Assuring Autonomy in Contested Environments

Attack-Resilient Design
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Attack Resilient Design

* Distributed methods for attack-detection & Physical IfEnvironmen
identification (ADI) and security-aware mission stem Mode
planning by exploiting dynamics of the environment R

and agents, as well as our knowledge of the expected
mission evolution

* Develop a platform-aware attack-resilient architecture |, - _ — - - S0P PES
integrating the control and estimation techniques for

. '.._aﬂd_@entu"gat_wﬂ _ _CQrLtrQILer_S _
resource-constrained autonomous systems
ConflguratlonlL lLControl
* Develop methods to assure desired QoC despite parameters Algorithm
communication and computation limitations Secur:y—:ware Control
(optimal balance between QoC and security ¢ R Terey ith '\te‘itl_"f SR
guarantees) | Intermittent j§j Resource-Aware :
v _ Integ./Avail. | Composition
* Investigate MDPs, PTAs, and stochastic hybrid (===
automata (SHAs, to model the interaction between , Formal \(— system Integration
Proof 1

the IDS and the controller/environment \ o
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Vehicle Trajectory Following







Attack-Resilient Design of Autonomous Systems Duke
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1. Sensor attacks

= The attacker can arbitrarily change sensor

measurements AL |
y(=g(xu) Plant
2. Actuator attacks
" The attacker can arbitrarily change actuator values G i |6 e
3. Communication attacks
= The attacker can change messages between e Network
sensors and controllers, and messages between
controllers and actuators.
4. Controller attacks ° _
Xt =) 6 o ntroller
= The attacker can change the controllers’ u(M=gcxxy)

parameters, resources (e.g., execution model) or
even the controllers’ code.
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Security-Aware Design of Autonomous Systems

* Physical world abides by the laws of physics!

* Physical interfaces introduce new attack vectors!

How can we exploit limited knowledge of laws of physics (system model) for
control and attack detection/identification

Attack-Resilient design with uncertainty, resource/platform constraints, as well as
varying (especially high) levels of autonomy

—How much can the attacker exploit modeling limitation?

— How can we effectively exploit physics to improve guarantees in the presence of
attacks?
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Security-Aware Control for Autonomous Systems

Control Stack Control view Modeling view

T ()
Long-horizon e I
views

{ Tactical Planner } Short-horizon
views

. . r T
ContanOUS/d|Screte fe(x(t)) /J_)lilf‘l.h':!}]rf!-/ |2(2)||%dt,

[ Low-level Control } control with min fr(z,(t)) + fa(zn(t))
constraints s.t. zp(t) = (1), ur(t) = up(t),

[ Vehicle J --------------

Our Goal: Add resiliency to controls across different/all levels of control stack



Attack-resilient State Estimation
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» Attack-resilient control of Cyber-Physical Systems

—Idea: Design attack-resilient state estimators

* |nitially required an accurate LTI system model
— Fawzi et al. 2012
— Pasqualetti et al. 2013

uy Yk
— Plant
State-based | 3 Resilient
— Feedback |le—— State €«
Controller Estimator

)

 If the number of attacked sensors is below a threshold, state can be
reconstructed from a history of sensor readings [Fawzi et al. 2012]

— Also identifies the sensors under attack



Modeling attacks on sensors and actuators
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* Consider an LTI system

— X; € R™ plant’s state at time k
—u, € R™ plantinput at time k
—yx € RP  plant output

* state information is availably only
via sensors measurements

Attacker Athadtksitibihangrtbbk
d'SCfepanCy bemmmmﬂtmsamubthe estimates

e Attacks on sensorsin K = {sil, s@} csS

— modeled with attack vector ey,
—ey; # 0 © sensor s; is under attack at time k

Up | X1 = Axk + Buk + Vi
Vi = ka + € m. a

State-based
— Feedback
Controller

R Resilient
D m— State €
Estimator
N
K ={s,,s:}




Goal: Attack-resilient state-estimation Duke
with performance guarantees ENGINEERING

System Sensor Execution
Dynamics Precisions Guarantees

Robustness analysis

Performance guarantees for

attack-resilient estimation/control
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Problem Description

