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Motivation

An agent that is performing a task in a stochastic environment while being
observed by an adversary, should not have an inferable policy.
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Motivation

Increasing the entropy does not imply non-inferabilility of the policy.

0

0.2

0.4

0.6

0.8

1

Least inferable policy

0

1

2

3

4

Maximum-entropy policy
(Time limit = 120)

The idea
Synthesize a policy that satisfies some task constraints and limits the
ability of the observer to infer.
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The model

We model the environment with a Markov
decision process (MDP) M = (S ,A,P, s0).

S is a finite set of states,

A is a finite set of actions,

P : S ⇥A⇥ S ! [0, 1] is the transition
probability function,

s0 is the initial state.
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A policy is a sequence ⇡ = µ0µ1 . . . where each µt : S ⇥A ! [0, 1] is a
function such that

P
a2A(s) µt(s, a) = 1 for every s 2 S .
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The problem

The task constraint of the agent is to reach a set Sreach of states with
high probability.

The adversary observes the transitions of the agent at a set W of
states to estimate the transition probabilities.

The objective of the agent is to minimize the information leaked to
the adversary on the transition probabilities.

- What is leaked information?
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Informativeness of a random variable

The Fisher information of a discrete random variable X on ✓ is

IX (✓) := EX

" 
@f (X |✓)

@✓| {z }

!

score

2����✓
#

where f (X |✓) is the probability mass function.

Example: Y ⇠ Bernoulli(p).
IY (p) = (p(1� p))�1

If p = 0 or 1, the inference is easy,
i.e., the estimation error is low.
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Lower bound on the estimation error

The Fisher information of a discrete random variable X on ✓ is

IX (✓) := EX

"✓
@f (X |✓)

@✓

◆2 ����✓
#

where f (X |✓) is the probability mass function.

The Cramèr-Rao Bound : Suppose the random variable X is parametrized
by ✓. The variance of any unbiased estimator ✓̂ of ✓ is lower bounded by
the reciprocal of the Fisher information IX (✓):

Var(✓̂) � 1

IX (✓)
.
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Information leaked from a single transition

The transition information of a state s is

◆⇡s :=
1P

q2S IQ(P⇡
s,q)

�1

where Q is the random variable denoting the successor
state of state s.

s

x

...

w

P
⇡
s,
x

P ⇡s,w

Analogous to Fisher information: Let P̂s be an unbiased estimator of the
transition probabilities P⇡

s at state s. Then,

trace(Var(P̂s)) �
1

◆⇡s
.
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Information leaked from a path

The total information of a path ⇠ = s0s1 . . . is

◆⇡W ,⇠ :=
1X

t=0

1W (st)◆
⇡
st .

Quantity vs. Informativeness of observations
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Both can be inferred equally well.
8 / 20



The problem

Given

an MDP M = (S ,A,P, s0),

a set Sreach of states,

a probability threshold ⌫reach,

the set W of observed states,

compute

min
⇡

Expected total informationz }| {
E⇠

⇥
◆⇡W ,⇠

⇤

subject to Pr⇡(Reach[Sreach]) � ⌫reach.
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Limiting the policy space

Assumption

The policy ⇡ of the agent is stationary, i.e., ⇡ = µµ . . ..

For a stationary policy,

the expected state residence time at state s is x⇡s = E[
P1

t=0 1s(st)],

the expected state-action residence time at state s and action a is
x⇡s,a = x⇡s ⇡s,a,

the expected state-state residence time from state s to state q is
y⇡s,q =

P
a2A(s) xs,aPs,a,q.
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The transition information under a stationary policy ⇡

In terms of transition probabilities:

◆⇡s =

0

@
X

q2S
P⇡
s,q(1� P⇡

s,q)

1

A
�1

.

In terms of expected residence times:

◆⇡s =

0

@
X

q2S

y⇡s,q
x⇡s

✓
1�

y⇡s,q
x⇡s

◆1

A
�1

.

s

x

...

w

P
⇡
s,
x

P ⇡s,w
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A minimum-information admissible policy can be
synthesized with a convex optimization problem

min
x⇡s,a

X

w2W

x⇡
w ◆

⇡
w

subject to ◆⇡w =

0

@
X

q2S

y⇡
w,q

x⇡
w

✓
1�

y⇡
s,q

x⇡
w

◆1

A
�1

, 8w 2 W

x⇡
s,a � 0, 8s 2 S \ C , 8a 2 A(s)

x⇡
s =

X

a2A(s)

x⇡
s,a, 8s 2 S \ C

y⇡
s,q =

X

a2A(s)

x⇡
s,aPs,a,q, 8s 2 S \ C , 8q 2 S

x⇡
s �

X

q2S

yq,s = 1s0(s), 8s 2 S \ C

X

q2Sreach

X

s2S\C

y⇡
s,q + 1s0(q) � ⌫reach.

Expected total

information

Flow equations

to describe

feasible policies

The task

constraint

C is the set of the end component states
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Lower bound on the estimation error for a state

Let �w be the mean-squared error of an (any) unbiased estimator for the
transition probabilities at state w .

A random path of the agent is the observed data.

Proposition

For an MDP M and a stationary policy ⇡ 2 ⇧St(M),

�w � (Pr⇡(Reach[w ]))2

x⇡w ◆
⇡
w

The reachability

probability to state

w under stationary

policy ⇡

The expected leaked

information from

state wfor every state w 2 W .
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Lower bound on the total estimation error

Corallary

For an MDP M and a stationary policy ⇡ 2 ⇧St(M),

the total MSE
P

w2W �w satisfies

X

w2W
�w �

min
w2W

(Pr⇡(Reach[w ]))2 |W |2

E[◆⇡W ,⇠]
.

The size of set W

The expected

total information
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Examples: Estimation error

s0 s1 s2
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s0, s1: observed

The reachability probability to s0
and s1 is 1 under any policy.

Lower bound on the total
mean-squared error.

Reciprocal of the
expected total information

 Total MSE of any
unbiased estimator
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Examples: Characteristics of the minimum-information
admissible policies

Heat map of
the expected
residence
times:

Walls

Minimum-information admissible policy yields:

low number of observations
less informative observations
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Examples: Characteristics of the minimum-information
admissible policies

Heat map of
the expected
residence
times:

Walls
Unobserved
States

Minimum-information admissible policy prefers unobserved regions.
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Examples: Characteristics of the minimum-information
admissible policies with macro-level transition information

Heat map of
the expected
residence
times:

Walls

Penalizing the transition information for the gates results in randomization
between the gates.
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Examples: Comparison of estimation error to
maximum-entropy policies

Maximum-entropy policy maximizes the entropy of path distribution given
an upper limit � on the expected residence times.
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Summary

Leaked information can be measured with
Fisher information

Computing a minimum-information admissible
policy requires to solve a convex optimization
problem.

Estimation error / 1/ Expected total
information

Walls
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