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Robot Motion Planning

High-level complex tasks

• “Pick up the mail by visiting houses in a given order”
• “Next visit a delivery site”
• “Never leave the delivery site until a ground robot is 

present to pick up the mail”
• “Repeat this process every day”

M. Kloetzer et al (TRO 2010), S. Smith et al (IJRR 2011)
A. Ulusoy et al (IJRR 2013), M. Guo et al (IJRR 2015)

Point-to-point navigation tasks

• “Starting from point A, reach point B while 
avoiding obstacles”

L. Kavraki et al (TRA 1996), S. LaValle et al (IJJR 2001), 
S. Karaman et al (IJJR 2011),  L. Janson (IJRR 2015) 

Delivery Task

Household Robots

Autonomous Cars

S. LaValle et al (IJJR 2001), 

How to express complex tasks in a formal way?
How to synthesize optimal and correct-by-

construction controllers?



Linear Temporal Logic

Other useful temporal operators:

• Always
•
• Eventually

• Infinitely often

LTL is a formal type of logic that consists of Boolean and temporal operators defined over
a set of atomic propositions/predicates.

Syntax: � ::= true | ⇡ | �1 ^ �2 | ¬� | � � | �1U�2

Set of Atomic Propositions (Boolean variables).AP



Expressing Complex Tasks using LTL

Robot 1: visit 
room1 infinitely often

Robot 2: eventually 
always visit room 3

Robot 1: never visit room1
until robot 2 visits room 2

room1

room2

room3

Reachability task

Coverage task

Reachability with
avoidance

Recurrent
sequencing

Sequencing

Compositional tasks:



Optimal Control Synthesis

Given N robots, an abstraction of the environment and robot dynamics

and a collaborative task captured by a global LTL specification , synthesize a discrete
motion plan such that and a user-specified metric , such as total
traveled distance, is minimized.



Challenges

wTS1

wTS2

wTSN

PBA

NBA

Graph 
Search

Model

Discrete
Controllers

State explosion, 
Computationally expensive, 
Centralized (less than ~107

states)

M. Kloetzer (TRO 2010)
S. Smith et al (IJRR 2011)
A. Ulusoy et al (IJRR 2013)
M. Guo et al (IJRR 2015)

Optimal Control Synthesis

Model Checking / Verification

We propose an algorithm that can solve optimally hundreds of orders of magnitude larger 
planning problems than state-of-the-art methods (~10800 states and beyond).

NuSMV 2, nUxmv, 
SPIN, SPOT

More scalable (~1030 states) but no optimality guarantees.
Return a feasible, and not the optimal, solution.



Overview

wTS1

wTS2

wTSN

PBA

NBA

Graph 
Search

Optimal Plan

No feasible plan 
found

Model

All possible robot behaviors

Desired robot behaviors

Contains 
possible
intersections of 
“behaviors”

Pick the best
“behavior” 
(optimal plan)



Weighted Transition Systems (wTS)

: transition rule

: set of states 

: initial state

: cost function

: observation relation

: set of APs

Abstraction 
Process



Non-Deterministic Buchi Automaton (NBA)

Translate the LTL formula to a NBA:

Set of initial states

Set of final states

Alphabet

Transition rule

The LTL formula is 
satisfied if the set of  
final states is visited 

infinitely often.

NBA transitions are activated 
based on the observed atomic 

propositions.

Set of states

Translation

D. Oddoux, P. Gastin. 
LTL2BA software, 2009.



Product Buchi Automaton (PBA)

Given N transition systems
and a NBA, the PBA is: 

Set of states

Set of initial states

Transition rule

Set of final states

Feasible wTS
transitions.

Feasible NBA transitions 
based on the observed 
atomic propositions.

The LTL formula is satisfied if the set of final states of the PBA is visited infinitely often.

PTS

Cost function



Optimal Control Synthesis
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Suffix part

• Plans in Prefix - Suffix structure:

• State-space of the PBA:

• Find paths in the PBA from initial states 
to final states (prefix part) and cycles 
around the final states (suffix part).

