Assuring Autonomy in Contested Environments
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* Physical world abides by the laws of physics!

* Physical interfaces introduce new attack vectors!

 How can we exploit limited knowledge of laws of physics (system model) for
control and attack detection/identification

» Attack-Resilient design with uncertainty, resource/platform constraints, as well as
varying (especially high) levels of autonomy

—How much can the attacker exploit modeling limitation?

— How can we effectively exploit physics to improve guarantees in the presence of
attacks?
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Control Stack

Control view

Modeling view

Long-horizon
views

Tactical Planner

Short-horizon
views
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Low-level Control

Continuous/discrete
control with
constraints

T T
fr(iﬂ(t))=£ Q(I(t)=h(t))dt+/o l=(2)|>t,

min fr(zr(t)) + fu(za(t))
s.t. zp(t) = zp(t), ur(t) = up(t),
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Adding Resiliency

[ICRA19, ICRA20a, ICRA20b*,
CAV’19a, THMS19]

[CDC19a,CDC19b, TAC19*,
TII119]

[TAC19a ,TAC19b, TCPS20*,
ACC20*, AUT20a*%,

AUT19* ,AUT18, TECS17,
RTSS17,TCNS17, CSM17,
CDC17,CDC(C18,...]

Our Goal: Add resiliency to controls across different/all levels
of control stack
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» Attack-resilient control of Cyber-Physical Systems
— Idea: Design attack-resilient state estimators

e Attack model

— Goal: force the system into an unsafe state by creating
a discrepancy between states and the estimates

— Attacker has the ability to inject any signal using the
compromised sensors

— Attacker has full system knowledge and unlimited
computational power

* Attacks on sensors in X = {s,;l, ...,s-@} csS

— modeled with attack vector e
—ey; # 0 <& sensor s; is under attack at time k

Uy Xp+1 = f(Xpo Ug) + Wy Yk

Ve = 9(Xi) + e, + v

State-based
— Feedback

Controller

R Resilient
A Zmm— State €«
Estir?ator
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Attack-resilient State Estimation

» Attack-resilient control of Cyber-Physical Systems Ug | Xp+1 = AXg + Buy, +I Yk
. - . = Cx;, +e
—ldea: Design attack-resilient state estimators Yie = Cic + e 4] |
e Attack model State-based | g, Resilient
. . — Feedback |«———— State [€
— Goal: force the system into an unsafe state by creating Controller Estimator
a discrepancy between states and the estimates |

— Attacker has the ability to inject any signal using the
compromised sensors

— Attacker has full system knowledge and unlimited

computational power *= {S?’gs_}
* Attacks on sensors in K = {S,-;l, ---,S'@} = e, =
=

— modeled with attack vector e )
—ey; # 0 & sensor s; is under attack at time k



Duke

PRATT SCHOOL of
ENGINEERING

Attack-Resilient State Estimation for Noisy Dynamical Systems

¥y €] w1 O
 Consider an initial state Xg and attack vectors from € Y= [ ],e— [5]=W— [ : ] 0= k ]

Yp

e.X e,X
s.t. y—0x)—-e=0 s.t. §-0x)—&=W
w € ()
* Goal: guarantees for P[],w
and P, based estimators ‘
— Bounds on the state p . ” - H
estimation errors 1w n;llxn €l

— Sound attacked sensor
. L s.t.
identification

[ICCPS’14 — Best paper award, CDC15, I[EEE CSM’17, IEEE TCNS’17]
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« Consider an initial state X and attack vectors from €

B : min ||&||;, ;, » Py :
€,X €,x
s.t. y-0Ox)—e=w
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Graph capturing possible sensor attack
assignments

X. Luo, M. Pajic, and M. Zavlanos, “A Scalable and Optimal Graph-Search Method for Secure State Estimation”, Automatica, submitted.
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Alarm

Plant
Xp+1 = f(Xp, ug) + wy
Actuators Vi = 9(x) + €5 + Vi Sensors
Controller Estimator
A — a
@ =X —

4@— Intrusion Detector

a
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Can Attacker Reach Any State?

X,+1 = AXy + Buy, + wy supp(ag) = K
Vi = Cxp + a, § vy | ag; =0,vi € K¢

Theorem 1 [1,2,3,4*]:
A system presented above is perfectly attackable if and only if it is unstable, and at least

one eigenvector v corresponding to an unstable mode satisfies supp(Cv) € K andvis a
reachable state of the dynamic system.

