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Introduction
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Systems often communicate within contested environments.

• Standard networking protocols offer a spoofing attack surface
• Open problem within network security
• Mitigation: Device Authentication
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Device Authentication
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Grant features or capabilities of a contested network to 
only certain devices

Define the Authentication System (AS): 
Performs attestation of (device, sample) pairs.

Previous work: implement the attestation using machine learning.
• Map device samples → devices 
• Return YES if matching, NO otherwise
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Pitfalls of Feature Extractors
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Reduce high-dimensional samples to binary decision 
• What could go wrong?

Previous Adversarial Machine Learning (AML) work:
Models exhibit “blind spots”

Takeaway: high-dimensional feature extractors are insufficiently calibrated

[Goodfellow ICLR’15] [Hendrycks CoRR’19]
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Subverting Authentication
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Can we subvert authentication systems using previous 
techniques?

• A target’s information is secret and hidden 
   (otherwise you would already have access)

• Information returned from authentication systems is limited
     (response ∈ {YES, NO})

Short answer: Yes, despite these setbacks
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Problem Formulation
Refine previously defined Authentication System (AS)

• Set of credentials: 

        Analogous to “usernames” registered with AS

• Define the underlying mapping of submitted samples to users: 

Mapping performs classification necessary for AS to yield a response

• Treat AS as a function:                         for decision               
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u ∈ U

F : X ⟶ U

AS(u, x) = y y ∈ {YES, NO}
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Adversarial Capabilities
Introduce adversary A:

• Adversary A is allowed to know the dimensionality d of a feature extractor F relies on:

• A knows some subset of usernames:    

• In fact, A can register their own samples with AS:            
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F : g(X)d ⟶ U

U𝒜 ⊂ U

X𝒜

All other principals (users) of the system:

• Define the set of benign principals known to AS: 

… and their samples:          with    

𝒱 = {v ∈ U : v ≠ 𝒜}

X𝒱 X𝒜 ∩ X𝒱 = ∅



Florida Institute for Cybersecurity (FICS) Research

Restrictive-Query Threat Model
Adversary wishes to impersonate some victim, gaining access to resources:

• Denote victim as              

• A eventually crafts an adversarial sample       such that  

• Use a reasonable amount of queries to avoid detection

Intermediate samples       are iteratively crafted until        is found. 

Henceforth the adversary has achieved Masquerade (M) 
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v ∈ 𝒱

x* AS(v, x*) = YES

x′� x*
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Strategy
Adversary wishes to impersonate some victim, gaining access to resources

• A is performing an untargeted exploratory attack 

• Target: integrity of resources protected by AS

• No access to weights, data, training algorithm, or confidence scores of AS

        

Strategy: Construct an algorithm for query-efficient fuzzing through the feature extractor

9
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Query-Efficient Fuzzing
Strategy: Query-efficient fuzzing through 
the feature extractor
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Query-Efficient Fuzzing
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Query-Efficient Fuzzing
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Query-Efficient Fuzzing
Strategy: Query-efficient fuzzing through 
the feature extractor
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Query-Efficient Fuzzing
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Measuring Effects
Adversary wishes to reach Masquerade. How likely is this w.r.t their knowledge?

• Consider a                   matrix      of all possible adversary-victim pairs in the system

• For simplicity, the adversary has full knowledge,                and acts alone.

• Then        denotes that adversary A  was successful against victim 

• AS is more vulnerable if these pairs are scattered throughout 
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|U | × |U | S

U𝒜 = U

Si,j i vj

S
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• For simplicity, the adversary has full knowledge,                and acts alone.

• Then        denotes that adversary A  was successful against victim 

• AS is more vulnerable if these pairs are scattered throughout 
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|U | × |U | S

U𝒜 = U

Si,j i vj

S

P(M) =
|{Si,j > 0 : i ≠ j} |

|{1|U|×|U|
i,j : i ≠ j} |
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Measuring Distortion
How much distortion is necessary to be successful? 