• Cost of plan:
Transition weights 

(e.g., distance metric)

PBA

• Pick the prefix-suffix plan with the 
minimum cost.



Limitations of Existing Methods

wTS1

wTS2

wTSN

PBA

NBA

Graph 
Search

Model

Discrete
Controllers

State explosion, 
Computationally expensive, 
Centralized (less than ~107

states)

M. Kloetzer (TRO 2010)
S. Smith et al (IJRR 2011)
A. Ulusoy et al (IJRR 2013)
M. Guo et al (IJRR 2015)

Optimal Control Synthesis

Model Checking / Verification

We propose an algorithm that can solve optimally hundreds of orders of magnitude larger 
planning problems than state-of-the-art methods (~10800 states and beyond).

NuSMV 2, nUxmv, 
SPIN, SPOT

More scalable (~1030 states) but no optimality guarantees.
Return a feasible, and not the optimal, solution.



Sampling-Based Optimal Control Synthesis

• Completely avoid taking the product among wTSs and NBA.
• Approximate representation of PBA by a tree

Why trees?
§ Resource efficient (memory 

complexity):

§ Computationally inexpensive graph 
search methods. 

How to build trees?
§ Incrementally through sampling 

on the PBA state-space.
§ Cycle-detection method.

Approximate?



Algorithm Outline

Sample a state

Extend (if possible) the tree
towards

Yes

No

Rewire (if possible) the tree to

Yes

No
Extended?

Initialize
the tree



Sampling Function

If                                                  , then “Rewire”
otherwise “Extend”

The choice of the sampling function affects 
the performance of the algorithmThe root of the tree is an 

initial state of the PBA.

Sample a state                                                    from 
the density function                                         .



Extend Function

2) Select as a parent for           the node      

that incurs the minimum cost from the 
root.

1) Collect all states in the tree that 
can directly reach             in a set of 
candidate parents:

Complexity of extending: Transition weights 
(e.g., distance metric)



Rewire Function

2) Rewire nodes                                   to   

if their cost from the root can be further 
minimized.

1) Collect all states in the tree that can 
be directly  reached by            in a set of 
possible children:

Complexity of rewiring:



Construction of Prefix Plans

1 2 Compute paths (prefix parts) by tracking the
sequence of parent nodes from final states
to the root.

Complexity of finding paths:

The construction of the tree is terminated after a 
user-specified maximum number of iterations.



Construction of Suffix Plans

A tree graph rooted at a final state 
is built.

Every time a new node is added,
check if a direct transition to the
final state (root) is feasible, forming
a suffix loop.



Optimal Discrete Plan Synthesis

1

2

2 1

Tree for prefix parts

Tree for suffix parts

Constructed motion plans:

Optimal motion plan: 



Completeness and Optimality

The proposed sampling-based algorithm is probabilistically complete.Theorem:

The proposed sampling-based algorithm is asymptotically optimal, i.e.,Theorem:



Convergence Rate Analysis

Theorem: Let  p denote a feasible prefix or suffix path.

Then there exist parameters                              such that the probability                    of finding 
the feasible prefix/suffix path p within            iterations satisfies

Theorem: Let  p* denote the optimal prefix or suffix path.

Then there exist parameters                                and                                 and iterations         for 
every state       in the optimal path such that the probability of finding the optimal path 
within                          iterations satisfies   

Depend on the selected 
sampling functions

1 � ⇧suc(q
K
P ) � 1� e�

Pnmax
n=1 ↵n(p)

2 nmax+K , if nmax > K

⇧opt(p
⇤) �

⇣
1� e�

Pn̄
n=1 ↵n(p⇤)

2 +K
⌘K�1Y

k=1

⇣
1� e�

Pnmax
n=nk�1

�n(qkP )

2 +1
⌘

p = q1P , q
2
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p⇤ = q1P , q
2
P , ..., q

K�1
P , qKP



Scalability with Uniform Sampling
Team 2 Team 3 Team 4

Team 6Team 5

Team 1

Using uniform sampling functions, the proposed method detected the first feasible
path in 1.6 hours with cost 568.1857 meters.

