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Encryption Can Sometimes Be Restrictive

I Sometimes we want to share some information

I Example: coalitions may wish to share approximate locations
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How should we make sensitive data private?

Fundamental Question
How can we share information but keep secrets in contested
environments?

Goal
Develop theoretical tools for protecting data while sharing it.
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Agents’ Dynamics Generate Trajectories to Share

I Example: Agents in a coalition want to share their states with
another coalition

x1(k)...
xN (k)

y1(k) := C1x1(k)

yN (k) := CNxN (k)

I No guarantee that the recipient only knows yi(k) at time k
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Data Can be Aggregated and Processed

I We lose control of our data after sharing it

I We cannot know what an adversary will do with what they receive
I Aggregate it over time?
I Filter it?

−→ ?

I Privacy must (somehow) account for this
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How should we provide privacy?

Differential Privacy (DP)
DP is a privacy framework with a several key features:

I It offers a formal definition of “privacy”

I It is immune to post-processing
I x private ⇒ f(x) private for all f

I It is robust to side information

I Used by:

Apple Google Uber

DP Idea
Make “adjacent” state trajectories produce “similar” outputs
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Fundamental Definitions in Differential Privacy

Adjacent trajectories in `p-spaces

We fix a constant b > 0 and define Adjb : `np × `np → {0, 1} as

Adjb(x1, x2) = 1⇐⇒ ‖x1 − x2‖`p ≤ b.

b



Similarity of Outputs

Fundamental Inequality of Differential Privacy
For adjacent state trajectories x1 and x2, we want the outputs y1, y2 to
satisfy

P(y2) ≤ eεP(y1) + δ,

This is the definition of (ε, δ)-differential privacy.

P(y1)
P(y2)

eεP(y1) + δ
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Mechanisms for Differential Privacy

I Fix a probability space (Ω,Σ,P). Differential privacy is enforced by a
mechanism of the form

M : `np × Ω→ `rq.

I For us this will take the form

Output Map +

Noise ni(k)

xi(k) yi(k) ỹi(k)

State Output Private Output
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Privacy Noise is Calibrated by What We Share

Sensitivity
The p-norm sensitivity of a mapping F is

∆pF = sup
x1,x2:AdjB(x1,x2)

‖F(x1)−F(x2)‖`p
.

b

F

I For an agent sharing yi(k) := Cixi(k): ∆pF = s1(Ci)b
I We make it differentially private by adding

noise w(k) ∼ N
(
0, s1(Ci)b · κ(ε, δ)

)
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Differential Privacy in Control

I Differential privacy has been applied to:
I Kalman filtering

I Distributed linear-quadratic control
I Consensus problems
I Optimization in several forms

I Always involves introducing randomness
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Next Steps

I Contested environments have asynchronous communications
I How can we use asynchronous private information?

I How can we privatize new data types, such as sets?
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