Physical detectors cannot always protect us from an intelligent attacker...

Can data authentication help?

[1] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in First Workshop on Secure Control Systems, 2010

[2] C. Kwon, W. Liu, and |. Hwang, “Analysis and design of stealthy cyber attacks on unmanned aerial systems”, Journal of Aerospace Information
Systems, 1(8), 2014

[3] I. Jovanov and M. Pajic, “Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems”, IEEE Trans. on Automatic Control, 2019
[4] Amir Khazraei, Miroslav Pajic, “Perfect Attackability of Linear Dynamical Systems with Bounded Noise,” ACC, submitted.
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X, 4+1 = AX, + Buy, + wy, supp(a,) = K
Vi = CXg +ag + vy a,; =0,vi e K€

Theorem 1 [1,2,3,4*]:
A system presented above is perfectly attackable if and only if it is unstable, and at least

one eigenvector v corresponding to an unstable mode satisfies supp(Cv) € K andvis a
reachable state of the dynamic system.

Theorem: A system X with a global data integrity police u(L) is not perfectly attackable.



State Estimation Error Duke

In the Presence of Stealthy Attacks ENGINEERING
. . . 1,2,3
Reachable region of the state estimation error under attack 11.2.3]
R[] = Je € rn|ee” < E[e*[KI]JE[e[K]]" +yCov(ef) a, i = [a[1]" ..a[k]"]"
e?[k] = e?(a; x),a; i € Ay Ay is the set of all stealthy attacks
ey (a,_j) is the estimation error evolution due to attack a;
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Integrity Enforcement Policy

Integrity enforcement policy ensures attacker’s influence is zeroed at enforcement points

Data integrity enforcement policy (i, ) where yu = {t; }r=o, With t,_; < t;,Vk >0
and [ = supy~q ty — ty—q ensuresthata; , =0,Vk =0

This means that at points of authentication ¥ ***[k] = y?[k]

0.01r
o 0
1 0.01 !
4 = 4
0.01r
B 0
0.01r
5 0 5 4 -2 0 2 4
e, x107 ¢,
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Security-Aware Design Framework

[ Physical Model ] [ Attack Model ]

%, (£, 8:) u)

Attack impact evaluation R'[k]

[ QoC Degradation — Security overhead Platform Model
Ji(D

Task model

Resource allocation / Scheduling

[ QoC guarantees ]

under attack
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Control view

Tactical planner

e

Intrusion Detector

L (n modes)

Resilient Controller

(m modes)

Low-level Contrcﬁ

Control
ReConfig.

(

Our Goal: Provide
quantitative tradeoff
procedure to map security-
aware modules onto
available architecture

Constrained computation
and communication
resources limit the full use
of developed cyber-physical
techniques

[CMS17, TECS/EMSOFT17, RTSS17, TCPS*19]

-----------------------

~~ S
. ~. 4 ¢ S
Runtime/platform support \)\/\ ’d;a\“@%‘ — “N\Tsens, — X THe™s e}f@ég
= o Ve | Zmpr = ant| S}l [IS] A5
R s c:, — — T — 7 b:@
untime Safety - \ Y5 &
Enforcement ecovery Ao

[Checkpointing/Secure Logging]
G

//
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Security-Aware Control for Autonomous Systems

Control Stack Control view Modeling view

Ty x(t)
Long-horizon A I
views

[ Tactical Planner ] Short-horizon
views

Continuous/discrete
control with
constraints

Jele(t)) plx(t), k) )di 4+ ||J'[I]||?r.l'f.
i |

min fr(zr(t)) + fa(zn(t))
s.t. zp(t) = zp(t), ur(t) = upl(t),

Our Goal: Add resiliency to controls across different/all levels of control stack



Duke

PRATT SCHOOL of
ENGINEERING

Security From A Supervisory Control PerspectivE

On the higher level, CPS is abstracted by discrete event systems, namely, finite state models
driven by discrete events.

Empty symbol Supervisor
AN Idea: Model Attacks

\6 L S|R as Finite State
~_Fo- *%@EQ , Transducers (FSTs)
_ FIR F|L
. . . \
Violation if
an attacker
removes L Attack on
Plant -
Communications
Input: R|S R|S

LRLR.. | | ()JLIS{ILIST) SFSSS...

