

- Design and analysis challenges for both controlling agents within a network (stochastic time-varying and random graph models) and controlling agents over a network
- Determining conditions under which random communication graphs attain required connectivity properties and positioning agents to achieve network objectives (e.g., jamming adversarial networks)
- Develop models where the control system can adapt in real time as service degrades
- Develop control techniques that allow a system to adapt its operation and use of network resources based on QoS that the network is able to provide

- Optimization of agent placement in wireless networks
- Using network QoS information to optimize control system operation
- Closing the loop between control and network: optimization of network operation and feedback of predicted communication performance

- Control over networks with intermittent connectivity
 - Byzantine adversaries that disrupt the network topology

• For networks with timevarying links, under what conditions will the networks be sufficiently connected for control?

- Mobile autonomous agents require wireless communication for control and coordination
- RF environment for such agents may suffer from many challenging impairments:
 - Time-varying multipath fading
 - Shadowing from terrain and buildings
 - Interference
 - Hostile jamming

- Assured operation of networked systems requires optimization of the network topology and/or placement of agents
 - Topology may be optimized to ensure sufficient connectivity
 - Databases and computation resources may be located to ensure access
 - Jammers may be placed to disrupt adversary communications
 - Mobile communication nodes may be placed to reinforce network structure to make it robust to jamming/interference

- Graphs make useful abstraction for representing such networks
- Vertices represent communicators
- Edges represent wireless links
 - Possibly time-varying!

- Recently developed algorithm to find optimal jammer placements to partition a wireless network
- Objective is to minimize # of jammers required

- Challenges:
 - Connectivity is a global property of graphs
 - Jammers may affect communication in multiple ways (reduction in SINR, input saturation, etc.)
 - Jammers may be placed anywhere is Euclidean space
- Key insights
 - If limit jammers to discrete set of locations, optimal solution can be found via integer linear program and suboptimal, fast solutions can be found via multiresolution graph cut
 - Many possible jammer locations in Euclidean space jam the same set of nodes: can reduce continuous space to discrete

Let $\mathcal{G}(\mathcal{V},\mathcal{E})$ be the network we aim to partition by placing jammers at positions in $\mathcal J$

Let $\mathcal{H} = \mathcal{H}(\mathcal{V}', \mathcal{E}'; \mathcal{G}, \mathcal{J})$ be the residual network after jammer placement

$$\mathcal{V}' = \mathcal{V} \setminus \{ v \in \mathcal{V} \mid d_E(u, v) \leq r_j, u \in \mathcal{J} \}$$

$$\mathcal{E}' = \mathcal{E} \setminus \{ (u, v) \mid u \in \mathcal{V} \setminus \mathcal{V}' \text{ or } v \in \mathcal{V} \setminus \mathcal{V}' \}$$

For the remaining nodes in $\mathcal{V}^\prime,$ we aim to find a partition

$${\sf \Gamma}_{{\sf K}}({\cal H})=\left\{ {\cal V}_1,{\cal V}_2,\ldots,{\cal V}_{{\sf K}}\subset {\cal V}'
ight\}$$

s.t.
$$0 < |\mathcal{V}_i| \le b_i$$

 $\mathcal{V}_i \cap \mathcal{V}_j = \emptyset$
 $\{(u, v) \mid u \in \mathcal{V}_i, v \in \mathcal{V}_j, i \ne j\} \cap \mathcal{E}' = \emptyset$
 $(u, v) \in \mathcal{E}$

- K is the minimum number of disconnected clusters
- b_i bounds the number of nodes in cluster i
- $b_k = \left\lceil \frac{|\mathcal{V}|}{K} \right\rceil$ to simplify exposition

- Construct Candidate Jammer Locations (CJLs) using sequence of searches:
 - For each node, find neighborhood with radius twice the jamming radius (r_j)
 - Use depth-first search (DFS) to find every possible subset of that neighborhood that has radius $< r_j$
 - Eliminate duplicate solutions

DFS

Data: $\mathcal{G}(\mathcal{V}, \mathcal{E})$, r_i , γ **Result**: $\mathcal{D} = \{\mathbf{d}_{\mathbf{i}} = ((x_i, y_i, r_i), \mathbf{v}_{\mathbf{i}})\}$ create empty stack S and solution set \mathcal{D} foreach $v_i \in \mathcal{V}$ do find $\mathcal{N}_{2r_i}(v_i)$ and push to S while S is not empty do $\mathbf{v} = S.pop()$ if $\exists d_i = ((x_i, y_i, r_i), \mathbf{v_i}) \in \mathcal{D} \ni \mathbf{v} = \mathbf{v_i}$ then continue end calculate $(x, y, r) = md(\mathbf{v})$ if $r > \gamma$ then find $\{b_1, b_2, ...\} = B((x, y, r), \mathbf{v})$ foreach $b_i \in \{b_1, b_2, ...\}$ do push $\mathbf{v} \setminus b_i$ into S end else add $((x, y, r), \mathbf{v})$ to \mathcal{D} end end

end

@ UC SANTA CRUZ

Remove Redundant Solutions

```
Data: \mathcal{G}(\mathcal{V}, \mathcal{E}), r_j, \gamma

Result: \mathcal{D} = \{ \mathbf{d_i} = ((x_i, y_i, r_i), \mathbf{v_i}) \}

create empty stack S and solution set \mathcal{D}

foreach \mathbf{d_i} \in \mathcal{D} do

foreach \mathbf{d_j} \in \mathcal{D} do

if i \neq j and \mathbf{d_j} \leq \mathbf{d_i} then

| remove \mathbf{d_j} from \mathcal{D}

end

end
```


• Proved that search over CJLs is sufficient to find a minimum cardinality set of jammer locations to partition network

 $\sum_{i=1}^n j_i$

Minimize number of jammers

s. t.

s.t.

$$\sum_{i=1}^{n} j_{i}$$

$$\sum_{k=1}^{K} x_{i}^{(k)} = 1$$

$$i = 1, \dots, N$$

$$-\sum_{i \in V} j_{i} \leq -1$$
At least one jammer is deployed

s.t.

