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» Sometimes we want to share some information
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» Sometimes we want to share some information

» Example: coalitions may wish to share approximate locations
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Fundamental Question

How can we share information but keep secrets in contested

N

environments?
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Fundamental Question

How can we share information but keep secrets in contested

environments?
Goal

Develop theoretical tools for protecting data while sharing it.
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> Example: Agents in a coalition want to share their states with

@ u(k) =i (k)

another coalition
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> Example: Agents in a coalition want to share their states with
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another coalition
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> We lose control of our data after sharing it
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> We lose control of our data after sharing it

» We cannot know what an adversary will do with what they receive

» Aggregate it over time?
» Filter it?
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> We lose control of our data after sharing it

» We cannot know what an adversary will do with what they receive

» Aggregate it over time?
» Filter it?
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» Privacy must (somehow) account for this

UFiiokich €9 Duke UTEXAS




UFlsioRiba §9) Duke s UTEXAS

S




o should e proii

DP is a privacy framework with a several key features:
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Differential Privacy (DP)

» It offers a formal definition of “privacy”
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Differential Privacy (DP)

» It offers a formal definition of “privacy”
» |t is immune to post-processing
> x private = f(z) private for all f
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Differential Privacy (DP)

» It offers a formal definition of “privacy”
» |t is immune to post-processing

> x private = f(z) private for all f
» It is robust to side information
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DP is a privacy framework with a several key features:
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Differential Privacy (DP)

» It offers a formal definition of “privacy”
» |t is immune to post-processing

> x private = f(z) private for all f
» It is robust to side information

Apple Google Uber
s
> Used by: ' .
UBER
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DP is a privacy framework with a several key features:
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Differential Privacy (DP)

» It offers a formal definition of “privacy”
» |t is immune to post-processing

> x private = f(z) private for all f
» It is robust to side information

Apple Google Uber
s
> Used by: '
UBER

DP ldea
Make “adjacent” state trajectories produce “similar” outputs
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Adjacent trajectories in £,-spaces

We fix a constant b > 0 and define Adj,, : £ x £ — {0,1} as

Adjy (21, 22) = 1 <= [|z1 — 22]le, < b.
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Fundamental Inequality of Differential Privacy

For adjacent state trajectories x1 and x5, we want the outputs y1, Yo to
satisfy
P(y2) < eP(y1) + 6,

P(yl)
IP)(192) ------
€E]P’(y1 ) + 6
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Fundamental Inequality of Differential Privacy

For adjacent state trajectories x1 and x5, we want the outputs y1, Yo to
satisfy
P(y2) < eP(y1) + 0,
This is the definition of (¢, §)-differential privacy.
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» Fix a probability space (€2, X, P). Differential privacy is enforced by a
mechanism of the form

M:x Q=0
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» Fix a probability space (€2, X, P). Differential privacy is enforced by a
mechanism of the form

M:x Q=0

» For us this will take the form
Noise n;(k)

Output /L\ Private Output
ﬂ» Output Map P @ - P
wi(k) yi(k) yi(k>
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Sensitivity

The p-norm sensitivity of a mapping F is
B IF = sup [F(z1) — F(z2)ll,, -

z1,22:Adjg (21,22)

(=
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Sensitivity

The p-norm sensitivity of a mapping F is
B IF = sup [F(z1) — F(z2)ll,, -

z1,22:Adjg (21,22)
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> For an agent sharing y;(k) := Ciz;(k): ApF = s1(C;)b
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Sensitivity

The p-norm sensitivity of a mapping F is
B IF = sup [F(z1) — F(z2)ll,, -

z1,22:Adjg (21,22)

(=

> For an agent sharing y;(k) := Ciz;(k): ApF = s1(C;)b
> We make it differentially private by adding
noise w(k) ~ N(0, s1(C;)b - k(e, )

UFiiiokivh &) Duke




UF|

» Differential privacy has been applied to:
» Kalman filtering
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» Differential privacy has been applied to:

» Kalman filtering
» Distributed linear-quadratic control
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» Differential privacy has been applied to:
» Kalman filtering
» Distributed linear-quadratic control
» Consensus problems
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» Differential privacy has been applied to:
» Kalman filtering
» Distributed linear-quadratic control
» Consensus problems
» Optimization in several forms
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» Differential privacy has been applied to:
» Kalman filtering
» Distributed linear-quadratic control
» Consensus problems
» Optimization in several forms

> Always involves introducing randomness
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» Contested environments have asynchronous communications

» How can we use asynchronous private information?
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» Contested environments have asynchronous communications
» How can we use asynchronous private information?

» How can we privatize new data types, such as sets?
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