Hyperproperties & Autonomy

Miroslav Pajic

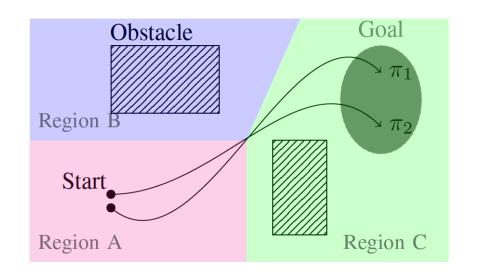
Cyber-Physical Systems Lab – CPSL@Duke

Department of Electrical and Computer Engineering

Department of Computer Science

Duke University

Hyperproperties for Motion Planning



Motion Planning with Privacy/Opacity

 $\exists \pi_1 \exists \pi_2. (\pi_1 \text{ and } \pi_1 \text{ are different paths})$ $\land (\pi_1 \text{ and } \pi_1 \text{ give identical observation})$ $\land (\pi_1 \text{ and } \pi_1 \text{ reach goal}).$

$$\exists \pi_1 \exists \pi_2. \big(\sec(\pi_1) \neq \sec(\pi_2) \big) \land \big(\operatorname{obs}(\pi_1) = \operatorname{obs}(\pi_2) \big)$$

Optimality of Synthesized Plans

 $\exists \pi. ((\pi \text{ reaches goal}) \land$

 $(\forall \pi'. ((\pi' \text{ reaches goal}) \Rightarrow (\pi \text{ reaches goal})))$

$$\exists \pi_1 \forall \pi_2. \ \left(\mathsf{s_0}^{\pi_1} \wedge \mathsf{s_0}^{\pi_2} \right) \wedge \left(\diamondsuit_T (g^{\pi_2} \Rightarrow \diamondsuit_T g^{\pi_1}) \right);$$

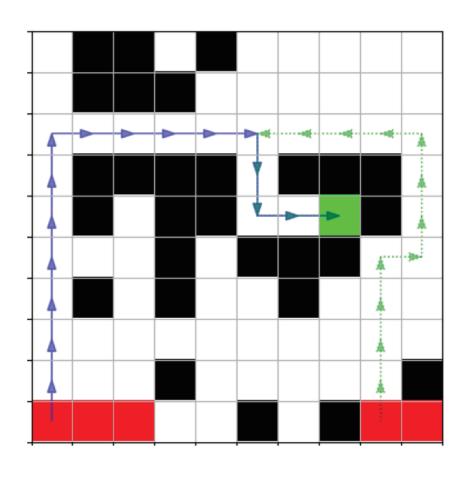
$$\exists \pi_1 \forall \pi_2. \ \left(\mathbf{s_0}^{\pi_1} \wedge \mathbf{s_0}^{\pi_2} \right) \wedge \left(\Diamond_T (g^{\pi_1} \Rightarrow \Diamond_T g^{\pi_2}) \right)$$

Robustness of Synthesized Plans

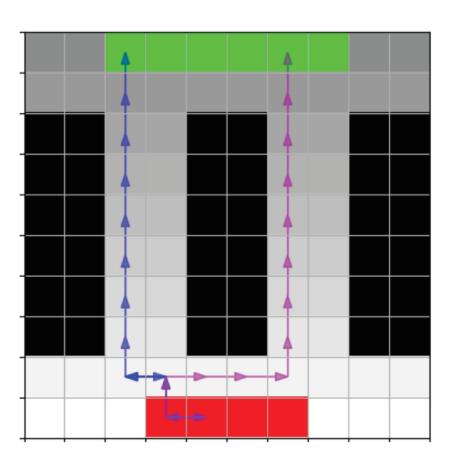
 $\exists \pi \forall \pi'. (\pi \text{ is derived by disturbing } \pi')$ $\land (\pi \text{ and } \pi' \text{ reach goal}).$

$$\exists \pi_1 \forall \pi_2. \ \operatorname{cls}_{\mathbf{s_0}}(\pi_1, \pi_2) \land \operatorname{cls}_{\mathbf{A}}(\pi_1, \pi_2) \Rightarrow (\varphi^{\pi_1} \land \varphi^{\pi_2})$$