Juke

s.t.

$\sum_{i=1}^{n} j_i$	
$\sum_{k=1}^K x_i^{(k)} = 1$	$i=1,\ldots,N$
$-\sum_{i\in V} j_i \leq -1$	
$-\sum_{i\in V} x_i^{(k)} \leq -1$	$k=1,\ldots,K$
$\sum_{\substack{i \in V \\ \uparrow}} x_i^{(k)} \le b_k$	k = 1
	Cluster must be smaller
	than specified size

s.t.

$$\sum_{i=1}^{N} j_i$$

$$\sum_{k=1}^{K} x_i^{(k)} = 1$$

$$i = 1, ..., N$$

$$-\sum_{i \in V} j_i \leq -1$$

$$-\sum_{i \in V} x_i^{(k)} \leq -1$$

$$k = 1, ..., K$$

$$\sum_{i \in V} x_i^{(k)} \leq b_k$$

$$k = 1$$

$$\sum_{i \in V} x_i^{(k)} - \sum_{i \in V} x_i^{(k-1)} \leq 0$$

$$k = 2, ..., K$$
Cluster size is in non-increasing order to avoid duplicated solutions

Duke

п

s.t.

s. t.

$\sum_{i=1}^{n} j_i$			
$\sum_{k=1}^{K} x_i^{(k)} = 1$		$i=1,\ldots,N$	
$-\sum_{i\in V}j_i\leq -2$	1		
$-\sum_{i\in V} x_i^{(k)} \leq$	-1	$k=1,\ldots,K$	
$\sum_{i\in V} x_i^{(k)} \le b_k$		k = 1	
$\sum_{i \in V} x_i^{(k)} - \sum_{i \in V}$	$\sum_{i} x_i^{(k-1)} \le 0$	$k = 2, \ldots, K$	
$x_i^{(0)} - \sum_{m \in V} j_m x_i^{(0)}$	$A_{mi}^{(J)} \leq 0$	$i \in V$	
$x_{i}^{(k)} - x_{j}^{(k)} - x_{j}^{(k)}$	$x_{i}^{(0)} - x_{j}^{(0)} \leq 0$	$(i,j)\in E$	
\uparrow	Nodoc that char	a an adra must	
	Nodes that share an edge must		
	belong to same cluster unless		
	one belongs to cluster 0		

Duke

-

- Simulated networks that are Random Geometric Graphs
- Equal communication and jamming radii equal to 15% of side of 100-node network
- Network dimensions scale with \sqrt{n} , where n = number of radios

- Suboptimal search using multiresolution graph cuts
- Repeatedly coarsen graph by combing sets of adjacent vertices
- Then find edge cut on small graph
- Then repeatedly uncoarsen and refine edge separator
- Finally, use linear program to find minimum jammer placement to jam all links of edge separator

Table: Optimal formulation ILP time complexity and CJL overhead

Order	ILP w/out CJL(s)	Search CJL(s)	Ratio
25	3.619	0.434	11.98%
50	21.864	5.540	25.34%
75	103.573	15.571	15.03%
100	530.792	29.977	5.65%

Time to find suboptimal solution is < 10 ms for networks up to 500 nodes

- Can use proactive or reactive measures to avoid disruption for jamming
 - **Proactive:** we increase the network robustness by adjusting the network topology or adding some additional communicators to make the network harder to partition
 - **Reactive:** we adjust the network topology by repositioning nodes or adjusting communication parameters based on jammed links

Let:

- $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be the network that is to be made more robust
- ▶ $\mathcal{P} = \{P_1, P_2, \dots, P_{N_h} \mid \text{loc}(P_i) \in \mathbb{R}^2, i = 1, 2, \dots, N_h\}$ are the locations of N_h helpers
- H(V', E', G, P) be the reinforced network induced by placing helper nodes with

$$\mathcal{V}' = \mathcal{V} \cup \mathcal{P}$$

 $\mathcal{E}' = \{(u, v) \in \mathcal{V}' imes \mathcal{V}' \mid \mathsf{dist}(u, v) \leq R_c\}$

Then the helper node placement problem is:

$$\hat{\mathcal{P}} = \arg \max_{\mathcal{P} \in (\mathbb{R}^2)^{N_h}} \eta(\mathcal{H}(\mathcal{V}', \mathcal{E}', \mathcal{G}, \mathcal{P}))$$

- Found optimal solutions for fixed networks, simple channels
- Extend to:
 - Mobile radios and jammers (time-varying networks)
 - Fading channels (probabilistic links)
 - Uncertainty in channel knowledge
 - Looser definitions of connectivity: more next
 - Adapt topology using communication parameters: adjust transmission power, modulation, coding
 - Adapt topology to achieve other objectives: maximize throughput, minimize latency, prioritize links or flows
 - Adapt placement of resources: caches, databases, computation centers

