
Totally Asynchronous
Distributed Quadratic
Programming

Matthew Hale
Department of Mechanical and Aerospace Engineering
University of Florida

AFOSR Center of Excellence on Assured Autonomy in Contested Environments
October 15, 2019

QPs Arise Across Control and Optimization

I QPs take the general form

minimize
x

1
2x

TQx+ rTx

I Appear explicitly in
I Quadrotor trajectory generation
I Numerical optimal control
I Statistical learning

Overall Motivation
Design a multi-agent framework for solving QPs.

1

QPs Arise Across Control and Optimization

I QPs take the general form

minimize
x

1
2x

TQx+ rTx

I Appear explicitly in
I Quadrotor trajectory generation
I Numerical optimal control
I Statistical learning

Overall Motivation
Design a multi-agent framework for solving QPs.

1

QPs Arise Across Control and Optimization

I QPs take the general form

minimize
x

1
2x

TQx+ rTx

I Appear explicitly in
I Quadrotor trajectory generation
I Numerical optimal control
I Statistical learning

Overall Motivation
Design a multi-agent framework for solving QPs.

1

Solving QPs in Contested Environments

I Adversaries can disrupt agents’
communications

I We don’t want agents to wait and
synchronize between computations

I We don’t want to require bounded delays

Algorithmic Goal
We want to allow totally asynchronous
operations by agents.

Solving QPs in Contested Environments

I Adversaries can disrupt agents’
communications
I We don’t want agents to wait and

synchronize between computations
I We don’t want to require bounded delays

Algorithmic Goal
We want to allow totally asynchronous
operations by agents.

Solving QPs in Contested Environments

I Adversaries can disrupt agents’
communications
I We don’t want agents to wait and

synchronize between computations
I We don’t want to require bounded delays

Algorithmic Goal
We want to allow totally asynchronous
operations by agents.

Distributing Computations Across Agents

I Agent i stores a local copy of all decision variables, denoted xi

i jxi 6= xj

I Want agents to update only a small subset of system variables
I Promotes scalability
I Amenable to control problems in which agents compute

trajectories/control decisions

I Agent i updates only xi[i]
I Agent i waits to receive xi[j] from agent j

xi =

xi[1]
...
xi[i]
...
xi[n]

Distributing Computations Across Agents

I Agent i stores a local copy of all decision variables, denoted xi

i jxi 6= xj

I Want agents to update only a small subset of system variables
I Promotes scalability
I Amenable to control problems in which agents compute

trajectories/control decisions

I Agent i updates only xi[i]
I Agent i waits to receive xi[j] from agent j

xi =

xi[1]
...
xi[i]
...
xi[n]

Distributing Computations Across Agents

I Agent i stores a local copy of all decision variables, denoted xi

i jxi 6= xj

I Want agents to update only a small subset of system variables
I Promotes scalability
I Amenable to control problems in which agents compute

trajectories/control decisions

I Agent i updates only xi[i]
I Agent i waits to receive xi[j] from agent j

xi =

xi[1]
...
xi[i]
...
xi[n]

Gradients are Robust to Asynchrony

I Asynchrony requires a sufficiently robust update law
I It should also be simple to decentralize and scale up

I Further want agents to execute updates as fast as possible
I We will use gradient descent as the template update law:

x(k + 1) = x(k)− γ∇f
(
x(k)

)
= x(k)− γ

(
Qx(k) + r

)

Gradients are Robust to Asynchrony

I Asynchrony requires a sufficiently robust update law
I It should also be simple to decentralize and scale up

I Further want agents to execute updates as fast as possible

I We will use gradient descent as the template update law:

x(k + 1) = x(k)− γ∇f
(
x(k)

)
= x(k)− γ

(
Qx(k) + r

)

Gradients are Robust to Asynchrony

I Asynchrony requires a sufficiently robust update law
I It should also be simple to decentralize and scale up

I Further want agents to execute updates as fast as possible
I We will use gradient descent as the template update law:

x(k + 1) = x(k)− γ∇f
(
x(k)

)
= x(k)− γ

(
Qx(k) + r

)

Proposed Distributed QP Algorithm

I Split up Q and r via

Q[1]

Q[2]

...

Q[N]

Q[1]

Q[2]

...

Q[N]

Q =

r[1]

r[2]

...

r[N]

r =

r[1]

r[2]

...

r[N]

Algorithm 1
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− γ

(
Q[i]xi(k) + r[i]) agent i updates at time k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k

xi[j](k) otherwise

Proposed Distributed QP Algorithm

I Split up Q and r via

Q[1]

Q[2]

...

Q[N]

Q[1]

Q[2]

...

Q[N]

Q =

r[1]

r[2]

...

r[N]

r =

r[1]

r[2]

...

r[N]

Algorithm 1
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− γ

(
Q[i]xi(k) + r[i]) agent i updates at time k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k

xi[j](k) otherwise

Proposed Distributed QP Algorithm

I Split up Q and r via

Q[1]

Q[2]

...