The existing optimal control synthesis method (e.g., Dijkstra, implicit graphs) failed to
solve this problem (can solve problems with ~107 states/edges).

NuSMV generated a feasible plan in 2 seconds with cost 672.2431 meters.

D. Oddoux, P. Gastin. 
LTL2BA software, 2009.



Optimality



Comparative Results: Small NBA

MATLAB runtimes to detect 
the first feasible plan



Comparative Results: Large NBA

MATLAB runtimes to detect 
the first feasible plan



NuSMV vs STyLuS*

Small NBA
Small N 

Small & sparse 
wTSs

Large NBA
Small N 

Small & sparse 
wTSs
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Large NBA
Large N

Large/small & 
sparse/dense wTSs

Small NBA
Large N

Large/small & 
dense/sparse wTSs

wTS with self loops or tasks that do not require robots to wait

wTS with no 
self loops & 
tasks that 

require robots 
to wait

NuSMV does not provide any optimality guarantees. STyLuS* is asymptotically optimal 
and can find “good” plans fast enough.

NuSMV is more scalable if the words/guards on the NBA transitions cannot be classified as 
feasible/infeasible.

“tie”



Summary

wTS1

wTS2

wTSN

PBA

NBA

Graph 
Search

Model

Discrete
Controllers

State explosion, 
Computationally expensive, 
Centralized (less than ~107

states)

M. Kloetzer (TRO 2010)
S. Smith et al (IJRR 2011)
A. Ulusoy et al (IJRR 2013)
M. Guo et al (IJRR 2015)

Optimal Control Synthesis

Model Checking / Verification

We propose an algorithm that can solve optimally hundreds of orders of magnitude larger 
planning problems than state-of-the-art methods (~10800 states and beyond).

NuSMV 2, nUxmv, 
SPIN, SPOT

More scalable (~1030 states) but no optimality guarantees.
Return a feasible, and not the optimal, solution.



Open Problems

Distributed Control & Optimization for Networked
Robots
• Reactive controllers for dynamic and uncertain

environments
• Robust controllers (robot failures?)
• Realistic communication models (e.g., acoustic channels

for underwater applications)
• Joint optimal task planning and communication control

Formal Methods/Control Synthesis for Cyber-
Physical Systems
• Reactivity and learning
• Probabilistic control synthesis for large-scale networks
• Secure optimal control synthesis
• Trade-offs between security and optimality
• Model-free optimal control synthesis
• Human-in-the-loop control synthesis (e.g., human-robot

collaborative tasks)



Thank You

Sampling-Based Optimal Control Synthesis
• Y. Kantaros and M. M. Zavlanos, “Sampling-Based Optimal Control 

Synthesis for Multi-Robot Systems under Global Temporal Tasks,” IEEE 
Transactions on Automatic Control, 2018.

• Y. Kantaros, B. Johnson, S. Chowdhury, D. J. Cappelleri, and M. M. 
Zavlanos, “Control of Magnetic Microrobot Teams for Temporal 
Micromanipulation Tasks,” IEEE Transactions on Robotics, 2018.

STyLuS*: large-Scale Temporal Logic optimal 
Synthesis
• Y. Kantaros and M. M. Zavlanos, “STyLuS*: A Temporal Logic Optimal 

Control Synthesis Algorithm for Large-Scale Multi-Robot Systems,’” 
International Journal of Robotics Research, under review.

• Y. Kantaros and M. M. Zavlanos, “Temporal Logic Optimal Control for 
Large-Scale Multi-Robot Systems: 10400 States and Beyond,” 57th IEEE 
Conference on Decision and Control, 2018.

Distributed Sampling-Based Optimal Control 
Synthesis
• Y. Kantaros and M. M. Zavlanos, “Distributed Optimal Control Synthesis for 

Multi-Robot Systems under Global Temporal Tasks,” 9th ACM/IEEE 
International Conference on Cyber- Physical Systems, 2018.


