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» Modifying the network itself to improve communications

» Exchanging positions to jointly plan trajectories

» Exchanging sensor data to process data streams

Common Threads

These tasks require (i) information sharing and (ii) optimizing some
quantity.
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» Convex programs formalize several classes of these tasks

UFFfiorRiDA &)



» Convex programs formalize several classes of these tasks

» Consider a general multi-agent optimization setup:

min T
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» Convex programs formalize several classes of these tasks
» Consider a general multi-agent optimization setup:

mln fi(z1)
z1€X

@ C($17I27z3,9€\) .

g fa(ws) @ Sn fa(za)
Jmin fa(z)
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» Convex programs formalize several classes of these tasks
» Consider a general multi-agent optimization setup:

Juin fi (z1)

@ C($17I27z3,9€\) .

g fa(ws) @ Sn fa(za)
Jmin fa(z)

> Define © = (z1, 2, z3,24) and X = X7 x Xo X X3 x X4
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» Convex programs formalize several classes of these tasks
» Consider a general multi-agent optimization setup:

Juin fi(z1)
@
@ c(w1, 2, @3,21) @
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Jmin falz1)

> Define © = (z1, 2, z3,24) and X = X7 x Xo X X3 x X4

» Want to solve

mlnlen}(lze flz +Zfz ;)
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» Communications are unavoidably asynchronous

> Agents receive different information at different times and agents
disagree as they work together
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» Communications are unavoidably asynchronous

> Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:

» Makes progress toward an optimum when new information is shared
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> Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:
» Makes progress toward an optimum when new information is shared

» Does not undo progress when information is not shared
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» Communications are unavoidably asynchronous

> Agents receive different information at different times and agents
disagree as they work together

Overall goals
Design an asynchronous optimization framework that:
» Makes progress toward an optimum when new information is shared

» Does not undo progress when information is not shared

» This is a forward invariance condition!
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» We track agents' different information:
(k)
z' (k) = 5
iy (k)

» Always contains most recent information held by agent ¢
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(k)
z' (k) = 5
iy (k)

» Always contains most recent information held by agent ¢

» We expect z'(k) # 27 (k) at all times k
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» We track agents' different information:
(k)
z' (k) = 5
iy (k)

» Always contains most recent information held by agent ¢

» We expect z'(k) # 27 (k) at all times k

> Let agents independently regularize

@ ® O ®

f@) +ailzl? f(z)+ozllzal® f(@)+asllas)? f(2) + aulle?

UF/FioRIDA §3




» Gradient descent is robust to many things
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» Only agent ¢ updates its own decision variable x;
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» Gradient descent is robust to many things
» Only agent ¢ updates its own decision variable x;
» Agent i updates z! but not x} — it gets that from agent j
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» Gradient descent is robust to many things
» Only agent ¢ updates its own decision variable x;
> Agent i updates x} but not x; — it gets that from agent j
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Desired Update Law

i

aik+1) = {HXi {xi(k) -7 (5’{. (z'(k)) + Oéixﬁ(k))} i updates at k
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Desired Update Law
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» Gradient descent is robust to many things
» Only agent ¢ updates its own decision variable x;
> Agent i updates x} but not x; — it gets that from agent j
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Desired Update Law

i _ of (..i ) ;
wit 4 1) = { T [xi(k) W(SZi(x (k))+azxz(k))} i updates at k
z;(k) otherwise

27 received at time k

J
zi(k+1) = {xﬂ‘ ;
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» Gradient descent is robust to many things
» Only agent ¢ updates its own decision variable x;
> Agent i updates x} but not x; — it gets that from agent j
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Desired Update Law

i _ of (..i ) ;
wit 4 1) = { T [xi(k) W(SZi(x (k))+azxz(k))} i updates at k
z;(k) otherwise

”"(k 4 1) xg x? received at time k
a2 = J
’ z(k) otherwise
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» Gradient descent is robust to many things
» Only agent ¢ updates its own decision variable x;
> Agent i updates x} but not x; — it gets that from agent j

2@ — @«

Desired Update Law

i af (i i ;

T [i(k) =7 (2L @i (k) + asai(k) )| i updates at &
zt(k) otherwise

o (k+1) = x; 7 rece'ived at time k

z(k) otherwise

“Do gradient descent with whatever you have”
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V(k)= k) — 2
(k) = a2 () = 3
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» Define

Theorem 1: Asymptotic Convergence

Suppose v is small enough and «; > 0 for all ¢ € [N]. Then V (k) — 0

" wi(k+1) =TIy, [a:é(k) = (aai (=*(®) + O‘i””i(k)ﬂ

converges to & asymptotically.
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» Define

V(k)= k) — 2
(k) = a2 () = 3

Theorem 1: Asymptotic Convergence

Suppose v is small enough and «; > 0 for all ¢ € [N]. Then V (k) — 0
and

s+ 1) =Tox, [al(h) = (5L (@'(6) + ascli®)) |

converges to & asymptotically.

. Agent 1 &
» And each sub-level set is ge[l o5

forward-invariant!
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» Definition: A communication cycle occurs after each agent has (i)
computed a state update and (ii) shared it with others that need it

@ @ 6. W
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@ @ 6. W

» Use c(k) to denote # of cycles completed by time &
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» Definition: A communication cycle occurs after each agent has (i)
computed a state update and (ii) shared it with others that need it

@ @ 6. W

» Use c(k) to denote # of cycles completed by time &
» Use L; to denote the Lipschitz constant of V; f
» Define ¢ = max;c[y) {|1 —yay|, |1 — *yLi|}
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» Definition: A communication cycle occurs after each agent has (i)
computed a state update and (ii) shared it with others that need it

@ @ 6. W

» Use c(k) to denote # of cycles completed by time &

» Use L; to denote the Lipschitz constant of V; f

» Define ¢ = max;c[y) {|1 —yay|, |1 — *yLi|}
Theorem 2: Convergence Rate

We have ¢ € (0,1) and
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> In this setting, best to interleave communications and computations
onboard each agent

> If there is a known delay bound B, then convergence rate is

V (k) < ¢/ Blv(0)
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> In this setting, best to interleave communications and computations
onboard each agent

> If there is a known delay bound B, then convergence rate is
V(k) < ¢/ PV (0)

Direct Generalization of Classic Result

Make centralized, set all parameters equal. Then
lz(k) — 213 < ¢"[|z(0) — 2[I3.
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» Add in constraints!

minimize f(x)
subject to g(z) <0
reX

> How to set 7; # y; and still converge?
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» Add in constraints!

minimize f(x)
subject to g(z) <0
reX

> How to set 7; # y; and still converge?

» End goal: (v, a1, f1, X1,¢,9)

@
® @

(v, 3, f3, X3, ¢, 9) @ (v2: 2, f2, X2, ¢, g)

(v, f1,X0,¢,9)
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Thank you
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