
Asynchronous Distributed
Optimization

Matthew Hale
Department of Mechanical and Aerospace Engineering
University of Florida

AFOSR Center of Excellence Kickoff
May 14, 2019

Agents collaborate on several types of tasks

I Modifying the network itself to improve communications

→

I Exchanging positions to jointly plan trajectories

I Exchanging sensor data to process data streams

Common Threads
These tasks require (i) information sharing and (ii) optimizing some
quantity.

Agents collaborate on several types of tasks

I Modifying the network itself to improve communications

→
I Exchanging positions to jointly plan trajectories

I Exchanging sensor data to process data streams

Common Threads
These tasks require (i) information sharing and (ii) optimizing some
quantity.

Agents collaborate on several types of tasks

I Modifying the network itself to improve communications

→
I Exchanging positions to jointly plan trajectories

I Exchanging sensor data to process data streams

Common Threads
These tasks require (i) information sharing and (ii) optimizing some
quantity.

Agents collaborate on several types of tasks

I Modifying the network itself to improve communications

→
I Exchanging positions to jointly plan trajectories

I Exchanging sensor data to process data streams

Common Threads
These tasks require (i) information sharing and (ii) optimizing some
quantity.

What problems do we want to solve?

I Convex programs formalize several classes of these tasks

I Consider a general multi-agent optimization setup:

1

min
x1∈X1

f1(x1)

2

min
x2∈X2

f2(x2)

3

min
x3∈X3

f3(x3)

4

min
x4∈X4

f4(x4)

I Define x = (x1, x2, x3, x4) and X = X1 ×X2 ×X3 ×X4

I Want to solve
minimize

x∈X
f(x) := c(x) +

N∑
i=1

fi(xi)

What problems do we want to solve?

I Convex programs formalize several classes of these tasks
I Consider a general multi-agent optimization setup:

1

min
x1∈X1

f1(x1)

2

min
x2∈X2

f2(x2)

3

min
x3∈X3

f3(x3)

4

min
x4∈X4

f4(x4)

I Define x = (x1, x2, x3, x4) and X = X1 ×X2 ×X3 ×X4

I Want to solve
minimize

x∈X
f(x) := c(x) +

N∑
i=1

fi(xi)

What problems do we want to solve?

I Convex programs formalize several classes of these tasks
I Consider a general multi-agent optimization setup:

c
(
x1, x2, x3, x4

)

1

min
x1∈X1

f1(x1)

2

min
x2∈X2

f2(x2)

3

min
x3∈X3

f3(x3)

4

min
x4∈X4

f4(x4)

I Define x = (x1, x2, x3, x4) and X = X1 ×X2 ×X3 ×X4

I Want to solve
minimize

x∈X
f(x) := c(x) +

N∑
i=1

fi(xi)

What problems do we want to solve?

I Convex programs formalize several classes of these tasks
I Consider a general multi-agent optimization setup:

c
(
x1, x2, x3, x4

)

1

min
x1∈X1

f1(x1)

2

min
x2∈X2

f2(x2)

3

min
x3∈X3

f3(x3)

4

min
x4∈X4

f4(x4)

I Define x = (x1, x2, x3, x4) and X = X1 ×X2 ×X3 ×X4

I Want to solve
minimize

x∈X
f(x) := c(x) +

N∑
i=1

fi(xi)

What problems do we want to solve?

I Convex programs formalize several classes of these tasks
I Consider a general multi-agent optimization setup:

c
(
x1, x2, x3, x4

)

1

min
x1∈X1

f1(x1)

2

min
x2∈X2

f2(x2)

3

min
x3∈X3

f3(x3)

4

min
x4∈X4

f4(x4)

I Define x = (x1, x2, x3, x4) and X = X1 ×X2 ×X3 ×X4

I Want to solve
minimize

x∈X
f(x) := c(x) +

N∑
i=1

fi(xi)

Agents must optimize asynchronously

I Communications are unavoidably asynchronous

I Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:

I Makes progress toward an optimum when new information is shared
I Does not undo progress when information is not shared

I This is a forward invariance condition!

Agents must optimize asynchronously

I Communications are unavoidably asynchronous

I Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:

I Makes progress toward an optimum when new information is shared
I Does not undo progress when information is not shared

I This is a forward invariance condition!

