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His only regret—not to have killed de Gaulle

The real Jackal

By Ted Morgan

PARIS. Oa the dust jacket of my edition of
Frederick Forsyth’s “The Day of the Jackal” (now
a major motion picture starring Edward Fox) is
the following summary:

““His mission: kill President Charles de Gaullz.

“His code name: Jackal.

“His price: half a million dollars.

“His demand: total secrecy, even from his
employers.”

The blurb goes on to describe the Jackal as
“a tall, blond Englishman with opaque gray eyes
—a Kkiller et the top of his grisly profession”

Now it hzppens that the real “Jackal,” that is,
the man wto really tried to kill de Gaulle, is a
short, bespestacled, baldish Frenct with clear
blue eyes ard the candid, pink-cheeked face of &n
aging choirtoy. His code name was Max, his price
was not a penny, and his demand was to put the
army In power and keep Algeria French, His real
name is Aledin de Bougrenet de la Tocnaye. Like
the Jackal's his assassination attempt failed, but
unlike the Jackal, he was not killed. He was tried,
sentenced to death, pardoned, then amnestied in
1968. He now lives quietly in a two-room bachelor
apartment in the shadow of the Eiffel Tower and
operates a small trucking firm. I met him recently
through friends. Annoyed at the mixture of fact
and fiction in “The Jackal,” which describes de la
Tocnaye’s aitempt as a prelude to the hiring of
the Jackal, he agreed to tell his story “to set the
record straight.”” The point to remember is that
the “Petit Clamart” attempt led by de la Tocnaye
and graphically described in the novel really hap-
pened, but that after its failure, no further attempts
to recruit assassins, domestic or foreign, were
made. Since fiction borrows from reality, I have
returned the compliment by borrowing some of
Mr. Forsyth's chapter headings.

1. Anatomy of a crime

Aug. 22, 1962, was a cool, overcast day in Paris,
more like autumn than summer. That morning,
General de Gaulle came into the city from his'
country retreat at Colombey-les-deux-Eglises to
preside over a Cabinet meeting. For some time
now, ever since a bomb buried in a pile of sand
had gonc oif along his route, without doing any
damage, he had been making the trip by car aad
helicopter: criving from Colombey 40 miles to the
airport of Saint-Dizier, flying 150 miles to the
military airport of Villacoublay, and driving with
a light escort the eight miles from Villacoublay to
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Does randomly choosing the route make sense?

Lands tails If p=1 or p=0, we know
with probability p what is going to happen (almost surely)
~ Lands heads If O<p<1, we can measure how much
with probability 1-p we don’t know what is going to happen
/ Unbiased coin

Entropy of the random variable X

N\

H(X)= -p log(p) -(1-p)log(1-p)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr(X=Tails)



An informal statement of the considered problem

For an agent

e whose behavior in a stochastic environment

iIs modeled as a Markov decision process (MDP),

 whose task is expressed by a reward function
or a temporal logic formula,

Synthesize a policy that maximizes the entropy of the MDP

while guaranteeing the completion of the task with desired probability




Related work

e The maximum entropy of an interval Markov chain (IMC) is used to quantify
the maximum information leakage from a deterministic software in [1].

e Necessary and sufficient conditions for the finiteness of the maximum entropy of an IMC
 The proposed approach cannot be used for Markov decision processes (MDPs)

* Complexity of computing the maximum entropy of an MDP is established in [2].

e Maximum entropy can be computed in time polynomial in the size of the MDP
e The proposed approach cannot be used to synthesize an entropy-maximizing policy

* The synthesis of a policy with maximum entropy is considered in [3].

e A policy with maximum entropy is not the same with a policy that maximizes the entropy of the MDP
e The proposed approach was believed to be non-convex

[1] F. Biondi et al. “Maximizing entropy over Markov processes”, Journal of Logical and Algebraic Methods in Programming, vol. 83, no. 5, pp. 384 — 399, 2014

[2] T. Chen and T. Han. “On the complexity of computing maximum entropy for Markovian models”, Conference on Foundation of Software Technology and
Theoretical Computer Science, vol. 29, 2014, pp. 571-588.