L.R|F L,R|F L,R|F

Violation if Fis
replaced by S

Attack on

Attack on
Actuators Desired Model D € P Sensors

is controllable without attacks




Using FSTs to Model Attacks DUke
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i|i foriel ije forie I\I' ¢liforiel gliforiel
i? § i? i{:forieI’g
ile for i € T\I’ ifi for i €1 ili foriel i for i € I\I'
. , N . Modeling constraints on attacker
Projection Attack  Deletion (DoS) Attack Data Injection  Injection-Removal
Attack Attack
Replay Attack ‘ Ai ‘
[ " I — =P s e s — — —b‘4
|
—I\-Al—h—hAn—F I——+An———|
(a) Serial Composition (b) Parallel Composition

1. Attacks usually have patterns.

2. All possible attacks captured with nondeterminism

3. FST models can be built from partial information on the attackers to
overapproximate.

4. Attack models even unknown, may be inferred from executions.
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Attack-Resiliency <=> Controllability Under Attacks

Not any desired model D is Controllability Theorem: For desired Model D € P
controllable! 1. The minimal controllable model containing D is
# Supervisor S D=cA;loA; oD
] achieved by the supervisor when observable
A‘[tack‘er Ao Attacker Aj S=AtoDo A,

2. The maximal controllable model contained in D is

D=D\Aj oA o (A o A;) oD)\D),
| =2

- Model subtraction achieved by the supervisor when observable
@@ Y  C=A\BifCCA o »
D and B, C share no S —cﬂo 020041 .

common I/O ) ) . . ~
sequences. The desired model is controllable if and only if D =D = D.

Plant P

Y. Wang, A. Bozkurt, and M. Pajic, “Attack-Resilient Supervisory Control of Discrete Event Systems”, IEEE Transactions on Automatic Control, submitted.

Z. Jakovljevic, V. Lesi, and M. Pajic, “Attacks on Distributed Sequential Control in Manufacturing Automation”, IEEE Transactions on Industrial Informatics, submitted.
M. Elfar, Y. Wang, and M. Pajic, “Security-Aware Synthesis using Delayed Action Games”, 315t CAV, 2019, submitted.

Y. Wang and M. Pajic, “Supervisory Control of Discrete Event Systems in the Presence of Sensor and Actuator Attacks”, IEEE CDC, 2019.

Y. Wang and M. Pajic, “ Attack-Resilient Supervisory Control with Intermittent Authentication”, IEEE CDC, 2019.

V. Lesi, Z. Jakovljevic and M. Pajic, “Reliable Industrial loT-Based Distributed Automation”, 4th ACM/IEEE 10TDI, 2019.
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Attack-Resiliency <=> Controllability Under Attacks

Not any desired model D is Controllability Theorem: For desired Model D € P
controllable! 1. The minimal controllable model containing D is
» Supervisor S D=cA;loA; oD
] achieved by the supervisor when observable
Attaclfer Ao Attacker Aj S = c/q(_)l oD o cﬂl_l.
2. The maximal controllable model contained in D is
Plant P o
| D=D\AT oA (A 0A) eD)\D),
J—

achieved by the supervisor when observable

- Model subtraction
D and B, C share no S = UQO 020‘[11 .

common I/O
sequences.

The desired model is controllable if and only if D = D = D.

Toolbox: ARSC for Synthesis of Attack-Resilient Supervisory Control
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* Activated by supervisor when
necessary

* Not consecutively

* Transmit anchoring word< [, and
recovering word < [,

SN

( a)l datal data2 l datal data2 I datal data2 .
|
{b}l datal data2 F Timing constraints violated )
(c )I datal [{/fe data2 datal [ {s data2 datal [;/ls data2
[ O ot | e 7 .
0 2 4 6

(is, ipi3is)

(1, 12)-Secure Channel

1

4 Supervisor & — Attacker .A; — Auth

I Attacker Aq F

Send attack-resilient: i1ici;i5 ...

Plant P ¢

Can only accept or repair
symbols

Received: i iziqiy ...