Agents must optimize asynchronously

I Communications are unavoidably asynchronous

I Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:

I Makes progress toward an optimum when new information is shared

I Does not undo progress when information is not shared

I This is a forward invariance condition!

Agents must optimize asynchronously

I Communications are unavoidably asynchronous

I Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:

I Makes progress toward an optimum when new information is shared
I Does not undo progress when information is not shared

I This is a forward invariance condition!

Agents must optimize asynchronously

I Communications are unavoidably asynchronous

I Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:

I Makes progress toward an optimum when new information is shared
I Does not undo progress when information is not shared

I This is a forward invariance condition!

Accounting for Heterogeneity

I We track agents’ different information:

xi(k) =

 xi
1(k)
...

xi
N (k)


I Always contains most recent information held by agent i

I We expect xi(k) 6= xj(k) at all times k

I Let agents independently regularize

1

f(x) + α1‖x1‖2
2

f(x) + α2‖x2‖2
3

f(x) + α3‖x3‖2
4

f(x) + α4‖x4‖2

Accounting for Heterogeneity

I We track agents’ different information:

xi(k) =

 xi
1(k)
...

xi
N (k)


I Always contains most recent information held by agent i

I We expect xi(k) 6= xj(k) at all times k

I Let agents independently regularize

1

f(x) + α1‖x1‖2
2

f(x) + α2‖x2‖2
3

f(x) + α3‖x3‖2
4

f(x) + α4‖x4‖2

Accounting for Heterogeneity

I We track agents’ different information:

xi(k) =

 xi
1(k)
...

xi
N (k)


I Always contains most recent information held by agent i

I We expect xi(k) 6= xj(k) at all times k

I Let agents independently regularize

1

f(x) + α1‖x1‖2
2

f(x) + α2‖x2‖2
3

f(x) + α3‖x3‖2
4

f(x) + α4‖x4‖2

Block-Based Update Law

I Gradient descent is robust to many things

I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Block-Based Update Law

I Gradient descent is robust to many things
I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Block-Based Update Law

I Gradient descent is robust to many things
I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Block-Based Update Law

I Gradient descent is robust to many things
I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Block-Based Update Law

I Gradient descent is robust to many things
I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Block-Based Update Law

I Gradient descent is robust to many things
I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Block-Based Update Law

I Gradient descent is robust to many things
I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Block-Based Update Law

I Gradient descent is robust to many things
I Only agent i updates its own decision variable xi

I Agent i updates xi
i but not xi

j – it gets that from agent j

xii i ←→ j xjj

Desired Update Law

xi
i(k + 1) =

{
ΠXi

[
xi

i(k)− γ
(

∂f
∂xi

(xi(k)) + αix
i
i(k)

)]
i updates at k

xi
i(k) otherwise

xi
j(k + 1) =

{
xj

j xj
j received at time k

xi
j(k) otherwise

“Do gradient descent with whatever you have”

Lyapunov Convergence Analysis

I Define
V (k) = max

i∈[N]
‖xi(k)− x̂‖2

Theorem 1: Asymptotic Convergence
Suppose γ is small enough and αi > 0 for all i ∈ [N]. Then V (k)→ 0
and

xi
i(k + 1) = ΠXi

[
xi

i(k)− γ
(
∂f

∂xi

(
xi(k)

)
+ αix

i
i(k)

)]
converges to x̂ asymptotically.

I And each sub-level set is
forward-invariant!

Agent 1

Agent 2

{x̂}

. .
.

Lyapunov Convergence Analysis

I Define
V (k) = max

i∈[N]
‖xi(k)− x̂‖2

Theorem 1: Asymptotic Convergence
Suppose γ is small enough and αi > 0 for all i ∈ [N]. Then V (k)→ 0
and

xi
i(k + 1) = ΠXi

[
xi

i(k)− γ
(
∂f

∂xi

(
xi(k)

)
+ αix

i
i(k)

)]
converges to x̂ asymptotically.

I And each sub-level set is
forward-invariant!

Agent 1

Agent 2

{x̂}

. .
.

Lyapunov Convergence Analysis

I Define
V (k) = max

i∈[N]
‖xi(k)− x̂‖2

Theorem 1: Asymptotic Convergence
Suppose γ is small enough and αi > 0 for all i ∈ [N]. Then V (k)→ 0
and

xi
i(k + 1) = ΠXi

[
xi

i(k)− γ
(
∂f

∂xi

(
xi(k)

)
+ αix

i
i(k)

)]
converges to x̂ asymptotically.