Symbolic Synthesis from HyperLTL [ICRA'20*]

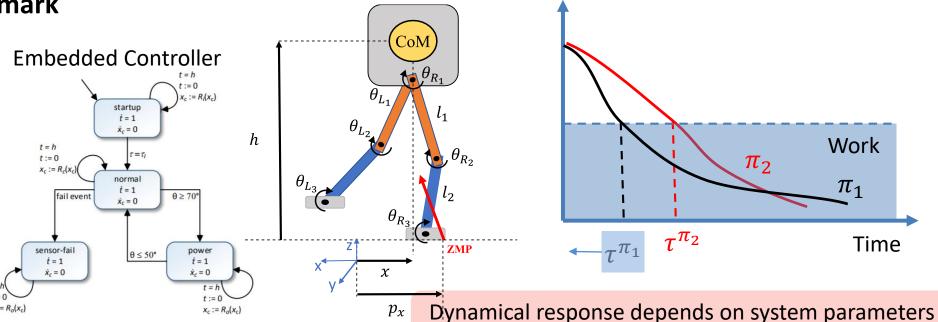


Shortest path



Opacity

System Sensitivity to Modeling Errors



Combustion Process

State	Unit	Description
p	bar	Intake Manifold Pressure
λ_c	-	A/F Ratio in Cylinder
λ_m	-	Transfer Function Output
p_e	bar	Estimated Manifold Pressure
i	-	Integrator State, PI
\dot{m}_{af}	g/s	Inlet Air Mass Flow Rate
\dot{m}_c	g/s	Air Flow Rate to Cylinder
\dot{m}_{ϕ}	g/s	Fuel Mass Aspirated into the Cylinder
\dot{m}_{ψ}	g/s	Fuel Mass Injected into Intake Manifold
θ_{in}	degrees	Throttle Angle Input
θ	degrees	Delay-Filtered Throttle Angle
$egin{array}{c} heta \ \hat{ heta} \end{array}$	-	O/P of Throttle Polynomial
F_c	g/s	Command fuel
ω	rad/sec	Engine Speed
n	round/sec	Engine Speed $(\frac{\omega}{2\pi})$

How does dynamical response change due to modeling errors or wear-and-tear?

For example, start time change under probabilistic uncertainty?

Probabilistic hyperproperties: Sensitivity under probabilistic parameter change

$$\mathbf{Pr}_{\pi_1,\pi_2}(|\tau^{\pi_1}-\tau^{\pi_2}|\leq \delta)>1-\varepsilon$$

We need new logic to reason over *multiple* random paths!

[Jin et.al, HSCC 14]

HyperPSTL: Hyper Probabilistic Signal Temporal Logic

STL

Add reference to different paths

HyperSTL

Add probabilistic quantifications

HyperPSTL

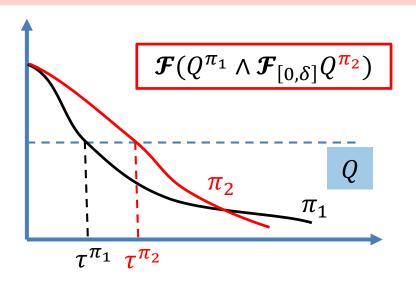
Add probabilistic arithmetic

(full) HyperPSTL

HyperPSTL:
$$\varphi := \mathbf{a}^{\pi} \mid \varphi^{\pi} \mid \neg \varphi \mid \varphi \wedge \varphi \mid \varphi \mathcal{U}_{[t_1,t_2]} \varphi \mid p \bowtie p$$

$$p := \mathbb{P}^{\Pi} \varphi \mid \mathbb{P}^{\Pi} p \mid c$$

- a ∈ AP, and AP is the finite set of atomic propositions,
- $t_1 < t_2$ with $t_1, t_2 \in \mathbb{Q}_{\infty}$,
- π is a path variable, and Π is a set of path variables,
- \mathbb{P} is the probability operator, $c \in [0,1]$
- ⋈ ∈ {<,>,=,≤,≥},
- $fv(\varphi) = \emptyset$



