound $\mathbb{E}\left[\lambda_{2}\right]$ with Known Constants

- For L the Laplacian of $\bigcup_{k=t+1}^{t+N} G(k)$, we want

$$
\mathbb{E}\left[\min _{2 \leq i \leq n} \ell_{i}(L)\right] \neq \min _{2 \leq i \leq n} \mathbb{E}\left[\ell_{i}(L)\right]
$$

Lemma (Arnold \& Groeneveld, 1976)

Let X_{1}, \ldots, X_{m} be a collection of random variables. If they all have mean μ and variance σ^{2}, then

$$
\mu-\sigma \sqrt{\frac{m-k}{k}} \leq \mathbb{E}\left[X_{k: m}\right] \leq \mu+\sigma \sqrt{\frac{k-1}{m-k+1}}
$$

- For $\lambda_{2}(L): \mathbb{E}\left[\lambda_{2}\right] \geq \mu-\sigma \sqrt{n-2}$
- We want

Lemma

$\mu:=\mathbb{E}\left[\ell_{i}\right]$ is an eigenvalue of $\mathbb{E}[L]$

Lemma

$\mu:=\mathbb{E}\left[\ell_{i}\right]$ is an eigenvalue of $\mathbb{E}[L]$

- $\mathbb{E}[L]$ takes the form

$$
\mathbb{E}[L]=\left(1-(1-p)^{N}\right)\left(\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1
\end{array}\right)
$$

Lemma

$\mu:=\mathbb{E}\left[\ell_{i}\right]$ is an eigenvalue of $\mathbb{E}[L]$

- $\mathbb{E}[L]$ takes the form

$$
\mathbb{E}[L]=\left(1-(1-p)^{N}\right)\left(\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1
\end{array}\right)
$$

Finding μ

- For $i \in\{2, \ldots, n\}, \ell_{i}$ has mean

$$
\mu=n\left(1-(1-p)^{N}\right)
$$

- We know that $\sigma^{2}\left[\ell_{i}\right]=\mathbb{E}\left[\ell_{i}^{2}\right]-\mathbb{E}\left[\ell_{i}\right]^{2}=\mathbb{E}\left[\ell_{i}^{2}\right]-\mu^{2}$
: TEXAS
- We know that $\sigma^{2}\left[\ell_{i}\right]=\mathbb{E}\left[\ell_{i}^{2}\right]-\mathbb{E}\left[\ell_{i}\right]^{2}=\mathbb{E}\left[\ell_{i}^{2}\right]-\mu^{2}$

Lemma

$\mathbb{E}\left[\ell_{i}^{2}\right]$ is an eigenvalue of $\mathbb{E}\left[L^{2}\right]$

- We know that $\sigma^{2}\left[\ell_{i}\right]=\mathbb{E}\left[\ell_{i}^{2}\right]-\mathbb{E}\left[\ell_{i}\right]^{2}=\mathbb{E}\left[\ell_{i}^{2}\right]-\mu^{2}$

Lemma

$\mathbb{E}\left[\ell_{i}^{2}\right]$ is an eigenvalue of $\mathbb{E}\left[L^{2}\right]$

- $\mathbb{E}\left[L^{2}\right]$ takes the form
$\mathbb{E}\left[L^{2}\right]=\left((n-2)\left[1-(1-p)^{N}\right]^{2}+2\left(1-(1-p)^{N}\right)\left(\begin{array}{cccc}n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1\end{array}\right)\right.$
- We know that $\sigma^{2}\left[\ell_{i}\right]=\mathbb{E}\left[\ell_{i}^{2}\right]-\mathbb{E}\left[\ell_{i}\right]^{2}=\mathbb{E}\left[\ell_{i}^{2}\right]-\mu^{2}$

Lemma

$\mathbb{E}\left[\ell_{i}^{2}\right]$ is an eigenvalue of $\mathbb{E}\left[L^{2}\right]$