* We consider an LTI system, with statex € R™and output y € R” measurements from
the set of sensors & = {s1,82,...,8,}
Xp+1 = Axg
y,. = Cxp + wi + e

— bounded size noise |Wx| < dy,

— sparse attack vector € € RP captures attacks on a subset of sensors

}C:{Silasiga---asiq} QS

* Goal: Reconstruction of the initial system state Xy from a set of N output observations
Y{]aYD sy YN-1
Y. — CAkX[] + e, + Wi,
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Representation via Block Vectors

* System evolution observed via a single sensor

Yo €0, Wi
yio=| " | eRY  &=| " | eRY wi=| "' | eR" 1<i<p
_YN- 1,4 _ _EN' 1,i W:\;—l,i
- P, C ] T O,
~ —~ - {si} 1
y: = 0;xp + & +W; P(.,;CA O,
0, = , Ok = .
» System evolution observed from all sensors | P, CAN | Osiy,
¥1 €1 W1 0,
y p— ,e — ’W p— ] O p— :
S“p ép ﬁp OP
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Representation via Block Vectors

* System evolution observed via a single sensor

Yo €0, Wo,i
yio=| " | eRY  &=| " | eRY wi=| "' | eR" 1<i<p
_YN. 1,4 _ _eN' 1,i | WN-—l,i
- P, C ] T O,
~ —~ - {si} 1
y: = 0;xp + & +W; P(.,;CA O,
O,, = ) Ok =
» System evolution observed from all sensors | P, CAN | Osiy,
5’1 ﬁfl 01
v, W, 0, g-block sparse
> vector
5’ — OX(] —+ C —+ W /‘

D r
18]l 10 = ;n(néin;? >0) @]l = ; 18], €], = ¢
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Attack-Resilient State Estimation for Noisy Dynamical Systems

« Consider an initial state X and attack vectors from €

e.X €,X
s.t. y—0x)—-e=0 s.t. §-0x)—&=W
w e ()
* Goal: guarantees for P[],w
and P, based estimators ‘
— Bounds on the state p . ” - H
estimation errors 1w n;ljlxn €l
— .Soun(.j.atta.lcked sensor s 1 §—0xg—6=Ww
identification -
w € ()

[ICCPS’14 — Best paper award, CDC15, [EEE CSM’17, IEEE TCNS’17]
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(X1g.0,€°) = argmin Pow, qow = ||€°||1,.

Axlo = x;, , — X, Aelo =gl —g*

e Definition [Shoukry et al., 2013]: An LTI system is s-sparse observable if for everyset £ C S
of size s, the pair (A, P,cC) is observable

* Lemma: @mqz is equal to the maximal s for which the system is 2s-sparse observable

e Theorem: If ¢ < @maz sensors have been attacked, then

—

RCS, wrellp
|R|:p_2Qmam

|Ax0 |, <2 max (HO%Izz- max If"vnlzz)
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Performance Guarantees for P; ,, Estimator

(X1 - éil) = argmin P

Axlt = X, w — X0, Ae

* Theorem: If g sensors from the set K C § have been attacked, then

S 0iax 1, < 3 [0;A%! ||, + 204

SiEK:E SiE}C

where -
oo = max ||[W|,
weld

* Proposition: If Py, correctly estimates the state for a noiseless system, then the
error is either zero or for all K € S with g elements

Y oiaxt |, < 3 0:Ax" |, < 3 [0;A%H |, + 200

5, €K s;€k sick



Performance Guarantees for P; ,, Estimator
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it

(X110 eh) = argmin Py

Axlt = X, w — X0, Ae

* Theorem: Suppose that forall X C § with g elements
OEE OKZE — qN20£O;C ~ X[n

for some A > 0 . Then if most g sensors are compromised it holds

2\/]_\70
l Q)
|axt i, <« —— - max_ (O, +aN[Oxls)

* For N=1, a static state estimation problem y = CX +e+w

— The above condition is not as conservative



Attack Identification with Noise and Modeling Errors
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" Goal: Sound identification of compromised sensors

= One candidate

I(&} # 0)

" Thus, we use the state estimation guarantees

Attacked" (s;) = I(||&"];,, > D), i=1,..