Probabilistic quantifications of multiple parallel paths

$$\mathbb{P}^{(\pi_1,\pi_2)}\left(\mathcal{F}(Q^{\pi_1}\wedge\mathcal{F}_{[0,\delta]}Q^{\pi_2})\right) > p$$

Nested probabilistic path quantification

$$\mathbb{P}^{\pi_1}\left(\mathbb{P}^{\pi_2}\left(\mathcal{F}\left(Q^{\pi_1}\wedge\mathcal{F}_{[0,\delta]}Q^{\pi_2}\right)\right)>p_2\right)>p_1$$

HyperPSTL: Hyper Probabilistic Signal Temporal Logic

STL

Add reference to different paths

HyperSTL

Add probabilistic quantifications

HyperPSTL

Add probabilistic arithmetic

(full) HyperPSTL

HyperPSTL:
$$\varphi \coloneqq \mathbf{a}^{\pi} \mid \varphi^{\pi} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U}_{[t_1,t_2]} \varphi \mid p \bowtie p$$

$$p \coloneqq \mathbb{P}^{\Pi} \varphi \mid \mathbb{P}^{\Pi} p \mid f(p,...,p)$$

- a ∈ AP, and AP is the finite set of atomic propositions,
- $t_1 < t_2$ with $t_1, t_2 \in \mathbb{Q}_{\infty}$,
- π is a path variable, and Π is a set of path
- P is the probability operator,
- ⋈ ∈ {<,>,=,≤,≥},

Kullback-Leibler divergence of two satisfaction probabilities $\mathbb{P}^{\pi_1} \varphi_1^{\pi_1}$ and $\mathbb{P}^{\pi_2} \varphi_2^{\pi_2}$:

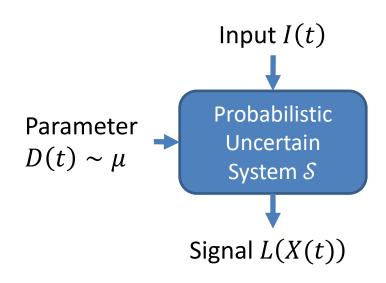
$$\mathbb{P}^{\pi_1} \varphi_1^{\pi_1} \log \left(\frac{\mathbb{P}^{\pi_1} \varphi_1^{\pi_1}}{\mathbb{P}^{\pi_2} \varphi_2^{\pi_2}} \right) + \left(1 - \mathbb{P}^{\pi_1} \varphi_1^{\pi_1} \right) \log \left(\frac{1 - \mathbb{P}^{\pi_1} \varphi_1^{\pi_1}}{1 - \mathbb{P}^{\pi_2} \varphi_2^{\pi_2}} \right) < c$$

- $f: \mathbb{R}^n \to \mathbb{R}$ is a n-ary elementary function, constants are viewed as 0-ary functions,
- $fv(\varphi) = \emptyset$

Semantics: HyperPSTL on Probabilistic Uncertain System

Probabilistic uncertain system (PUS): $S = (X, I, D, \mu, AP, L)$ where

- \mathcal{X} is the state space, $X^{\text{init}} = (x_1^{\text{init}}, ..., x_l^{\text{init}}) \in \mathcal{X}$ is an initial state
- Parameter $D(t)=(d_1(t),\ldots,d_n(t))$ for $t\in\mathbb{R}_{\geq 0}$ is drawn from probability distribution μ
- Input $I(t) = (i_1(t), ..., i_m(t))$ is an m-dimensional function of time t
- Given I(t) and D(t), the system generates a **path** $X: \mathbb{R}_{\geq 0} \to \mathcal{X}$ with $X(t) = (x_1(t), ..., x_l(t))$
- AP is a set of atomic propositions, L: $\mathcal{X} \to 2^{\mathsf{AP}}$ is a labeling function
- a path of the system induces a signal $\sigma(t) = L(X(t))$: $\mathbb{R}_{\geq 0} \to 2^{AP}$.