- $\mathbb{E}\left[L^{2}\right]$ takes the form
$\mathbb{E}\left[L^{2}\right]=\left((n-2)\left[1-(1-p)^{N}\right]^{2}+2\left(1-(1-p)^{N}\right)\left(\begin{array}{cccc}n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1\end{array}\right)\right.$
Computing σ^{2}
For $i \in\{2, \ldots, n\}, \ell_{i}$ has variance

$$
\sigma^{2}=2 n\left(1-(1-p)^{N}\right)(1-p)^{N}
$$

Answer to Question 1

- We now have the bound

$$
\mathbb{E}\left[\lambda_{2}\left(\bigcup_{k=t+1}^{t+N} G(k)\right)\right] \geq \underbrace{n\left(1-(1-p)^{N}\right)}_{\mu}-\sqrt{n-2} \underbrace{\sqrt{2 n\left(1-(1-p)^{N}\right)(1-p)^{N}}}_{\sigma}
$$

- We now have the bound
$\mathbb{E}\left[\lambda_{2}\left(\bigcup_{k=t+1}^{t+N} G(k)\right)\right] \geq \underbrace{n\left(1-(1-p)^{N}\right)}_{\mu}-\sqrt{n-2} \underbrace{\sqrt{2 n\left(1-(1-p)^{N}\right)(1-p)^{N}}}_{\sigma}$
Theorem (Answer to Question 1)
A union of N Erdős-Rényi graphs is expected to be connected if

$$
\begin{gathered}
N \geq \frac{1}{\ln (1-p)} \ln \left(\frac{4 n^{2}+4 n \cos \frac{\pi}{n}-8 n-\tau(n)}{6 n^{2}-8 n}\right), \\
\tau(n):=\sqrt{16 n^{2}(n-2)\left(1-\cos \frac{\pi}{n}\right)+32 n(2-n)\left(1-\cos \frac{\pi}{n}\right)^{2}+4 n^{2}(n-2)^{2}}
\end{gathered}
$$

- We now have the bound
$\mathbb{E}\left[\lambda_{2}\left(\bigcup_{k=t+1}^{t+N} G(k)\right)\right] \geq \underbrace{n\left(1-(1-p)^{N}\right)}_{\mu}-\sqrt{n-2} \underbrace{\sqrt{2 n\left(1-(1-p)^{N}\right)(1-p)^{N}}}_{\sigma}$
Theorem (Answer to Question 1)
A union of N Erdős-Rényi graphs is expected to be connected if

$$
\begin{gathered}
N \geq \frac{1}{\ln (1-p)} \ln \left(\frac{4 n^{2}+4 n \cos \frac{\pi}{n}-8 n-\tau(n)}{6 n^{2}-8 n}\right) \\
\tau(n):=\sqrt{16 n^{2}(n-2)\left(1-\cos \frac{\pi}{n}\right)+32 n(2-n)\left(1-\cos \frac{\pi}{n}\right)^{2}+4 n^{2}(n-2)^{2}}
\end{gathered}
$$

- These values of N give

- Dependence on p often dominates dependence on n
- For $n=50$:

Numerical Results for Question 1

- Dependence on p often dominates dependence on n
- For $n=50$:

- Order of magnitude increase in p causes \sim order of magnitude decrease in N

Working on Question 2

Question 2

Lower bound $\mathbb{P}\left[\lambda_{2}\left(\bigcup_{k=t+1}^{t+N} G(k)\right) \geq \lambda_{\text {min }}(n)\right]$ in terms of n and p

TEXAS

Question 2

Lower bound $\mathbb{P}\left[\lambda_{2}\left(\bigcup_{k=t+1}^{t+N} G(k)\right) \geq \lambda_{\min }(n)\right]$ in terms of n and p