[3] P. Paruchuri et al. “Security in multiagent systems by policy randomization”, Conference on Autonomous Agents and Multiagent Systems, 2006, pp. 273-280
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Contributions

 Necessary and sufficient conditions for the existence of a stationary policy
that maximizes the entropy of an MDP

* A polynomial-time algorithm for the synthesis of a stationary policy
that maximizes the entropy of an MDP

* A polynomial-time algorithm for the synthesis of a stationary policy
that maximizes the entropy of an MDP under expected reward
and temporal logic constraints

[1] Y. Savas et al. “Entropy maximization for constrained Markov decision processes”, Allerton Conference on Communication, Control, and Computing, 2018

[2] Y. Savas et al. “Entropy maximization for Markov decision processes under temporal logic constraints”, Transactions on Automatic Control, 2019 6



The synthesis of a policy for a simple system

Let’s consider a simple system

There are two possible trajectories:

v N

Trajectory under q, Trajectory under a,

If we take both actions with probability 0.5, we follow each trajectory with equal probability.



The synthesis of a policy for a ‘less simple’ system

Consider a bit more complex example

There are three possible trajectories:

Trajectory under a,a;  Trajectory under aja,  Trajectory under dad;

The entropy-maximizing policy induces the following Markov chain

Each trajectory is followed with equal probability

Not all actions are taken with equal probability




Markov decision processes

@ =

Markov decision processes model
sequential decision-making under uncertainty

A Markov decision process (MDP) is a tuple . = (S, sy, A, P)

S is a finite set of states

50 is the initial state
A is a finite set of actions

P is a transition function

A policy for an MDP is a sequence 7 = (U, fy>---) Where S — A(A)

The set of all policies is TI(.Z), the set of all stationary policies is TT5(.#)



The entropy of a stochastic process

Entropy of a discrete random variable X is

H(X) := — Z Pr(X = x)log Pr(X = x)
xeX

Entropy of a stochastic process X = {X, € £ : k €N} is

H(X) = llm H(Xo, Xl’ ""Xk)
k— o0

|

Measures the randomness
of admissible realizations
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Maximum entropy of an MDP

For an MDP ./, a policy 7 induces a stochastic process X = {X, € §,k € N}.

The entropy of the induced stochastic process is denoted by

H(%, ﬂ) = llm H(XI’XQ’ ""Xk) .
k— o0

The maximum entropy of an MDP is then

H() .= sup H(M,r).

€I’ (M)
/'

Why do we consider only stationary policies?

sup H(M, )= sup H(M,7n) 1
nell(M) n€IP (M)

[1] T. Chen and T. Han. “On the complexity of computing maximum entropy for Markovian models”, Conference on Foundation of Software Technology and 11
Theoretical Computer Science, vol. 29, 2014, pp. 571-583.



Properties of the maximum entropy

The maximum entropy of an MDP is

finite if and only if HW) = max H(M,n) < o0
el (M)

infinite if and only if H(AM) = max H(M,r) = oo
nell>(A)

(i) HA)= sup H(M,7) = 0

unbounded if and only if n€Il(M)

(ii) H(M,7) < oo Ve lP(M)

max can be attained and finite

max can be attained and infinite

sup is infinite but cannot be attained
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Formal problem statement

e For an MDP M, provide an algorithm to verify whether there exists a policy z* € IT°(.#) such that

H(M) =H(M, ™).

We will provide necessary and sufficient conditions
for the existence of an entropy-maximizing stationary policy.

e |[f there exists an entropy-maximizing stationary policy, provide an algorithm to synthesize it.

If such a policy does not exist, synthesize a policy z* € I1°(.#) such that

H(M, ™) > L

for a given constant L .