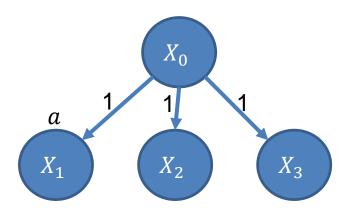
The PUS modeling allows capturing

- Hybrid I/O automata with probabilistic parameters (e.g., powertrain)
- continuous-time Markov chains (CTMCs) as in queueing networks

HyperPSTL: Expressiveness

Theorem: HyperPSTL *strictly subsumes* PSTL (its non-hyper fraction) on CTMCs.

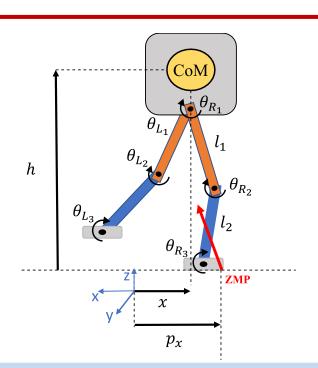
Prof idea: find a CTMC and a property, such that this property only be expressed in HyperPSTL

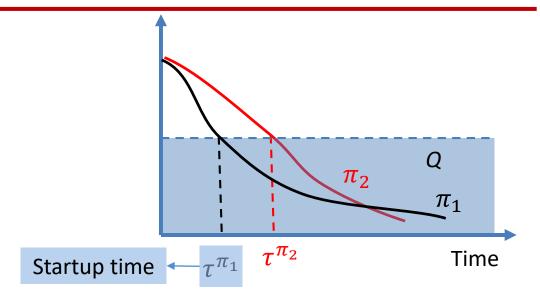


- CTMC has only 3 paths
- Satisfaction probability of any STL is $0, \frac{1}{3}, \frac{2}{3}, 1$, so $P(\varphi) = \frac{1}{9}$ is always false for any (φ)
- HyperPSTL $P^{(\pi_1,\pi_2)}(\mathcal{F}(a^{\pi_1} \wedge a^{\pi_2})) = \frac{1}{9}$ is true

HyperPSTL in Action: Sensitivity to Modeling Errors

Toyota Powertrain Benchmark





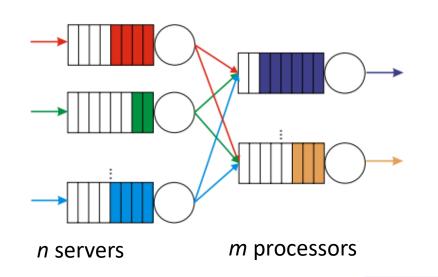
Dynamical response depends on system parameters

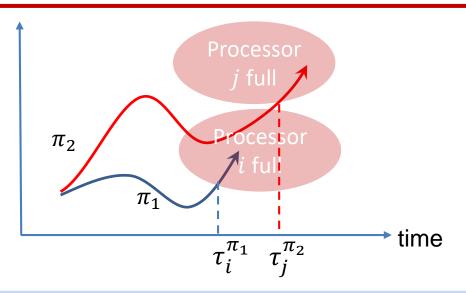
Design specification: Sensitivity of startup time

$$\mathbf{Pr}_{\pi_1,\pi_2}(|\tau^{\pi_1}-\tau^{\pi_2}|\leq \delta)>1-\varepsilon$$

$$\mathbb{P}^{(\pi_1,\pi_2)} \begin{pmatrix} (\neg Q^{\pi_1} \wedge \neg Q^{\pi_2}) \\ \boldsymbol{u} \left((Q^{\pi_1} \wedge \boldsymbol{\mathcal{F}}_{[0,\delta]} Q^{\pi_2}) \vee (Q^{\pi_2} \wedge \boldsymbol{\mathcal{F}}_{[0,\delta]} Q^{\pi_1}) \right) \end{pmatrix} > 1 - \varepsilon$$

HyperPSTL in Action: Workload Fairness





Design specification: Workload Fairness

$$\mathbf{Pr}_{\pi_{1}}\left(\left|\mathbf{Pr}_{\pi_{2}}\left(\tau_{i}^{\pi_{1}}-\tau_{j}^{\pi_{2}}>t\right)-\mathbf{Pr}_{\pi_{2}}\left(\tau_{i}^{\pi_{1}}-\tau_{j}^{\pi_{2}}>t\right)\right|<\delta\right)>1-\varepsilon$$

