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Does randomly choosing the route make sense?

Lands heads 

with probability 1-p

Lands tails

with probability p

If p=1 or p=0, we know 

what is going to happen (almost surely)

If 0<p<1, we can measure how much 

we don’t know what is going to happen

H(X)= -p log(p) -(1-p)log(1-p)

Entropy of the random variable X

Unbiased coin
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An informal statement of the considered problem

• whose behavior in a stochastic environment 

    is modeled as a Markov decision process (MDP), 

• whose task is expressed by a reward function 

     or a temporal logic formula, 

Synthesize a policy that maximizes the entropy of the MDP 

    while guaranteeing the completion of the task with desired probability

For an agent
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Related work

• The maximum entropy of an interval Markov chain (IMC) is used to quantify 

    the maximum information leakage from a deterministic software in [1].

• Necessary and sufficient conditions for the finiteness of the maximum entropy of an IMC

• The proposed approach cannot be used for Markov decision processes (MDPs)

[1] F. Biondi et al. “Maximizing entropy over Markov processes”, Journal of Logical and Algebraic Methods in Programming, vol. 83, no. 5, pp. 384 – 399, 2014

• Complexity of computing the maximum entropy of an MDP is established in [2].
• Maximum entropy can be computed in time polynomial in the size of the MDP

• The proposed approach cannot be used to synthesize an entropy-maximizing policy

[2] T. Chen and T. Han. “On the complexity of computing maximum entropy for Markovian models”, Conference on Foundation of Software Technology and      
Theoretical Computer Science, vol. 29, 2014, pp. 571–583.

• The synthesis of a policy with maximum entropy is considered in [3].

• A policy with maximum entropy is not the same with a policy that maximizes the entropy of the MDP

• The proposed approach was believed to be non-convex

[3] P. Paruchuri et al. “Security in multiagent systems by policy randomization”, Conference on Autonomous Agents and Multiagent Systems, 2006, pp. 273–280
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Contributions

• Necessary and sufficient conditions for the existence of a stationary policy

    that maximizes the entropy of an MDP

• A polynomial-time algorithm for the synthesis of a stationary policy 

    that maximizes the entropy of an MDP

• A polynomial-time algorithm for the synthesis of a stationary policy 

    that maximizes the entropy of an MDP under expected reward 

    and temporal logic constraints

[1] Y. Savas et al. “Entropy maximization for constrained Markov decision processes”, Allerton Conference on Communication, Control, and Computing, 2018

[2] Y. Savas et al. “Entropy maximization for Markov decision processes under temporal logic constraints”, Transactions on Automatic Control, 2019 6



The synthesis of a policy for a simple system

Trajectory under a1 Trajectory under a2

If we take both actions with probability 0.5, we follow each trajectory with equal probability. 

There are two possible trajectories:

s0(s1)ω s0(s2)ω

Let’s consider a simple system
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The synthesis of a policy for a ‘less simple’ system

Consider a bit more complex example

There are three possible trajectories:

s0s1(s3)ω s0s1(s4)ω s0s2(s4)ω

Trajectory under a1a1 Trajectory under a1a2 Trajectory under a2a1

Each trajectory is followed with equal probability


Not all actions are taken with equal probability

The entropy-maximizing policy induces the following Markov chain
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Markov decision processes

A Markov decision process (MDP) is a tuple ℳ = (S, s0, A, ℙ)

S is a finite set of states
s0 is the initial state
A is a finite set of actions
ℙ is a transition function

A policy for an MDP is a sequence π = (μ0, μ1, …) where μk : S → Δ(A)

The set of all policies is Π(ℳ) , the set of all stationary policies is ΠS(ℳ)

Markov decision processes model 

sequential decision-making under uncertainty

Agent action

Environmentstate
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The entropy of a stochastic process

Entropy of a discrete random variable X is 

H(X ) := − ∑
x∈𝒳

Pr(X = x)log Pr(X = x)

Entropy of a stochastic process 𝕏 = {Xk ∈ 𝒳 : k ∈ ℕ} is

H(𝕏) := lim
k→∞

H(X0, X1, …, Xk)

Measures the randomness

of admissible realizations
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Maximum entropy of an MDP

The maximum entropy of an MDP is then

H(ℳ) := sup
π∈ΠS(ℳ)

H(ℳ, π) .

For an MDP      , a policy     induces a stochastic process  ℳ π 𝕏 = {Xk ∈ S, k ∈ ℕ} .