[CDC19b]
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Resiliency with Intermittent Authentication

(11, 1,)-Accessibility: For models N € M, M is (14, [,)-accessible from N if
1.The graph subtraction M /N is a tree, with longest path < [,.
2.For any such path, there is a path < [; with same start and end in the graph of N

i3
_ Maximal controllable
Desired sub-model

Controllability Theorem with Intermittent Authentication : The the desired model
D is controllable if and only if it is ({4, [;)-accessible from D. [CDC19b]




Real-Time Enforcement of Regular Specifications Duke
Assuring safe control execution in the age of Al PRATT SCHOOL of

Challenge 1: Given the set of possible corrupted
controls D, how to revise any corrupted control I, € D
with minimal cost to some safe control I; € K

Tactical planner

/- Low-level Control

[ Intrusion Detector |

. (nmodes}]
Resilient Controller | Control
[ (mmodes) ReConfig.

Runtime
Safety
Enforcement

Challenge 2: Given the attack model A, how to repair

Legacy Controller
N ‘ = any corrupted control I, € D with minimal cost to
___________ 1 some control I3 € X that is indistinguishable from I;
| )
. | Controller C | |
Corrupted : I e cg_:_ Original Iy I
Controller | L1  Control 2
| Attacker A |
e P Corrupted Minimal
S o= | ,-IZ €7 - Control symbol
| Enforcer & | revision
Enforced | | Safe cost
: Is € X — Control R
Plant | | o se Indistinguishable
| Plant P | A) NAUR) # @
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Security-Aware Control for Autonomous Systems

Control Stack Control view Modeling view

Long-horizon
views

[ Tactical Planner } Short-horizon
views

. . i T
Contlnuous/dlscrete Lm:]}=ﬁ elx(t), h{t))dt + ] ll(2)||2dt,
Low-level Control control with min £,(z,(t)) + fa(zn(t))
] l constraints s.t. zo(t) = zp(t), up(t) = up(t),
e s g | g 5
[ Vehicle ] _____________ ‘ £ ® 4
o ";;.l' Washington

Duke
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DAG | Hidden-Information Semantics

UAV Model Advisory System Model
pl =uav| xg = xg + Ax(d)
@ fiy! dg ==d pl=as update|pl :== uav
Myav d € Auav | pl:= adv pl:=uav R
- Plxr,x) |
Adversary Model .
Y Mzs 1 —p(3p) |

Off-the-shelf model checkers do NOT support hidden variables
Strategies CANNOT be synthesized based on hidden information
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Delaying Actions
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Execution

Delayed-Action

- Information is hidden from one player (H-UAV) by delaying the
actions of the other player (ADV)

Q
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Definition (Delayed-Action Game).

A DAG Of an HIG QH — (S, (SI, SII, So), A, S0, B, 5),
with players I' = {1, 11, O}

over a set of va,m'ables V={vr,vp}

is a tuple Gp = (S, (S, Si1, o), A, 0, B, 0) where

— 8 C Ev(vy) x Ev(vg) x A% x Ng x I’
partitioned into 5'1, Si and g@ ;

— §p € 311 18 the initial state;

—0: Sx Ax S —10,1] is a transition function s.t.
d(511,a,80)=0(31,a, 511) = 8(30y, a, 81) =0, and
0(511, a, 811), (51, a, 51),0(51, a,30y) € {0,1},
8(§H, 0, §I) S {0, 1},
for all s1 € 5’1, Si1 € 5’11, S50 € S’O and a € A,
where Y g 0(30,a,8)=1.

Is based on an HIG

Truth and Belief

Always starts with PL2

Specific order for players

PL2 to PL1 through special action 6
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= DAG-HIG simulation relation

Definition 9 (Game Proper Simulation). A game Gp properly simulates
Gu, denoted by Gp ~~ Gy, iff Yo € Prop(Gy), 30 € Prop(Gp) such that o ~ §.

Theorem 1 (Probabilistic Simulation). For any sg ~ $9 and ¢ € Prop(Gn)
where first(o) = sq, it holds that

Pr [last(p) = s'] = Pr Kmove(g)) (80) = !sq Vs', 8 st s~ 3§

Theorem 2 (DAG-HIG Simulation). For any HIG Gy there exists a DAG
Gp = ©[Gu| such that Gp ~» Gy (as defined in Def. 9).