We will provide a polynomial-time algorithm
to synthesize an entropy-maximizing stationary policy.




Entropy as a sum of immediate rewards

For a states € §, let the local entropy be  L*(s) := — Z Peylog Py,

s'es

and the expected residence time be g(s) = Z PriX; = s| Xy = o) -
k=0

(One step reward ) X ( Number of visits)

Then, we have ~ H(M,m) = ) L*()E™(s).!

eS Finite if and only if all recurrent states

have zero local entropy

Well, then we also have  H(#)= sup H(M,m)= sup [ZL”(S)é”(S)]-
n€ll’ (M) r€ll®(M) * (g

Entropy gain in one step
starting from state §

Number of visits to state §

(1) F. Biondi et al, “Maximizing entropy over Markov processes,” Journal of Logical and Algebraic Methods in Programming, vol. 83, no. 5, pp. 384 — 399, 2014
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Verifying the existence of an entropy-maximizing policy: infinite case

Intuitively, maximum entropy is infinite if L7(s) > 0 and &%*(s) = oo for some # € II°(/) and state s.

a1 nla;) = 1/2 1/2
as, 1 ﬂs(az) =172 12 LJT Ln’ 1
O==-0)~1'% O =0~ e
as, 1 1/2 E™(sp) = E7(s)) = o0

A state s is recurrent under policy 7 if £*(s) = .

A state s is stochastic under policy & if L*(s) > 0.

Maximum entropy is infinite if and only if
there exists a state that is both
recurrent and stochastic under some stationary policy.

15



Verifying the existence of an entropy-maximizing policy: unbounded case

Maximum entropy is unbounded if we can spend almost infinite time in a state with nonzero local entropy.

MEC but not bottom strongly connected

A maximal end component (MEC) of an MDP: Bottom strongly connected MEC.:

e A pair (C,D) where C is a set of states Under no action, the agent can leave the set C
D is a set of actions

e The directed graph (C,D) is strongly connected
e There is no (C',D') such that (C',D’) # (C,D), CC C', DCD’

Maximum entropy is unbounded if and only if

it is not infinite and there exists a maximal end component
that is not bottom strongly connected.

16



Verifying the existence of an entropy-maximizing policy: finite case

What about finite maximum entropy?

Recall the definition of finite maximum entropy

H() = max H(M,n) < o0
nell¥ (M)

Maximum entropy is finite if and only if

it is not infinite and not unbounded.

Corollary: sup H(M,m) < oo = sup H(M,m)= max H(M,r)
€l (M) r€ll( M) €l (M)

An optimal stationary policy is optimal also in the space of all admissible policies

17



The synthesis of an entropy-maximizing policy: finite case

n(s,r) Relative entropy between
max — Z Z n(s, t)10g< ) the number of times entering a state and
x(s.a) s€S\C 1eS u(s) the number of times transitioning to a successor state
, _ . Flow constraint:
Subject to: Z x(s,a) — 2 2 x(t, a)[p)t,a,s =a(s) Vs €S\ if you visit a state,
aEA(s) 1€S a€A(1) you should also leave that state
U(s) = Z x(s, a) Vs € S\C Expected number of visits to state s
acA(s)
5. 1) = x(s, a)P Vs e S\C VresS Expected number of transitions
(s, 1) ZEZS (5, Py from state s to state t
x(s,a) > 0 Vs e S\C VaecA Expected number of visits to

state-action pair (s,a)

C : States in MECs

A convex optimization with exponential cone constraints - o
a( - ) : Initial state distribution 18



The synthesis of an entropy-maximizing policy: unbounded case

What happens if the MDP has unbounded maximum entropy?

a.1,1

Maximum entropy is unbounded because
8 az, 1 . { we can spend almost infinite time to gain entropy

Recall that in the convex optimization problem, we have a variable x(s, a)

which denotes the expected number of visits to state-action pair (s,a).