= Sound

~ ~]
= |dentifies all attack vectors that satisfy  [|€] (|, > 2D¢"

ljpl
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Attack-Resilient Cruise Control Demo

ﬁ Comtom avigation

Landshark Set Speed e [ CMD W REF Odemecry ] SPEED I REF

0.8

oo [l GPS I LE W RE

Comazant
s Estimated Speed
ENC LEFT N n
mescmar L) . L
Stepping Cry
spped C

Starting Cruise C
=== Started Cruise Cent




Attack-resilient state estimator for American Built Car
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CarSim Simulation
In-Car Implementation

Throdle2

CarSim S-Function1
_a_ Rata Transilion? Vehicle Code: 777
m_m

FrrmmmmTTTTTTT )
- : ]
:|—> Bad Link i— [
¥ ]
¥ ]

[
Rate Tri
Resilient Madel-based Control
&l
ZOH1
™
82
Z0H2 L

Tha
Z0He :
it TD4
£0HS L
ZOHE o

Relative Pesitan |o the Origin
Mot Sensar Values

Sensors/
Actuator
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Attack-resilient state estimator for an American Built Car
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Security-Aware Control for Autonomous Systems

Control Stack Control view Modeling view

T ()
Long-horizon e I
views

{ Tactical Planner } Short-horizon
views

. . r T
ContanOUS/d|Screte fe(x(t)) /J_)lilf‘l.h':!}]rf!-/ |2(2)||%dt,

[ Low-level Control } control with min fr(z,(t)) + fa(zn(t))
constraints s.t. zp(t) = (1), ur(t) = up(t),

[ Vehicle J --------------

Our Goal: Add resiliency to controls across different/all levels of control stack



Distributed Control and Estimation in Adversarial Conditions
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» Requirements from attack-resilient supervisory control (IEEE TAC’19, CDC’19a,
CDC’19b)

" Probabilistic sensor models — Connection to privacy guarantees

" Combining with data-driven methods for attack-detection and
identification

‘10 Elstimated trajlectories (firslt part of trajtléctory)
= How to add context-based |

—Vehicle trajectory

. . Posiltion estin?ate errorls
= Extended Kalman Filter
& & & & & & & el — ——Context-Aware Filter
o
_ISii-'i'j'si!I ) :I P li? ;I
1 A # # A # # ®* & # =& B ;H;%iﬂ;: .Ii'!
sensing (IEEE TAC 2018) ENTAIN gl H
g0 | W:*J:ntﬁ l; & Jd ) : -_:n' & A i & E ) _;h" i Iilil !iii;?i!
: :‘ ) E}?'.“:‘I-‘ l| ; "'ll I'.I | E;I!
: SRR
. . . . ol A 4 R £ & &£ # & & & ab > AR
e Using GPS — high variance and bias - ’
 Camera-based landmark recognition '

———Extended Kalman Filter Mean

[ I'Ir
fol
| 1o b
———Context-Aware Filter Mode
%  Building

Time
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Active Attack Monitoring

= Available actuation signals are not only used to optimally control physical process,
but to also increase confidence that the system has not been compromised

" For replay attack detection [Automatika’18]

,—-—-"""-_—F.-'—’EI E-“E“"‘i
o1 ————— = CAMN Bus '—}h:PlantE CAM Bus|[ ]
Chfaller\ge. re5|I|encY and performance \E -
objective may conflict I I

Attacker
replay-change v, to v.-

FE'CEHE = Detector

* Proposed work: derive framework for optimal

u X '
use of active monitoring that balances et :T Eﬂim;w ) i
performance and attack detection
requirements
<Y [Controler 1 fe— | g
~Tux s | Controller 2 |ae— | From Estimator
* Nonlinearity is our friend! o uohauL

Information From Detector
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Security-Aware Control for Autonomous Systems

Control Stack Control view Modeling view

Long-horizon

Tactical Planner Short-horizon
views

]

a - r T
Continuous/discrete | .. [ ymr;.‘h.m,u./ 2(8)]2dt,

U

Low-level Control control with min f,(z,(t)) + fa(zn(t))
I l constraints s.t. zp(t) = zp(t), ur(t) = up(t),
----------------------------------------------------------------------------------------------------------- Stadium
Vehicle | T T ==~ 72

