Differential Privacy in Communications

Matthew Hale

Department of Mechanical and Aerospace Engineering University of Florida

Duke

AFOSR Center of Excellence Kickoff May 14, 2019

Encryption Can Sometimes Be Restrictive

Sometimes we want to share some information

- Sometimes we want to share some information
- Example: coalitions may wish to share approximate locations

How should we make sensitive data private?

Fundamental Question

How can we share information but keep secrets in contested environments?

How should we make sensitive data private?

Fundamental Question

How can we share information but keep secrets in contested environments?

Goal

Develop theoretical tools for protecting data while sharing it.

Example: Agents in a coalition want to share their states with another coalition

 Example: Agents in a coalition want to share their states with another coalition

 \blacktriangleright No guarantee that the recipient only knows $y_i(k)$ at time k

▶ We lose control of our data after sharing it

Duke

CR17

- We lose control of our data after sharing it
- ▶ We cannot know what an adversary will do with what they receive
 - Aggregate it over time?
 - Filter it?

- We lose control of our data after sharing it
- ▶ We cannot know what an adversary will do with what they receive
 - Aggregate it over time?
 - Filter it?

Privacy must (somehow) account for this

DP is a privacy framework with a several key features:

It offers a formal definition of "privacy"

- It offers a formal definition of "privacy"
- It is immune to post-processing
 - $\blacktriangleright \ x \text{ private} \Rightarrow f(x) \text{ private for all } f$

- It offers a formal definition of "privacy"
- It is immune to post-processing
 - $x \text{ private} \Rightarrow f(x) \text{ private for all } f$
- It is robust to side information

- It offers a formal definition of "privacy"
- It is immune to post-processing
 - $x \text{ private} \Rightarrow f(x) \text{ private for all } f$
- It is robust to side information

- It offers a formal definition of "privacy"
- It is immune to post-processing
 - $x \text{ private} \Rightarrow f(x) \text{ private for all } f$
- It is robust to side information

Fundamental Definitions in Differential Privacy

Adjacent trajectories in ℓ_p -spaces

We fix a constant b>0 and define $\mathrm{Adj}_b:\ell_p^n\times\ell_p^n\to\{0,1\}$ as

$$\mathsf{Adj}_b(x_1, x_2) = 1 \Longleftrightarrow \|x_1 - x_2\|_{\ell_p} \le b.$$

Similarity of Outputs

Fundamental Inequality of Differential Privacy

For adjacent state trajectories $x_1 \mbox{ and } x_2,$ we want the outputs $y_1, \ y_2$ to satisfy

$$\mathbb{P}(y_2) \le e^{\epsilon} \mathbb{P}(y_1) + \delta,$$

Similarity of Outputs

Fundamental Inequality of Differential Privacy

For adjacent state trajectories $x_1 \mbox{ and } x_2,$ we want the outputs $y_1, \ y_2$ to satisfy

$$\mathbb{P}(y_2) \le e^{\epsilon} \mathbb{P}(y_1) + \delta,$$

This is the definition of (ϵ, δ) -differential privacy.

 \blacktriangleright Fix a probability space $(\Omega,\Sigma,\mathbb{P}).$ Differential privacy is enforced by a mechanism of the form

$$M: \ell_p^n \times \Omega \to \ell_q^r.$$

Fix a probability space $(\Omega, \Sigma, \mathbb{P})$. Differential privacy is enforced by a *mechanism* of the form

$$M: \ell_p^n \times \Omega \to \ell_q^r.$$

For us this will take the form

Privacy Noise is Calibrated by What We Share

Sensitivity

The *p*-norm sensitivity of a mapping \mathcal{F} is $\Delta_p \mathcal{F} = \sup_{x_1, x_2: \operatorname{Adj}_B(x_1, x_2)} \left\| \mathcal{F}(x_1) - \mathcal{F}(x_2) \right\|_{\ell_p}.$

Privacy Noise is Calibrated by What We Share

Sensitivity

The *p*-norm sensitivity of a mapping \mathcal{F} is $\Delta_p \mathcal{F} = \sup_{x_1, x_2: \operatorname{Adj}_B(x_1, x_2)} \left\| \mathcal{F}(x_1) - \mathcal{F}(x_2) \right\|_{\ell_p}.$

• For an agent sharing $y_i(k) := C_i x_i(k)$: $\Delta_p \mathcal{F} = s_1(C_i) b$

Privacy Noise is Calibrated by What We Share

Sensitivity

The *p*-norm sensitivity of a mapping \mathcal{F} is $\Delta_p \mathcal{F} = \sup_{x_1, x_2: \operatorname{Adj}_B(x_1, x_2)} \|\mathcal{F}(x_1) - \mathcal{F}(x_2)\|_{\ell_p} \,.$

▶ For an agent sharing $y_i(k) := C_i x_i(k)$: $\Delta_p \mathcal{F} = s_1(C_i) b$

► We make it differentially private by adding noise $w(k) \sim \mathcal{N}(0, s_1(C_i)b \cdot \kappa(\epsilon, \delta))$

Differential privacy has been applied to:

Kalman filtering

Differential privacy has been applied to:

- Kalman filtering
- Distributed linear-quadratic control

Differential privacy has been applied to:

- Kalman filtering
- Distributed linear-quadratic control
- Consensus problems

Differential privacy has been applied to:

- Kalman filtering
- Distributed linear-quadratic control
- Consensus problems
- Optimization in several forms

Differential privacy has been applied to:

- Kalman filtering
- Distributed linear-quadratic control
- Consensus problems
- Optimization in several forms
- Always involves introducing randomness

- Contested environments have asynchronous communications
- How can we use asynchronous private information?

CR17

- Contested environments have asynchronous communications
- How can we use asynchronous private information?
- How can we privatize new data types, such as sets?