Then, we can bound the time spent until reaching a bottom strongly connected MEC
with the additional constraint

x(s,a) <B.
SE%SB aeg(s) \

/ Obtain desired level of entropy

Sp : States in bottom strongly connected MECs by increasing threshold B

19



Entropy maximization under expected reward constraints

For an MDP, a reward function R:Sx A - R and a reward threshold T,

synthesize a policy that solves the following problem:

maximize H(M,m)
w €IS (M) '

subject to:

Assuming that R(s,a) = 0 for all states in bottom strongly connected MECs,

we can add the following constraint to the convex optimization problem.

Z Z x(s,a)R(s,a) > T".

sES\Sp a€A

20



Adding linear temporal logic (LTL) constraints

Does the behavior of the robot satisfy the specification ¢ ?

OQuav, = ws A OQuav, = wy A OQuav, = ws A
Quavy = wy A Quavy = wy A Quavy = weg

O (uav = wy A ¢ (uav = wy A Quav = wz))

Quav = wy A Quav = wqy A Quav = wz A
—wo U w1 A w3 U wse

O(uav = wy — QU—wuav = wq)

l

“specification” automaton Ay

Are certain special states in Ao, x M reached?

21



Entropy maximization under linear temporal logic (LTL) constraints

For an MDP and an LTL formula, synthesize a policy that solves the following problem:

2?5“{“3,,25 H(Mp,) Optimization is performed
subject to: PrT, (so = OB) > 3 on the product MDP
g M, =A, X M
States in accepting MECs Desired threshold
Then, the policy synthesis procedure is as follows:
1. Construct the automata corresponding to the given LTL formula
2. Take the product of the given MDP and the automata
3. Make all s € B absorbing
4. Solve the convex optimization problem with the additional constraints
Z x(s) > p x(s) — Z 2 x(t,)P,, =a(s) Vs€EB

t€S\B ac€A(1)

sEB /

Probability of reaching state s

22



The use of routes for different mission times

LA Task: Reach the target (green) state within [ steps
S T while avoiding red states
1
2.0
1.6
Reach the target Reach the target
' 1.2 L
as soon as possible i. e within 60 steps on average
0.8

T = 14) | (T = 60)

0.4

0.0

Expected residence time in states EA;)X(S’ a)
acA(s

23



The use of routes for different missions and a fixed mission time

R4

R3

w w @
(=] wu =]

-
wn

The entropy of induced MCs
B8 B 2

N
(=]

R1

Restrictiveness of
the tasks increases

p1=00=Red A QLT

wo=[-Red A QR4 N QUT

p3a=00—Red A O(R3 A ORA) A QLT

pa=00—-Red A O(R2 A Q(R3 A ORA)) A OOT

v [ os=0-Red A O(RLA O(R2 A O(R3AORA))) A QLT

Maximum entropy decreases
as the task gets stricter

35

40

45

55 60
Required number of observations

Number of observations
required to infer the trajectory decreases
as the task gets stricter
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Summary

* EXxistence of an entropy-maximizing policy
can be verified efficiently.

* An entropy-maximizing policy can be
synthesized efficiently.

* A policy that maximizes entropy while
satisfying reward and temporal logic
constraints can be synthesized efficiently.

What is next?

 What happens if the agent has only
partial observations?

* What happens if the outside observer is an
active player in the game?

* What happens if the outside observer is not
interested in the whole trajectory?

maximize H(M,, )
TFGH:' (J\Ap)

subject to: Pri  (so EOB) = f

Wi v @
(=] un Q

-
w

The entropy of induced MCs
B 8 B 2

N
(=]

P4

l

o< Ps

35 40 a5 50 55
Required number of observations

[1] M. Hibbard et al. ‘Unpredictable planning under partial observability’, Conference on Decision and Control, 2019

[2] Y. Savas et al. ‘Entropy-regularized stochastic games’, Conference on Decision and Control, 2019
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