7 Washington
Duke
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DAG | Hidden-Information Semantics

UAV Model Advisory System Model
pl =uav| xg = xg + Ax(d)
@ fly! dg =d pl = as update|pl :== uav
Myav d € Auav | pl:= adv pl:=uav .
- PO, xp) |
Adversary Model .
Y Mzs 1 PO, xp) |

Off-the-shelf model checkers do NOT support hidden variables
Strategies CANNOT be synthesized based on hidden information
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Delayed Actions Representation [CAV19]
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Proper simulation [CAV19]
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Bisimulation allows model checking and strategy synthesis using standard tools
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Synthesis Framework

Model Refinement

\ 4
Primary ) Composition
Strategy Analysis
Components QTCII ey L
My, My, Moy ) (Model Checker, ¢,)

Auxiliary 1 :D
Components
Strategy Synthesis
Mnrds Mmwr ) DAG Construction

Model Checker,
(Algorithm 1) ( Ps)
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Case Study | Results
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Attack-Resilient Mission Design

" Develop planning methods that will improve attack-detection guarantees
by allowing the deployed intrusion detection system to interact with the
controller and the rest of the system

= How to model such interactions? — MDPs, PTAs, SHAs

= Optimization based on solving stochastic games
" How to incorporate learning?
* How to incorporate formal guarantees?
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Security-aware Human-on-the-Loop Planning

[ICRA’19,
iEEE THMS’19]
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Security-aware Human-on-the-Loop Planning [ICRA’19]

B Subgame initial location { o o . ; . ] Bl L - _— | ® Sult:Eallne initial location
) ] L ¥ i B A . | == Path plan
-P Zaﬂ:::: task —» Geolocation task
eo on tas A :

= 3

I

[0 Reachability set
® Subgame initial location
== Path plan

o| * Geolocation task




Security-Aware Control for Autonomous Systems Duke
Are we done? ENGINEERING

Control Stack Control view Modeling view

T ()
Long-horizon e I
views

{ Tactical Planner } Short-horizon
views

1 — 9%

Continuous/discrete | 7. /’ ol2(t), h(t))dt + [’ ()12,
[ Low-level Control } control with min fr(z,(t)) + fa(zn(t))
I l constraints s.t. zp(t) = (1), ur(t) = up(t),
[ Vehicle J ________________________

Our Goal: Add resiliency to controls across different/all levels of control stack



Security-Aware Control for Autonomous Systems Duke

Are we done? No — conservative assumptions! DT SCHooL Y
___________ ControlStack ~ Controlview  Modelingview

2g  alt)
Long-horizon oy B
& - L
views

{ Tactical Planner } Short-horizon
views

I _______________ l ________________________________________________________ e ¥

Continuous/discrete | /.. [’,_,.m..a..;u;,n- [' ()| 2dt,
[ Low-level Control } control with min f,(zr(t)) + fa(za(t))
I l constraints s.t. zp(t) = (1), ur(t) = up(t),
[ Vehicle J ________________________

Our Goal: Add resiliency to controls across different/all levels of control stack



System Model With Attacks

Especially legacy systems
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Plant

Actuators

Xk+1 — Axk + Buk + Wy,
e ka‘l‘ak‘l‘vk

Sensors

Controller

Alarm

ad — a
@ =X —

4@— Intrusion Detector

1zTQ~1z||, < threshold

Estimator

a
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Can Attacker Reach Any State?

Xp+1 = AX, + Buy, + wy supp(ag) = K
Vi = CXp +a; + v, ak,iZO,Vl'EfKC

Theorem 1 [1,2,3]:

A system presented above is perfectly attackable if and only if the matrix A is unstable, and
at least one eigenvector v corresponding to an unstable mode satisfies supp(Cv) € K and
v is a reachable state of the dynamic system.

Physical detectors cannot always protect us from an intelligent attacker...

Can data authentication help?