The entropy of the induced stochastic process is denoted by 

H(ℳ, π) := lim
k→∞

H(X1, X2, …, Xk) .

Why do we consider only stationary policies?

sup
π∈Π(ℳ)

H(ℳ, π) = sup
π∈ΠS(ℳ)

H(ℳ, π) 1

[1] T. Chen and T. Han. “On the complexity of computing maximum entropy for Markovian models”, Conference on Foundation of Software Technology and      
Theoretical Computer Science, vol. 29, 2014, pp. 571–583. 11



Properties of the maximum entropy

The maximum entropy of an MDP is 

H(ℳ) = max
π∈ΠS(ℳ)

H(ℳ, π) < ∞finite if and only if max can be attained and finite

infinite if and only if H(ℳ) = max
π∈ΠS(ℳ)

H(ℳ, π) = ∞ max can be attained and infinite

unbounded if and only if 
(i) H(ℳ) = sup

π∈ΠS(ℳ)
H(ℳ, π) = ∞

(ii) H(ℳ, π) < ∞ ∀π ∈ ΠS(ℳ)

sup is infinite but cannot be attained
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Formal problem statement

• For an MDP M, provide an algorithm to verify whether there exists a policy                        such that π⋆ ∈ ΠS(ℳ)

H(ℳ) = H(ℳ, π⋆) .

We will provide necessary and sufficient conditions 

for the existence of an entropy-maximizing stationary policy.

• If there exists an entropy-maximizing stationary policy, provide an algorithm to synthesize it.      

If such a policy does not exist, synthesize a policy                      such that      π⋆ ∈ ΠS(ℳ)

H(ℳ, π⋆) ≥ L
L .for a given constant

We will provide a polynomial-time algorithm 

to synthesize an entropy-maximizing stationary policy.

13



Lπ(s) := − ∑
s′�∈S

ℙπ
s,s′� log ℙπ

s,s′�,For a state          , let the local entropy be 

ξπ(s) :=
∞

∑
k=0

Prπ(Xk = s |X0 = s0) .and the expected residence time be

s ∈ S Entropy gain in one step

starting from state

Number of visits to state

s

s

H(ℳ, π) = ∑
s∈S

Lπ(s)ξπ(s) .1Then, we have

(1) F. Biondi et al, “Maximizing entropy over Markov processes,” Journal of Logical and Algebraic Methods in Programming, vol. 83, no. 5, pp. 384 – 399, 2014

Finite if and only if all recurrent states 

have zero local entropy

Well, then we also have H(ℳ) = sup
π∈ΠS(ℳ)

H(ℳ, π) = sup
π∈ΠS(ℳ)

[∑
s∈S

Lπ(s)ξπ(s)] .

( One step reward )  X  ( Number of visits )

Entropy as a sum of immediate rewards
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Intuitively, maximum entropy is infinite if                  and Lπ(s) > 0 ξπ(s) = ∞ for some                     and state s.π ∈ ΠS(ℳ)

   Maximum entropy is infinite if and only if 

there exists a state that is both 


           recurrent and stochastic under some stationary policy.

Verifying the existence of an entropy-maximizing policy: infinite case

A state s is recurrent under policy     if ξπ(s) = ∞ .

A state s is stochastic under policy     if 

π

π Lπ(s) > 0.
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πs(a1) = 1/2
πs(a2) = 1/2

Lπ(s0) = Lπ(s1) = 1
ξπ(s0) = ξπ(s1) = ∞



Maximum entropy is unbounded if we can spend almost infinite time in a state with nonzero local entropy. 

Bottom strongly connected MEC:
Under no action, the agent can leave the set C

Maximum entropy is unbounded if and only if 

 it is not infinite and there exists a maximal end component 


   that is not bottom strongly connected.
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Verifying the existence of an entropy-maximizing policy: unbounded case

A maximal end component (MEC) of an MDP:
• A pair (C,D) where C is a set of states

                                    D is a set of actions

• The directed graph (C,D) is strongly connected 

• There is no (C',D') such that (C′�, D′�) ≠ (C, D), C ⊆ C′�, D ⊆ D′�

Bottom strongly connected MECMEC but not bottom strongly connected 



What about finite maximum entropy?

