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Hyperproperties for Motion Planning

%tade oa Motion Planning with Privacy/Opacity
% Jmr13mo. (71 and  are different paths)
Region B % A (71 and 7; give identical observation)

A (1 and m reach goal).

7
Start %
% Jm13ma. (sec(m1) # sec(ma)) A (obs(m) = obs(mz))
Region A Region C
Optimality of Synthesized Plans dmiVma. (80™ Ase™) A (Or(9™ = Org™));
. ((71' reaches goal)A Im Vma. (0™ Ase™) A (Or(9™ = Org™))

(Vr'.((7" reaches goal) = (m reaches goal)))

Robustness of Synthesized Plans

JrVr'. (7 is derived by disturbing 7") — - :
. =] i1, AN , AL M2
A (7 and 7’ reach goal). m1 Ve, clsg, (11, m2) A clsa (71, m2) = (9™ A ™)



Symbolic Synthesis from HyperLTL [ICRA’20*]
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System Sensitivity to Modeling Errors

Walking Robot Benchmark With Reinforcement Learning

Toyota Powertrain Benchmark A

Embedded Contrqller
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Combustion Process ti=0 ! — _
i Px  Dynamical response depends on system parameters

State Uni Description .

tpt bart Intakepi\tlanifold Pressure

A - A/F Ratio in Cylinder . .

dm - Dronsler Function Output. How does dynamical response change due to modeling errors or wear-and-tear?
e walE e s  For example, start time change under probabilistic uncertainty?

g : Air Fl R Cylind ¢

me r /S 1r ow ate to viimmder

I.il(:, :;g ?uei lltiasb i%s.pi.ratlecil illt(I) tl.li C\Vll.in(.lferll ee . . L. . .

gl v e Probabilistic hyperproperties: Sensitivity under probabilistic parameter change

6{ degrees Delay-Filtered Throttle Angle Pr (l'l'nl Tnz | < 6) > 1 g

7] - O/P of Throttle Polynomial — —

F. g/s C(/)mmand fuel A 1,1 -

w rad/sec Engine Speed

n round/sec  Engine Speed (5-)

: : |
Lin et.al, HSCC 14] We need new logic to reason over multiple random paths!




HyperPSTL: Hyper Probabilistic Signal Temporal Logic
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Add probabilistic
quantifircations

HyperSTL |

>| HyperPSTL

HyperPSTL: ¢ == a" | 9" [~@ | @ A@ | U, e | D X P
p=Plo|P'p|c

FQ™ A Fio,50Q"™)

* a € AP, and AP is the finite set of atomic propositions, ': Q

o t; <tywithty, t; € Qu, L &

* 1 isa path variable, and I is a set of path variables, T T ’

* [P is the probability operator, ¢ € [0,1] Probabilistic quantifications of multiple parallel paths

c ME{L >, 55,2,

[p)(7T1'7T2) (gZ(Qﬂ1 A ?[O,S]an)) > p

c fv(p)=10

Nested probabilistic path quantification
P (P72 (F(Q™ A Flo51Q™)) > p2) > Py




HyperPSTL: Hyper Probabilistic Signal Temporal Logic

Duke

PRATT SCHOOL of
ENGINEERING

Add probabilistic
arithmetic

>| (full) HyperPSTL |

HyperPSTL :

HyperPSTL: ¢ == a" | @" [2@ | @ A@ | U, e) | D X P

p:=Plo|P'p|f(p, .., D)

a € AP, and AP is the finite set of atomic propositions,

tl < tz with tlr tz (S @oo;

1 is a path variable, and I is a set of path | pm1¢™ and pr2¢l2 :

[P is the probability operator,
M E {<,>, =<, 2,

Kullback-Leibler divergence of two satisfaction probabilities

Ty 101

P™1¢p 1 — Pt
Ty 0701 1 DT, 1
P*1¢, log(Pnz(p?) + (1 P"1¢, )log(1 — P”Z(pgz <c

f:R™ - Ris a n-ary elementary function, constants are

viewed as 0-ary functions,

fv(p) =0



Semantics: HyperPSTL on Probabilistic Uncertain System
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Probabilistic uncertain system (PUS): § = (X, I, D, u, AP, L) where

X is the state space, XMt = (xIMt MY € X is an initial state

Parameter D (t) = (d(t),...,d,,(t)) fort € R, is drawn from
probability distribution u

Input I(t) = (i1(¢), ..., i,;,(t)) is an m-dimensional function of time ¢t

Given I(t) and D(t), the system generates a path X: R., = X with

X(@) = (x1(1), .., x1(2))
AP is a set of atomic propositions, L: X’ = 24P is a labeling function

a path of the system induces a signal a(t) = L(X(t)): Ryq — 24P

Input I(t)
e [
D(t) ~

System §

Signal L(X(t))

The PUS modeling allows capturing

e Hybrid I/O automata with
probabilistic parameters (e.g.,
powertrain)

e continuous-time Markov chains
(CTMCs) as in queueing networks
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Theorem: HyperPSTL strictly subsumes PSTL (its non-hyper fraction) on CTMCs.