I And each sub-level set is
forward-invariant!

Agent 1

Agent 2

{x̂}

. .
.

Convergence Analysis

I Definition: A communication cycle occurs after each agent has (i)
computed a state update and (ii) shared it with others that need it

1 2 3 4

I Use c(k) to denote # of cycles completed by time k
I Use Li to denote the Lipschitz constant of ∇if

I Define q = maxi∈[N]
{
|1− γαi|, |1− γLi|

}
Theorem 2: Convergence Rate
We have q ∈ (0, 1) and

V (k) ≤ qc(k)V (0)

Convergence Analysis

I Definition: A communication cycle occurs after each agent has (i)
computed a state update and (ii) shared it with others that need it

1 2 3 4

I Use c(k) to denote # of cycles completed by time k

I Use Li to denote the Lipschitz constant of ∇if

I Define q = maxi∈[N]
{
|1− γαi|, |1− γLi|

}
Theorem 2: Convergence Rate
We have q ∈ (0, 1) and

V (k) ≤ qc(k)V (0)

Convergence Analysis

I Definition: A communication cycle occurs after each agent has (i)
computed a state update and (ii) shared it with others that need it

1 2 3 4

I Use c(k) to denote # of cycles completed by time k
I Use Li to denote the Lipschitz constant of ∇if

I Define q = maxi∈[N]
{
|1− γαi|, |1− γLi|

}

Theorem 2: Convergence Rate
We have q ∈ (0, 1) and

V (k) ≤ qc(k)V (0)

Convergence Analysis

I Definition: A communication cycle occurs after each agent has (i)
computed a state update and (ii) shared it with others that need it

1 2 3 4

I Use c(k) to denote # of cycles completed by time k
I Use Li to denote the Lipschitz constant of ∇if

I Define q = maxi∈[N]
{
|1− γαi|, |1− γLi|

}
Theorem 2: Convergence Rate
We have q ∈ (0, 1) and

V (k) ≤ qc(k)V (0)

Impacts and Interpretations

I In this setting, best to interleave communications and computations
onboard each agent

I If there is a known delay bound B, then convergence rate is

V (k) ≤ qbk/BcV (0)

Direct Generalization of Classic Result
Make centralized, set all parameters equal. Then

‖x(k)− x̂‖2
2 ≤ qk‖x(0)− x̂‖2

2.

Impacts and Interpretations

I In this setting, best to interleave communications and computations
onboard each agent

I If there is a known delay bound B, then convergence rate is

V (k) ≤ qbk/BcV (0)

Direct Generalization of Classic Result
Make centralized, set all parameters equal. Then

‖x(k)− x̂‖2
2 ≤ qk‖x(0)− x̂‖2

2.

Impacts and Interpretations

I In this setting, best to interleave communications and computations
onboard each agent

I If there is a known delay bound B, then convergence rate is

V (k) ≤ qbk/BcV (0)

Direct Generalization of Classic Result
Make centralized, set all parameters equal. Then

‖x(k)− x̂‖2
2 ≤ qk‖x(0)− x̂‖2

2.

Next Steps

I Add in constraints!

minimize f(x)
subject to g(x) ≤ 0

x ∈ X

I How to set γi 6= γj and still converge?

I End goal:
1

(
γ1, α1, f1, X1, c, g

)

2
(
γ2, α2, f2, X2, c, g

)
3

(
γ3, α3, f3, X3, c, g

)
4

(
γ4, α4, f4, X4, c, g

)

Next Steps

I Add in constraints!

minimize f(x)
subject to g(x) ≤ 0

x ∈ X

I How to set γi 6= γj and still converge?

I End goal:
1

(
γ1, α1, f1, X1, c, g

)

2
(
γ2, α2, f2, X2, c, g

)
3

(
γ3, α3, f3, X3, c, g

)
4

(
γ4, α4, f4, X4, c, g

)

Next Steps

I Add in constraints!

minimize f(x)
subject to g(x) ≤ 0

x ∈ X

I How to set γi 6= γj and still converge?

I End goal:
1

(
γ1, α1, f1, X1, c, g

)

2
(
γ2, α2, f2, X2, c, g

)
3

(
γ3, α3, f3, X3, c, g

)
4

(
γ4, α4, f4, X4, c, g

)

Thank you