[1] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in First Workshop on Secure Control Systems, 2010

[2] C. Kwon, W. Liu, and |. Hwang, “Analysis and design of stealthy cyber attacks on unmanned aerial systems”, Journal of Aerospace Information
Systems, 1(8), 2014

[3] I. Jovanov and M. Pajic, “Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems”, IEEE Trans. on Automatic Control, 2019
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Integrity Enforcement Policy - Definition

Definition 2: Intermittent data integrity enforcement policy (u, f, L), where u =

{tk} =0, such that forall k > 0, t;,_; < t, and L = sup t;, — t;_; ensures that
k>0

atk — atk_|_1 — YO0 atk_|_f_1 — O, Vk = 0

>

M:
fL

ti+ f tiv1 tipr+f
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Integrity Enforcement Policy

Definition: Intermittent data integrity enforcement policy (u, f, L), where u =

{tx}n=o, such thatforallk > 0, t,_; < t; and L = sup t;, — t;_, ensures that
k>0

atk — atk_|_1 — 099 — atk+f_1 — O, Vk = 0

Theorem: A system X with a global data integrity policy (i, f, L), where
f = min(nullity(C) + 1, gy )

and g, is the number of distinct unstable eigenvalues of A, is not perfectly attackable.

[1] 1. Jovanov and M. Pajic, “Sporadic Data Integrity for Secure State Estimation”, IEEE Conference on Decision and Control (CDC), 2017
[2] 1. Jovanov, and M. Pajic, “Secure State Estimation with Cumulative Message Authentication", IEEE Conference on Decision and Control (CDC), 2018
[311. Jovanov and M. Paiic. Relaxing Integritv Reauirements for Resilient Control Svystems. (2017). |IEEE Transactions on Automatic Control, 2019



State Estimation Error Duke

In the Presence of Stealthy Attacks ENGINEERING
. . . 1,2
Reachable region of the state estimation error under attack [1,2.3]
R[k] = le e R ee’ E[e“[k]]E[ea[k]]T + yCov(e?) a; = [a[1]T..a[k]™]"
e?[k] = e¥(a; x),a; x € Ay A is the set of all stealthy attacks
ey (a,_y) is the estimation error evolution due to attack a;
0.017
0.01 4
" 0 o 0
-0.01
\'\I | T T 1 0.01 '
0 4 2 0 2 4 4 4
62 el
0.01 0.01
o 0 o 0
0.01 0.01 |
5 0 5 4 2 0 2 4
-3 a
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Integrity Enforcement Policy

Integrity enforcement policy ensures attacker’s influence is zeroed at enforcement points

Data integrity enforcement policy (u, [) where p = {t;} =0, With t;,_; < t,Vk >0
and [ = supy~q ty — ty—q ensuresthata; , =0,Vk =0

This means that at points of authentication ¥ ***[k] = y?[k]

0.01F
S0
| -0.01 -
4 -4 2 0 2 4
©
0.01}
s” 0
-0.01
5 0 5 4 2 0 2 4
¢, %107 e,



Non-Secure Vehicle Platooning

Relaxing Integrity
Guarantees for Secure

Vehicle Platooning

Ilija Jovanov, Vuk Lesi, Miroslav Pajic
Duke University




Secure Vehicle Platooning Duke
With Intermittent Integrity Guarantees = &




System Performance Metric Duke
Quality-of-Control (QoC) under Attack AR

Evolution of the state-estimation error due to attack is a sound performance metric

(0]

IO = sup(lle®l,Je” € ®Y  ®'=| | RI[K]

where R![k] denotes R[k] computed over all integrity enforcement policies with parameter [

1.5 T T T
1.25

075 _

0:25 =

0 | ! | 1 | | | | x
1 5 10 15 20 Z5 30 35 40 45 50

Inter-enforcement distance

Maximum induced error
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Security-Aware Design Framework
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Attack impact evaluation R![k]

[ QoC Degradation — Security overhead Platform Model
Ji(D

Task model

Resource allocation / Scheduling

QoC guarantees
under attack




Three Scheduling Problems
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Resiliency with Intermittent Data Integrity & Availability

= Goal: Derive distributed, event-based resilient control/estimation for cases when only
intermittent communication between agents can be achieved

= When such communication should occur, how often, and between which agents?

= How we can opportunistically use available communication links to increase mission
resilience against attacks.

= These requirements will be used as part of the design specifications for intermittent
wireless communication in RT3

= Rich security models

- Cumulative authentication Reachability
- Forgery attacks

“ AnaIySiS 0. “
Controller] Plant Message | Task
model model mapping | mapping
- Probabilistic guarantees

Attack Platform
model model
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