H(ℳ) = max
π∈ΠS(ℳ)

H(ℳ, π) < ∞

Recall the definition of finite maximum entropy

Verifying the existence of an entropy-maximizing policy: finite case

Maximum entropy is finite if and only if 

 it is not infinite and not unbounded.
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Corollary: sup
π∈ΠS(ℳ)

H(ℳ, π) < ∞ ⟹ sup
π∈Π(ℳ)

H(ℳ, π) = max
π∈ΠS(ℳ)

H(ℳ, π)

An optimal stationary policy is optimal also in the space of all admissible policies



The synthesis of an entropy-maximizing policy: finite case

max
x(s,a)

− ∑
s∈S\C

∑
t∈S

η(s, t)log( η(s, t)
ν(s) )

∑
a∈A(s)

x(s, a) − ∑
t∈S

∑
a∈A(t)

x(t, a)ℙt,a,s = α(s) ∀s ∈ S \C

x(s, a) ≥ 0 ∀s ∈ S \C ∀a ∈ A

Subject to:

ν(s) = ∑
a∈A(s)

x(s, a) ∀s ∈ S \C

η(s, t) = ∑
t∈S

x(s, a)ℙs,a,t ∀s ∈ S \C ∀t ∈ S

18

Expected number of visits to

 state-action pair (s,a)

Expected number of visits to state s

Expected number of transitions

from state s to state t

Flow constraint:

 if you visit a state, 


you should also leave that state 

Relative entropy between 

the number of times entering a state and 


the number of times transitioning to a successor state

States in MECs C :
Initial state distributionα( ⋅ ) :A convex optimization with exponential cone constraints



The synthesis of an entropy-maximizing policy: unbounded case

What happens if the MDP has unbounded maximum entropy?

Maximum entropy is unbounded because 

we can spend almost infinite time to gain entropy

Recall that in the convex optimization problem, we have a variable x(s, a)
which denotes the expected number of visits to state-action pair (s,a). 

∑
s∈S\SB

∑
a∈A(s)

x(s, a) ≤ B .

Then, we can bound the time spent until reaching a bottom strongly connected MEC 

 with the additional constraint 

Obtain desired level of entropy 

by increasing threshold B

19
States in bottom strongly connected MECsSB :



Entropy maximization under expected reward constraints

For an MDP, a reward function                         and a reward threshold R : S × A → ℝ Γ,

synthesize a policy that solves the following problem:

Assuming that 

∑
s∈S\SB

∑
a∈A

x(s, a)R(s, a) ≥ Γ .

R(s, a) = 0 for all states in bottom strongly connected MECs, 


we can add the following constraint to the convex optimization problem.
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Adding linear temporal logic (LTL) constraints

MDP M “specification” automaton Aφ 

Does the behavior of the robot satisfy the specification     ?φ

 = Aφ x Mx

Are certain special states in Aφ x M reached?
21



Entropy maximization under linear temporal logic (LTL) constraints

For an MDP and an LTL formula, synthesize a policy that solves the following problem:

States in accepting MECs Desired threshold

Then, the policy synthesis procedure is as follows:

1. Construct the automata corresponding to the given LTL formula

2. Take the product of the given MDP and the automata

3. Make all            absorbing

4. Solve the convex optimization problem with the additional constraints

∑
s∈B

x(s) ≥ β

s ∈ B

x(s) − ∑
t∈S\B

∑
a∈A(t)

x(t, a)ℙt,a,s = α(s) ∀s ∈ B

Probability of reaching state s

22

Optimization is performed 

on the product MDP

ℳp := Aφ × ℳ



The use of routes for different mission times 

Task: Reach the target (green) state within     steps 

while avoiding red states

Reach the target 

as soon as possible 

Reach the target 

within 60 steps on average 

(Γ = 14) (Γ = 60)

Expected residence time in states ∑
a∈A(s)

x(s, a)
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Γ



Restrictiveness of 

the tasks increases

Maximum entropy decreases 

as the task gets stricter

Number of observations 

required to infer the trajectory decreases 


as the task gets stricter
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The use of routes for different missions and a fixed mission time 



Summary

• What happens if the outside observer is not 
interested in the whole trajectory? 

• What happens if the agent has only 
partial observations? 

[1] M. Hibbard et al. ‘Unpredictable planning under partial observability’, Conference on Decision and Control, 2019

• What happens if the outside observer is an 
active player in the game? 

[2] Y. Savas et al. ‘Entropy-regularized stochastic games’, Conference on Decision and Control, 2019 25

What is next?

• Existence of an entropy-maximizing policy 
can be verified efficiently.

• An entropy-maximizing policy can be 
synthesized efficiently.

• A policy that maximizes entropy while 
satisfying reward and temporal logic 
constraints can be synthesized efficiently.