This should hold with probability more than $1-\varepsilon$ for π_1

For any fixed $\tau_i^{\pi_1}$, the probability difference between $\tau_i^{\pi_1} - \tau_j^{\pi_2} > \mathbf{t}$ and $\tau_i^{\pi_1} - \tau_j^{\pi_2} < -\mathbf{t}$ should be less than δ

$$\mathbb{P}^{\pi_1}(|\mathbb{P}^{\pi_2}((\neg Q_i^{\pi_1} \land \neg Q_j^{\pi_2})\mathcal{U}(Q_i^{\pi_1} \land \diamondsuit_{[\tau,\infty)}Q_j^{\pi_2})) - \mathbb{P}^{\pi_2}((\neg Q_i^{\pi_1} \land \neg Q_j^{\pi_2})\mathcal{U}(Q_j^{\pi_2} \land \diamondsuit_{[\tau,\infty)}Q_i^{\pi_1}))| \leq \delta) \geq 1 - \varepsilon.$$

HyperPSTL in Action: Probabilistic Detectability

Captured independently of the type of used **sound** detector as probabilistic **overshoot observability** on system outputs, when input overshoot captures that an anomaly has occurred

• Let x be the input and y be the output. After a "step" event, the output signal should be different if the input (1) stays bounded or (2) overshoots.

$$\mathbb{P}^{\{\pi,\pi'\}}((\Box(step^{\pi}\Rightarrow \Box_{I}(x^{\pi}< c)) \land \diamondsuit(step^{\pi'} \land \diamondsuit_{I}(x^{\pi'}> c))) \Rightarrow (\diamondsuit_{I} d(y^{\pi}, y^{\pi'}) > c')) > 1 - \varepsilon$$

SMC of HyperPSTL: Overview

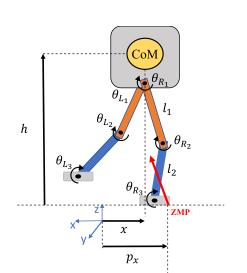
Hyper features beyond existing methods for Statistical Model Checking (SMC)

- Probabilistic quantifications of *multiple* parallel paths (e.g., sensitivity) $\mathbb{P}^{(\pi_1,\pi_2)} \varphi^{(\pi_1,\pi_2)} < p$
- Nested probabilistic path quantification (e.g., fairness) $\mathbb{P}^{\pi_1}(\mathbb{P}^{\pi_2}\varphi^{(\pi_1,\pi_2)} < p_2) < p_1$
- **Joint** probabilities (e,g., KL-divergence) $(\mathbb{P}^{\Pi_1}\varphi_1, \mathbb{P}^{\Pi_2}\varphi_2) \in D$

$$\mathbb{P}^{\pi_1} \varphi_1^{\pi_1} \log \left(\frac{\mathbb{P}^{\pi_1} \varphi_1^{\pi_1}}{\mathbb{P}^{\pi_2} \varphi_2^{\pi_2}} \right) + \left(1 - \mathbb{P}^{\pi_1} \varphi_1^{\pi_1} \right) \log \left(\frac{1 - \mathbb{P}^{\pi_1} \varphi_1^{\pi_1}}{1 - \mathbb{P}^{\pi_2} \varphi_2^{\pi_2}} \right) < c$$

$$\left(\mathbb{P}^{\pi_1} \varphi_1^{\pi_1}, \mathbb{P}^{\pi_2} \varphi_2^{\pi_2}\right) \in D \text{ with } D = \left\{ (x_1, x_2) \mid x_1 \log \left(\frac{x_1}{x_2}\right) + (1 - x_1) \log \left(\frac{1 - x_1}{1 - x_2}\right) < c \right\}$$

Sensitivity Verification of Real-World CPS



$$\mathbb{P}^{(\pi_1,\pi_2)} \begin{pmatrix} (\neg Q^{\pi_1} \wedge \neg Q^{\pi_2}) \\ u \left((Q^{\pi_1} \wedge \mathcal{F}_{[0,\delta]} Q^{\pi_2}) \vee (Q^{\pi_2} \wedge \mathcal{F}_{[0,\delta]} Q^{\pi_1}) \right) \end{pmatrix} > 1 - \varepsilon$$