Prof idea: find a CTMC and a property, such that this property only be expressed in HyperPSTL

e CTMC has only 3 paths

1 2
 Satisfaction probability of any STL is 0,5,5, 1, so

P(p) = % is always false for any (¢)

e HyperPSTL P(”l'”Z)(T(anl A a”z)) = % is true
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HyperPSTL in Action: Sensitivity to Modeling Errors

A
Toyota Powertrain Benchmark

T .
Startup time «— 771 2 Time

Dynamical response depends on system parameters

Design specification: Sensitivity of startup time

Pr, . ([t —1t™|<6§)>1-¢

(~Q™ A=Q™)

]:[D(ﬂ'l,n'z) > 1 — &

U((Q™ A Fio,5Q™)V(Q™ AFo,5Q™))
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HyperPSTL in Action: Workload Fairness
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Design specification: Workload Fairness

e, (B 0P 6 S0 <) 1
I

This should hold with probability p For any fixed T?l, the probability difference between t’itl = t;.tz >t

more than 1 — ¢ for my

and t?l = r}rz < —t should be less than §

P (|P™2 ((—Q A ~QT)UQ A Oppoy Q7)) = PT2((2Q] A QT UQT? A Oy QTN <) = 1 &
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HyperPSTL in Action: Probabilistic Detectability

Captured independently of the type of used sound detector as probabilistic overshoot
observability on system outputs, when input overshoot captures that an anomaly has
occurred

* Let x be the input and y be the output. After a “step” event, the output signal should be
different if the input (1) stays bounded or (2) overshoots.

| P (O(step™ = O,(x™ < ¢)) A O(step™ A O (x™ > ) = (O;dY5y™)>c))>1—¢ |




SMC of HyperPSTL: Overview DUke
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Hyper features beyond existing methods for Statistical Model Checking (SMC)
* Probabilistic quantifications of multiple parallel paths (e.g., sensitivity) P("172) o (T172) < p
* Nested probabilistic path quantification (e.g., fairness) P™1 (IP”Z pTM1m2) < pz) < pq

- Joint probabilities (e,g., KL-divergence) (P"1¢,, P*2¢p,) € D

1,471

P™1¢ 1 — P
P7T1g0f1]0g (PNZ(p}tZ) + (1 — [P)Tf1(pf1)10g<1 — [PT[Z(p}TZ <cC
2 2

(P™1g;", P™2¢7%) € D with D = {(xl,xz) | x,log (%) + (1 —x,) log (1"‘1) < c}
2

1—X2

HyperSMC tool for SMC of HyperPSTL with desired confidence/significance level: https://gitlab.oit.duke.edu/cpsl/hypersmc



https://gitlab.oit.duke.edu/cpsl/hypersmc

Sensitivity Verification of Real-World CPS
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Walking Robot Benchmark
With Reinforcement Learning Controller
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Acc.
1.00
0.99
1.00
1.00
1.00
1.00
1.00
0.98
1.00
0.98

Sam.
7.4e+01

4.4e+01
4.2e+01
2.1e+01
1.3e+01
1.1e+01
6.5e+00
7.0e+01
1.6e+02
1.0e+02

Time (s)

3.0e-01
1.4e-01
1.2e-01
7.0e-02
4.0e-02
2.4e-02
1.1e-02
4.3e-01
5.5e-01
2.9e-01

Ans.
False
False
True
True
True
False
False
False
True
True

(+Q™ A=Q™)
U((Q™ A F(05Q™2)V(Q™ A F(5Q™))
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Toyota Powertrain Benchmark
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1.00 5.9e+01
1.00 9.0e+01
0.99 6.6e+01
1.00 9.7e+01
0.98 5.9e+01
1.00 9.0e+01
1.00 3.0e+02
0.99 4.6e+02

8.1e+00
1.3e+01
9.1e+00
1.4e+01
8.1e+00
1.2e+01
4.2e+01
1.8e+02

Ans.
True

True
False
False

True

True

True

True



[EMSOFT’19, TACAS’20%]
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On continuous-time probabilistic models (e.g., powertrain,
qgueueing network), how to capture properties between many
paths (sensitivity, fairness, attack detectability)?

How to reason about HyperPSTL on complex systems?

How does the SMC work in practice?

Current Work:

Application to conformance testing
Synthesis by reinforcement learning

=

Hyper Probabilistic
Signal Temporal
Logics: HyperPSTL

Statistical Model
Checking (SMC)
of HyperPSTL

Evaluation on
real-world CPS



Thank you

UNIVERSITY of A Voo
UFFLorRIDA §9) )



What is a probabilistic hyperproperty?
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Probabilistic hyperproperty reasons over multiple random paths.

Probabilistic

Property:

« Reachability
Pr(n = T(Goal))
> 0.99

Probabilistic Hyperproperty:
* Compare satisfaction
probabilities
Pr(m = F(G1))
> Pr(m E F(G2))

Probabilistic Hyperproperty:

Two path meet

Pr((my, ;) E F(m, = 15))
> 0.99

* One catchup another
Pr(m; EC) > 0.5

where

C:Pr(m, £ F(m, =m;))

> 0.99