" DAG decomposition

Definition 10 (DAG Subgames). The subgames of a Gp are defined by the
set {gz G; = <§(i) (Sl(i),gl(f),g(i)) A, 38V S(i)> = No} where S = U, S . S’y =
Ll S(z)V’yGF ands()—§ﬁ)st S() EProp(g ), s%l);és§ Vi,j € Np.




DAG-Based Synthesis
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A 4

Model Refinement

(

.

Primary
Components
My, My, Mo

Composition

(

.

Auxiliary
Components
Mmrd' mer

DAG
Construction

(Alg. 1, MC)

(
Composition

Analysis

Strategy
Synthesis

(Alg. 2, MC, ¢y)

MC: Model Checker
¢, : Synthesis query
¢, : Analysis query
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Case Study

landscape g27 937

hazard

Gs3 R ,
x " ® Subgame initial location ¢
UAV | === pPathplan T
seascape —] g 51 _,_> ‘Geoloclation tésk
(a) Environment setup. (b) Supergame Gp. (c) Protocols.

= Model Checker: PRISM-games

= Kwiatkowska, M., Parker, D. and Wiltsche, C., 2018. PRISM-games: verification and strategy synthesis for stochastic multi-player games with
multiple objectives. International Journal on Software Tools for Technology Transfer, 20(2), pp.195-210.
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= Analysis

-
o
-
7
b
o
]
=
wn
o
o
o)
S 0.2 o hady =2 -
R - 8- hadvzl
0.0 T T | | |
0 1 2 3 4 5

(a) Geolocation task at stage h

—
6
e

Distance to target

Reachability bounds ¢,

1.0
0.8 |~
0.6 -
0.4 | = Qﬁana,min

~x - A¢ana,min
0.2 |- \\x - == Aﬁbana,max
0.0 R ST D U k= S

0 1 2 3 4 5 6 7 8 9 10
(b) Max. no. of geolocation tasks n



Security-Aware Human-on-the-Loop Protocols Duke

How can we use human context awareness (in real-time) for security? PRATT SCHOOL of

RESCHU-SA

Operator

e Set goals
e Supervise mission
e |magery tasks

Autonomy/automation

e Target assighment

e Trajectory planning

o Attack detection Navtaston ..

«  True attacks Recognition |

. False alarms - "
Adversary — R | Human Model

: Parameterization

Mission i -
e Effects low-level control Workload Security

. so. 0: :JVE Guarantees

. 0. Of tasks

Security-aware protocols

Scenarios Experiments
. Design®f@xperimentall . CaptureHOLEbehaviorsk
° EXpIOIt hU man context- variables with®raryingevelsfE
awareness for secu nty . GenerateRESCHU-SAR workloadEnd#atigue

configurationtiles



Security-aware Human-on-the-Loop Planning
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Payload

Message

|05:07:40 Game Started
05:07:47 Vehicle [1] has been assigned to a target

05:07:47 Vehicle [2] has been assigned to a target.

05:N7-A7 \lahicla 1 hac haan i dtn 2 tarnat

[ICRA'19,

«[ il

>Msg:’

SEND

“ALL | 3UAV) | 2(0AV) | 3(UAV) | 4(UAV) | 5(UAV) |

IEEE THMS'19]

 \Damage: 0
(1 HOME
Current Task : ISR
{2 \Damage: 0 ;
[ HOME GE
Current Task : ISR
2\Damage: 0
(=2 HOME El
Current Task : ISR
. \Damage : 0
4 HOME
Current Task : ISR
I 5\.Dan'ulg«:l)
HOME E
Current Task : ISR
Time Line
T+300 T+600 T+900 T+1200

| |
T
| |

|
I
I
|
l

[ REMAINS  07:51

|




Security-aware Human-on-the-Loop Planning [ICRA’19] Duke
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B Subgame initial location
== Path plan
=} Geolocation task

: @ Subgame initial location
‘ EAZE- s T ‘ == Path plan
- ; ‘ - . A N -» Geolocation

-

Ve
v

-~

2 S e

2

Reachability set
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Attack-Resilient Mission Design

" Develop planning methods that will improve attack-detection guarantees
by allowing the deployed intrusion detection system to interact with the
controller and the rest of the system

= How to model such interactions? — MDPs, PTAs, SHAs

= Optimization based on solving stochastic games
" How to incorporate learning?
" How to incorporate formal guarantees?
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Problem Statement