Q[N]

Q[1]

Q[2]

...

Q[N]

Q =

r[1]

r[2]

...

r[N]

r =

r[1]

r[2]

...

r[N]

Algorithm 1
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− γ

(
Q[i]xi(k) + r[i]) agent i updates at time k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k

xi[j](k) otherwise

Proposed Distributed QP Algorithm

I Split up Q and r via

Q[1]

Q[2]

...

Q[N]

Q[1]

Q[2]

...

Q[N]

Q =

r[1]

r[2]

...

r[N]

r =

r[1]

r[2]

...

r[N]

Algorithm 1
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− γ

(
Q[i]xi(k) + r[i]) agent i updates at time k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k

xi[j](k) otherwise

Proposed Distributed QP Algorithm

I Split up Q and r via

Q[1]

Q[2]

...

Q[N]

Q[1]

Q[2]

...

Q[N]

Q =

r[1]

r[2]

...

r[N]

r =

r[1]

r[2]

...

r[N]

Algorithm 1
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− γ

(
Q[i]xi(k) + r[i]) agent i updates at time k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k
xi[j](k) otherwise

Convergence of Distributed QP Algorithm

Theorem 1: Convergence
Suppose that
I Q is diagonally dominant
I γ < 1

Qii
for all i.

Then ‖xi(k)− x̂‖2 → 0 for all i and, for q ∈ (0, 1),
max
i∈[N]

‖xi(k)− x̂‖︸ ︷︷ ︸
V (x(k))

≤ qops(k) max
i∈[N]

‖xi(0)− x̂‖︸ ︷︷ ︸
V (x(0))

I Convergence is (imperfectly)
geometric

Convergence of Distributed QP Algorithm

Theorem 1: Convergence
Suppose that
I Q is diagonally dominant
I γ < 1

Qii
for all i.

Then ‖xi(k)− x̂‖2 → 0 for all i and, for q ∈ (0, 1),
max
i∈[N]

‖xi(k)− x̂‖︸ ︷︷ ︸
V (x(k))

≤ qops(k) max
i∈[N]

‖xi(0)− x̂‖︸ ︷︷ ︸
V (x(0))

I Convergence is (imperfectly)
geometric

Convergence of Distributed QP Algorithm

Theorem 1: Convergence
Suppose that
I Q is diagonally dominant
I γ < 1

Qii
for all i.

Then ‖xi(k)− x̂‖2 → 0 for all i and, for q ∈ (0, 1),
max
i∈[N]

‖xi(k)− x̂‖︸ ︷︷ ︸
V (x(k))

≤ qops(k) max
i∈[N]

‖xi(0)− x̂‖︸ ︷︷ ︸
V (x(0))

I Convergence is (imperfectly)
geometric

Convergence Can Be Slow

I Lots of “reasonable” QPs are not well-conditioned
I Formally, if kQ = λ1(Q)

λn(Q) is large, then convergence is slow

I Convergence rate is dictated by q ∈ (0, 1) here, which is

q := sup
‖x‖∞=1

max
k∈[N]

∥∥∥(I [k] − γQ[k])x∥∥∥
2

I As kQ →∞, find q → 1 and convergence comes to a halt

Convergence Can Be Slow

I Lots of “reasonable” QPs are not well-conditioned
I Formally, if kQ = λ1(Q)

λn(Q) is large, then convergence is slow

I Convergence rate is dictated by q ∈ (0, 1) here, which is

q := sup
‖x‖∞=1

max
k∈[N]

∥∥∥(I [k] − γQ[k])x∥∥∥
2

I As kQ →∞, find q → 1 and convergence comes to a halt

Convergence Can Be Slow

I Lots of “reasonable” QPs are not well-conditioned
I Formally, if kQ = λ1(Q)

λn(Q) is large, then convergence is slow

I Convergence rate is dictated by q ∈ (0, 1) here, which is

q := sup
‖x‖∞=1

max
k∈[N]

∥∥∥(I [k] − γQ[k])x∥∥∥
2

I As kQ →∞, find q → 1 and convergence comes to a halt

Heterogeneous Parameter Selection

I We can regularize to make them better: Q+A replaces Q, now solve

minimize
x∈X

1
2x

T (Q+A)x+ rTx

I Conventionally, A = αI, but this requires agreeing on α
I We’d rather not have to agree on γ either

Heterogeneous Parameter Selection

I We can regularize to make them better: Q+A replaces Q, now solve

minimize
x∈X

1
2x

T (Q+A)x+ rTx

I Conventionally, A = αI, but this requires agreeing on α

I We’d rather not have to agree on γ either

Heterogeneous Parameter Selection

I We can regularize to make them better: Q+A replaces Q, now solve

minimize
x∈X

1
2x

T (Q+A)x+ rTx

I Conventionally, A = αI, but this requires agreeing on α
I We’d rather not have to agree on γ either