- Applying the Paley-Zygmund inequality, we find

$$
\mathbb{P}\left[\lambda_{2}(L) \geq \lambda_{\min }(n)\right] \geq\left(1-\frac{\lambda_{\min }(n)}{\mathbb{E}\left[\lambda_{2}(L)\right]}\right)^{2} \frac{\mathbb{E}\left[\lambda_{2}(L)\right]^{2}}{\mathbb{E}\left[\lambda_{2}^{2}(L)\right]}
$$

- Fortunately, we have

$$
\mathbb{E}\left[\lambda_{2}^{2}\right] \leq \mathbb{E}\left[\ell_{i}^{2}\right]=n(n-2)\left[1-(1-p)^{N}\right]^{2}+2 n\left(1-(1-p)^{N}\right)
$$

- Fortunately, we have

$$
\mathbb{E}\left[\lambda_{2}^{2}\right] \leq \mathbb{E}\left[\ell_{i}^{2}\right]=n(n-2)\left[1-(1-p)^{N}\right]^{2}+2 n\left(1-(1-p)^{N}\right)
$$

- Question 2: $\mathbb{P}\left[\lambda_{2}(L) \geq \lambda_{\min }(n)\right] \geq$?
©TEXAS

Answer to Question 2

- Fortunately, we have

$$
\mathbb{E}\left[\lambda_{2}^{2}\right] \leq \mathbb{E}\left[\ell_{i}^{2}\right]=n(n-2)\left[1-(1-p)^{N}\right]^{2}+2 n\left(1-(1-p)^{N}\right)
$$

- Question 2: $\mathbb{P}\left[\lambda_{2}(L) \geq \lambda_{\text {min }}(n)\right] \geq$?

Answer to Question 2

For L the Laplacian of a union of N random graphs, we have

$$
\begin{aligned}
& \mathbb{P}\left[\lambda_{2}(L) \geq \lambda_{\min }(n)\right] \geq \\
& \left(1-\frac{2\left(1-\cos \frac{\pi}{n}\right)}{n\left(1-(1-p)^{N}\right)}\right)^{2}\left(\frac{\left[n\left(1-(1-p)^{N}\right)-\sqrt{2 n(n-2)\left(1-(1-p)^{N}\right)(1-p)^{N}}\right]^{2}}{n(n-2)\left(1-(1-p)^{N}\right)^{2}+2 n\left(1-(1-p)^{N}\right)}\right)
\end{aligned}
$$

Numerical Results for Question 2

- For $n=50$ and $p=0.1$:

- $\mathbb{P}\left[\lambda_{2}(L) \geq \lambda_{\min }(n)\right]$ increases rapidly with N

Extensions and Next Steps

- What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?

圈TEXAS
© ULC SANTA RRULZ

- What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?
- What about directed graphs? What if $p_{i j} \neq p_{j i}$?
- What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?
- What about directed graphs? What if $p_{i j} \neq p_{j i}$?
- How about both? What about $\left\{p_{i j}(k)\right\}_{k \in \mathbb{N}}$ and $\left\{p_{j i}(k)\right\}_{k \in \mathbb{N}}$?

蜀TEXAS
The Lnveshyot lexas at qistil

- What about time-varying probabilities? What conditions do we need on $\{p(k)\}_{k \in \mathbb{N}}$?
- What about directed graphs? What if $p_{i j} \neq p_{j i}$?
- How about both? What about $\left\{p_{i j}(k)\right\}_{k \in \mathbb{N}}$ and $\left\{p_{j i}(k)\right\}_{k \in \mathbb{N}}$?
- Key challenge: for all three, symmetry is lost:

$$
\left(\begin{array}{ccccc}
\square & \square & \square & \ldots & \square \\
\square & \square & \square & \ldots & \square \\
\square & \square & \square & \ldots & \square \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\square & \square & \square & \ldots & \square
\end{array}\right) \text { becomes }\left(\begin{array}{ccccc}
\square & \square & \square & \ldots & \square \\
\square & \square & \square & \ldots & \square \\
\square & \square & \square & \ldots & \square \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\square & \square & \square & \ldots & \square
\end{array}\right)
$$

Thank you