Given an MDP M = (S, A4, P, sy, AP, L) where P is fully unknown and an LTL specification ¢, design a model-free RL
algorithm that finds a finite-memory objective policy ©¥ that satisfies

Prpe(s E @) = Phpg(s E @),
where Pry,,,(s E @) = max,Pr,(s E ¢) forall s € S. [ LTL ( ) ]

Limit-Deterministic Biichi Automata (LDBA) - consist of two deterministic
components the initial and accepting. The only nonde-terministic transitions are
P " pting y not LDBA ( ,) MDP (M)
the e-moves from the initial component to the accepting components. ¢
< Ay

Product MDP ( %)

v

C D
(a) A derived LDBA A for the LTL H
formula ¢ = ¢Ca VvV ¢UIb Learnlng
_ Y,
@_’ﬂ/.— o 1! - N
Controller
(b) An example MDP AM; the circles L y

denote MDP states, rectangles denote ac-
tions, and numbers transition probabilities (c) The obtained product MDP
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Model-free Control Synthesis from LTLs
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Problem Statement

Given an MDP M = (S, A, P, sy, AP, L) where P is fully unknown and an LTL specification ¢, design a model-free RL
algorithm that finds a finite-memory objective policy n% that satisfies

Proe(s B @) = Phpg(s & @),

where Pt .. (s E @) = max,Pr,;(s £ @) forall s € S.
S ()
Learning for Buchi conditions
For a given MDP M with B € S, the value function v} for the policy = and the .
discount factor y satisfies [ LDBA ( (p) ] [ MDP (M)
lir{l_ VI (s) = Prpe(s & @) {} )
y—)
for all states for all s € S if the return of a path is defined as {} N
[e%) i—1 X
Ge@) =Y ReColt+iD| | Tatolt +D Product MDP (= 7)
i=0 j=0 g
where 1'[];10 =1, Rg:S - [0,1) and I'5: S — (0,1) are the reward and the discount g {} .
functions defined as Learning
1=y SEB s SERB L y
RB(S) o {O, s $ B; FB(S) — {y’ S e B . {}
( )
Here, we set yg = yg(¥) as a function of y such that C
ontroller
1 —
lim ——— =0, g )

y=1-1—yp(y) -
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Robot tries to reach a safe absorbing state (states a or b in

circle), while avoiding unsafe states (states c).

p1 = (O

Nursery Scenario

aV O

b) A

—C

The robot’s objective is to repeatedly check a baby (at state b)
and go back to its charger (at state c), while avoiding the

danger zone (at state d).

Near the baby b, the only allowed action is left and when

taken the following situations can happen

*  the robot hits the wall with probability 0.1, waking up the baby

* the robot moves left with probability 0.8 or moves down with

probability 0.1.

* If the baby has been woken up, which means the robot could not
leave in a single time step (represented by LTL as b A Ob), the

robot should notify the adult (at state a);

* otherwise, the robot should directly go back to the charger (at

state c).
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Gather sensing info, synthasizz Sizhally
optimal Rabin seque’ice w*|a = g19203... )

Unique and optimal
solution! Only depends

on LTL.

Take
instruction or not?

Generate

Run regular exploration policy Instruction

Gather (s,a,s’,r) and store them into buffer.
Run RL to synthesize policy

Grrent State: [s3, g2] \

Locate qz in w*|,:

w*le = q1920s...

Locate transition t1,12... from g2
to q3 in the DRA:

Set local LTL as ¢'=t1 v 2

Convert ¢’ to DRA" and take
roduct w/ FTS to give

p
Wtruction

Reward
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-12000 —— DQN w/o PMC guidance

-14000 DIQL '
—— Tabular Q-learning
-16000 —— Model-based Learning
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# of Traning Episode

MDP with 1600 states

Deep Imitative Reinforcement
Learning for Temporal Logic Robot
Motion Planning with Noisy Semantic
Observations

Qitong Gao, Miroslav Pajic and Michael M. Zavlanos
Duke University
ICRA 20’
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Attack-Resilient Mission Design

" Develop planning methods that will improve attack-detection guarantees
by allowing the deployed intrusion detection system to interact with the
controller and the rest of the system

= How to model such interactions? — MDPs, PTAs, SHAs

= Optimization based on solving stochastic games

" How to incorporate learning in 2-player hidden information stochastic
games?

" with formal guarantees...
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