Independently Regularizing

I Regularizing Q changes the solution
I Small regularizations ⇒ small error

I Consider relative error e(A) = |f(x̂reg)−f(x̂)|
|f(x̂)|

Theorem: Regularization Error
For ε ∈ (0, 1), get e(A) ≤ ε if

αi ≤
√
ε

1−
√
ε

∣∣∣Q[i]
ii

∣∣∣− n∑
j=1
j 6=i

∣∣∣Q[i]
ij

∣∣∣

︸ ︷︷ ︸
How diagonally dominant row i is

I Only requires knowledge of Q[i]!

x̂
x̂reg

1

Independently Regularizing

I Regularizing Q changes the solution
I Small regularizations ⇒ small error

I Consider relative error e(A) = |f(x̂reg)−f(x̂)|
|f(x̂)|

Theorem: Regularization Error
For ε ∈ (0, 1), get e(A) ≤ ε if

αi ≤
√
ε

1−
√
ε

∣∣∣Q[i]
ii

∣∣∣− n∑
j=1
j 6=i

∣∣∣Q[i]
ij

∣∣∣

︸ ︷︷ ︸
How diagonally dominant row i is

I Only requires knowledge of Q[i]!

x̂
x̂reg

1

Independently Regularizing

I Regularizing Q changes the solution
I Small regularizations ⇒ small error

I Consider relative error e(A) = |f(x̂reg)−f(x̂)|
|f(x̂)|

Theorem: Regularization Error
For ε ∈ (0, 1), get e(A) ≤ ε if

αi ≤
√
ε

1−
√
ε

∣∣∣Q[i]
ii

∣∣∣− n∑
j=1
j 6=i

∣∣∣Q[i]
ij

∣∣∣

︸ ︷︷ ︸
How diagonally dominant row i is

I Only requires knowledge of Q[i]!

x̂
x̂reg

1

Independently Choosing Stepsizes

I Want stepsize rules that also depend only upon Q[i] and r[i]

Q[i]Q[i]

γi := γi , r[i]r[i]

I No reason for agent i to use one stepsize for every variable

I For `th variable, choose

γ` <
2∑N

j=1
∣∣Qkj∣∣+ α`

Independently Choosing Stepsizes

I Want stepsize rules that also depend only upon Q[i] and r[i]

Q[i]Q[i]

γi := γi , r[i]r[i]

I No reason for agent i to use one stepsize for every variable

I For `th variable, choose

γ` <
2∑N

j=1
∣∣Qkj∣∣+ α`

Independently Choosing Stepsizes

I Want stepsize rules that also depend only upon Q[i] and r[i]

Q[i]Q[i]

γi := γi , r[i]r[i]

I No reason for agent i to use one stepsize for every variable

I For `th variable, choose

γ` <
2∑N

j=1
∣∣Qkj∣∣+ α`

Algorithm 2
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− Γi

(
Q[i]xi(k) + r[i] +Aix

i
[i](k)

)
i updates at k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k
xi[j](k) otherwise

I Converges geometrically again:

max
i∈[N]

‖xi(k)−x̂‖ ≤ qops(k)
reg max

i∈[N]
‖xi(0)−x̂‖

< qops(k) max
i∈[N]

‖xi(0)−x̂‖

Algorithm 2
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− Γi

(
Q[i]xi(k) + r[i] +Aix

i
[i](k)

)
i updates at k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k
xi[j](k) otherwise

I Converges geometrically again:

max
i∈[N]

‖xi(k)−x̂‖ ≤ qops(k)
reg max

i∈[N]
‖xi(0)−x̂‖

< qops(k) max
i∈[N]

‖xi(0)−x̂‖

Algorithm 2
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− Γi

(
Q[i]xi(k) + r[i] +Aix

i
[i](k)

)
i updates at k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k
xi[j](k) otherwise

I Converges geometrically again:

max
i∈[N]

‖xi(k)−x̂‖ ≤ qops(k)
reg max

i∈[N]
‖xi(0)−x̂‖

< qops(k) max
i∈[N]

‖xi(0)−x̂‖

Algorithm 2
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− Γi

(
Q[i]xi(k) + r[i] +Aix

i
[i](k)

)
i updates at k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k
xi[j](k) otherwise

I Converges geometrically again:

max
i∈[N]

‖xi(k)−x̂‖ ≤ qops(k)
reg max

i∈[N]
‖xi(0)−x̂‖ < qops(k) max

i∈[N]
‖xi(0)−x̂‖

Numerical Convergence

I Solving

minimize
x∈X

1
2x

TQx+ rTx

I Have kQ = 100
I Want e(A) ≤ 0.05

I Then αi ≤ 0.29, use stepsize rule
I kQ = 77.8 now

Numerical Convergence

I Solving

minimize
x∈X

1
2x

TQx+ rTx

I Have kQ = 100
I Want e(A) ≤ 0.05
I Then αi ≤ 0.29, use stepsize rule
I kQ = 77.8 now