Walking Robot Benchmark With Reinforcement Learning Controller

δ	ε	α	Acc.	Sam.	Time (s)	Ans.
2.4	0.02	0.01	1.00	7.4e+01	3.0e-01	False
2.4	0.02	0.05	0.99	4.4e+01	1.4e-01	False
2.4	0.12	0.01	1.00	4.2e+01	1.2e-01	True
2.4	0.12	0.05	1.00	2.1e+01	7.0e-02	True
2.4	0.2	0.01	1.00	1.3e+01	4.0e-02	True
3.0	0.02	0.01	1.00	1.1e+01	2.4e-02	False
3.0	0.02	0.05	1.00	6.5e+00	1.1e-02	False
3.0	0.12	0.05	0.98	7.0e+01	4.3e-01	False
3.0	0.2	0.01	1.00	1.6e+02	5.5e-01	True
3.0	0.2	0.05	0.98	1.0e+02	2.9e-01	True

Toyota Powertrain Benchmark

δ	ε	α	Acc.	Sam.	Time (s)	Ans.
0.1	5 0.95	0.05	1.00	5.9e+01	8.1e+00	True
0.1	5 0.95	0.01	1.00	9.0e+01	1.3e+01	True
0.1	5 0.99	0.05	0.99	6.6e+01	9.1e+00	False
0.1	5 0.99	0.01	1.00	9.7e+01	1.4e+01	False
0.2	0 0.95	0.05	0.98	5.9e+01	8.1e+00	True
0.2	0 0.95	0.01	1.00	9.0e+01	1.2e+01	True
0.2	0 0.99	0.05	1.00	3.0e+02	4.2e+01	True
0.2	0 0.99	0.01	0.99	4.6e+02	1.8e+02	True

[EMSOFT'19, TACAS'20*]

 On continuous-time probabilistic models (e.g., powertrain, queueing network), how to capture properties between many paths (sensitivity, fairness, attack detectability)?

Hyper Probabilistic Signal Temporal Logics: *HyperPSTL*

How to reason about HyperPSTL on complex systems?

Statistical Model Checking (*SMC*) of HyperPSTL

How does the SMC work in practice?

Evaluation on real-world CPS

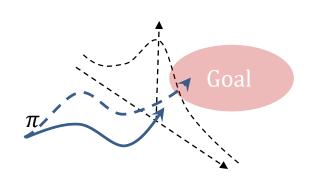
Current Work:

- Application to conformance testing
- Synthesis by reinforcement learning

Thank you

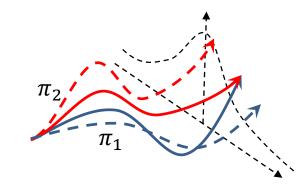
What is a probabilistic hyperproperty?

Probabilistic hyperproperty reasons over **multiple** random paths.



Probabilistic Property:

• Reachability $Pr(\pi \models \mathcal{F}(Goal))$ > 0.99

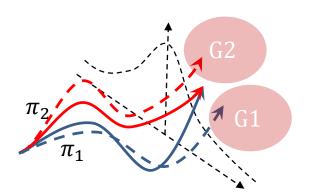


Probabilistic Hyperproperty:

Two path meet

$$\Pr((\pi_1, \pi_2) \models \mathcal{F}(\pi_1 = \pi_2))$$

> 0.99

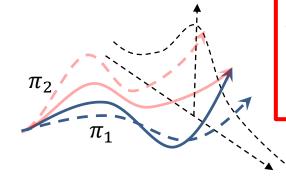


Probabilistic Hyperproperty:

 Compare satisfaction probabilities

$$Pr(\pi \models \mathcal{F}(G1))$$

> $Pr(\pi \models \mathcal{F}(G2))$



• One catchup another $\mathbf{Pr}(\pi_1 \models \mathbf{C}) > 0.5$

where

$$C: \Pr(\pi_2 \models \mathcal{F}(\pi_1 = \pi_2))$$

> 0.99