• Calculate distortion     to offer intuition over different methods

• Relative change between x and best attack sample x*

        

• Denote average change for some attack strategy as the average 

21

ϵ =
| |x − x* | |2

| |x | |2

ϵ̄

ϵ
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Experimental Validation
Implement attack against three proposed device authentication systems:

1. USB-Fingerprinting (USB-F) - End-host authentication based on USB enumeration 
timings. [Bates NDSS’14]

    Classifier : Random Forest trained in One vs. Rest style

22
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Experimental Validation
Implement attack against three proposed device authentication systems:

1. USB-Fingerprinting (USB-F) - End-host authentication based on USB enumeration 
timings. [Bates NDSS’14]

    Classifier : Random Forest trained in One vs. Rest style

2. GTID - Device-agnostic identification based on inter-arrival times of network packets. 
[Radhakrishnan TDSC’15]

Classifier : Ensemble of Artificial Neural Networks (ANNs)

3. WDTF - Device authentication based on probe request traffic of IEEE 802.11 wireless 
devices. [Dalai WPC’17]

Classifier : Kernel derived from hand-crafted features

24
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Attack Scenarios
Evaluate using different attack scenarios:

1. Baseline - Legitimate test set data, lower bound of robustness for each system

2. Random - A constructs samples randomly following a Gaussian distribution. 

3. Greedy Adversary - A wields QuickFuzz algorithm, and stops as soon as a victim is 
found. 

4. Exploratory Adversary - A wields QuickFuzz and exhausts some fixed query budget. 

25
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Attack Effectiveness
Research Question 1: Is the attack effective? 
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USB-F GTID WDTF
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Attack Effectiveness
Research Question 2: How many queries to affect integrity? 
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USB-F
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Attack Effectiveness
Research Question 2: How many queries to affect integrity? 
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GTID
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Attack Effectiveness
Research Question 2: How many queries to affect integrity? 
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WDTF
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Feature Exploration
Research Question 3: Do certain features contribute to brittle performance?

• Use XAI technique (LIME) to analyze each decision space. [Ribeiro KDD’16] 

30



Florida Institute for Cybersecurity (FICS) Research

Feature Exploration
Research Question 3: Do certain features contribute to brittle performance?

31

GTID
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Feature Exploration
Research Question 3: Do certain features contribute to brittle performance?
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GTID

IAT outliers

IAT outliers
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Feature Exploration
Research Question 3: Do certain features contribute to brittle performance?
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WDTF
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Feature Exploration
Research Question 3: Do certain features contribute to brittle performance?
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Feature Exploration
Research Question 4:  What do attack data distributions look like? 
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Feature Exploration
Research Question 4:  What do attack data distributions look like? 
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Takeaways
Let us revisit our four high-level research questions:

1. Does a random attack work between different authentication domains?

   Yes, up to 21% chance of masquerade in worst case of GTID system. 

2. How many queries are needed to affect integrity of resources?

    In most cases, less than 100 queries are needed for substantial FPR. 

3. Do certain types of features contribute to brittle performance?

    Features tend to be sensitive to device properties, but generally unintuitive.

4. How do sample data distributions change between legitimate and attack scenarios?

     Attack distributions tend to appear as noise, difficult to distinguish. 

38
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Zeroth Order Extension
Hard-label decision adversaries: Only label is returned from classifier. 

QuickFuzz performs random walk through input space to find victims. 

• Ideally, inform the movement with gradient estimate. 

Zeroth-Order Optimization (ZOO) attack: 

• Approach decision boundary, estimate gradient at a classifier’s decision boundary, repeat, 
until x* is found. [Chen AISec’17, Chen CoRR’19]

39
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Toy Problem:

Zeroth Order Extension
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LDA Decision Boundary Projection from x to xtarget Projection from x* to xtarget

Successful Attack

Takeaway: Extend concept of gradient estimation to authentication setting.
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Feature Engineering Redux
• XAI - explaining opaque (black-box) 

models at instance level (often with 
other opaque models)

• Interpretable-ML - feature extractor 
design guided by interpretable 
primitives

• Can XAI alone reliably inform us?
Ongoing work

41

[Dombrowski CoRR’19]
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