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> QPs take the general form
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minimize ixTQx—i—rTx
xT
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> QPs take the general form

T |
minimize ExTQaz—i—rTx
xT

> Appear explicitly in
> Quadrotor trajectory generation
» Numerical optimal control
> Statistical learning
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> QPs take the general form
1
minimize ExTQaz +rTx
xr

> Appear explicitly in
> Quadrotor trajectory generation
» Numerical optimal control
> Statistical learning

Overall Motivation
Design a multi-agent framework for solving QPs.
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» Adversaries can disrupt agents’
communications
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{\\w') Solving Q

» Adversaries can disrupt agents’
communications
> We don't want agents to wait and
synchronize between computations
> We don’t want to require bounded delays
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\/J Solving Q

» Adversaries can disrupt agents'
communications

> We don’t want agents to wait and
synchronize between computations
> We don’t want to require bounded delays

Algorithmic Goal

We want to allow totally asynchronous
operations by agents.
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> Agent i stores a local copy of all decision variables, denoted

® «#2 @)
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> Agent i stores a local copy of all decision variables, denoted

® «#2 @)

» Want agents to update only a small subset of system variables
> Promotes scalability
> Amenable to control problems in which agents compute
trajectories/control decisions
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> Agent i stores a local copy of all decision variables, denoted

® «#2 @)

» Want agents to update only a small subset of system variables
> Promotes scalability
> Amenable to control problems in which agents compute
trajectories/control decisions

i
Ty
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» Agent ¢ updates only T | i xfi]
» Agent ¢ waits to receive :z:fj] from agent j :
i
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> Asynchrony requires a sufficiently robust update law

» It should also be simple to decentralize and scale up
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> Asynchrony requires a sufficiently robust update law

» It should also be simple to decentralize and scale up

» Further want agents to execute updates as fast as possible
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» Asynchrony requires a sufficiently robust update law

» It should also be simple to decentralize and scale up

» Further want agents to execute updates as fast as possible
» We will use gradient descent as the template update law:
z(k+1) = z(k) — vV f(z(k))
=a(k) —(Qx(k) +r)
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» Split up @ and r via

QM |

0= Q) - 22l

UFiisiica €@ Duke B ©TExas B




s

/ Propo
o7 p

» Split up @ and r via

K

QM

Q _ QP = izl

Algorithm 1
For all i and all k: . ’

. . k. _ 1| k_ 7 t . d o tt' k‘
xfi](k*ﬂ): ‘r[z]( ) V(Q z' (k) +r ) agent ¢ updates at time
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» Split up @ and r via
Qu B
Q _ QP r= rl2

Algorithm 1

For all i and all k: o _
i (k) — v(Q"a'(k) + r11)  agent i updates at time k

. T
Lk+1) =4 U
vk +1) xt (k) otherwise
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» Split up @ and r via

QW |

Q . QP = 72l

Algorithm 1

For all 7 and all k:_ o )
k1) xti] (k) — V(Q[z]y(k) + rm) agent ¢ updates at time k
k1) =9 i
afy(k otherwise

i receives j's state at time k
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» Split up @ and r via

QW

Q _ QP = izl

Algorithm 1
For all i and all k: . -

_ t(k) — dxt(k e t ¢ updates at time k
g (k4 1) = :r[l]( ) —v(Q"a (k) + rl)  agent i updates at time

xfi] k otherwise
4 x{,] i receives j's state at time k
:zr[j](k) otherwise

nnnnnnnnnn
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Theorem 1: Convergence
Suppose that
» (@ is diagonally dominant
> ’)/<¢foralli.
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Ny Convergence of DR

Theorem 1: Convergence

Suppose that
» (@ is diagonally dominant
> ’)/<éforalli.
Then |lz¢(k) — 2|2 — 0 for all i and, for ¢ € (0,1),
ik_A<ops(k) iO_A
ma [a*(k) = 2] < ¢ max [o*(0) — 2]

—_—
V(z(k)) V((0))
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Ny Convergence of DR

Theorem 1: Convergence

Suppose that
» (@ is diagonally dominant
> ’)/<éforalli.
Then |lz¢(k) — 2|2 — 0 for all i and, for ¢ € (0,1),
ik_A<ops(k) iO_A
ma [a*(k) = 2] < ¢ max [o*(0) — 2]

—_—
V(z(k)) V((0))

o Optimum

> Convergence is (imperfectly)
geometric

Normalized Distance t
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» Lots of “reasonable” QPs are not well-conditioned

» Formally, if kg =
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» Lots of “reasonable” QPs are not well-conditioned

> Formally, if kg = ,)\\1((%)) is large, then convergence is slow

> Convergence rate is dictated by ¢ € (0,1) here, which is

q:= sup max H(I[k] —VQ[k])mH

lz] oo =1 kE[N] 2
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» Lots of “reasonable” QPs are not well-conditioned

> Formally, if kg = ,)\\1((%)) is large, then convergence is slow

> Convergence rate is dictated by ¢ € (0,1) here, which is

q:= sup max H(I[k] —VQ[k])mH

Izl oo =1 KEIN] 2

» As kg — oo, find ¢ — 1 and convergence comes to a halt
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» We can regularize to make them better: Q + A replaces @), now solve

1
mir;ien}gze ixT(Q + Az +rTa
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» We can regularize to make them better: Q + A replaces @), now solve

1
mir;ien}gze éxT(Q + Az +rTa
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» We can regularize to make them better: Q + A replaces @), now solve

1
mir;ien}gze éxT(Q + Az +rTa

» Conventionally, A = al, but this requires agreeing on «
» We'd rather not have to agree on +y either
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» Regularizing @) changes the solution

» Small regularizations = small error
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» Regularizing @) changes the solution

» Small regularizations = small error

> Consider relative error e(A) = |f(i];()95|f(i)|
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» Regularizing @) changes the solution
» Small regularizations = small error

» Consider relative error e(A4) = |f(iT|;()£;lf(i)|

Theorem: Regularization Error
For e € (0,1), get e(A) < e if

Oéi< \/E
_1_\/2

How diagonally dominant row i is

» Only requires knowledge of QI
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> Want stepsize rules that also depend only upon Q! and r!

o= (- )
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> Want stepsize rules that also depend only upon Q! and r!

o= (- )

» No reason for agent i to use one stepsize for every variable
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> Want stepsize rules that also depend only upon Q! and r!

o= (- )

» No reason for agent i to use one stepsize for every variable

» For ¢ variable, choose
2
N
Zj:l |ij| + ay

Ye <

K
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Algorithm 2

For all i and all k: L , ,
(g 1) = 40 = T(QUI(R) 780+ Auafy (1) upclates at &
[4] i i
s (k) otherwise
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Algorithm 2
For all i and all k: L , .
S xfi] (k) — T (QUz (k) + i) + Ajafy(k)) i updates at k
[4] i i
zty (k) otherwise

. 2 1 receives j's state at time k
gig(k+1) =1l

() (k) otherwise
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Algorithm 2
For all ¢ and all &:
shy(k +1) = xy]( ) QW2 (k) +rll + Azt (k) 4 upda’fes at k
(k) otherwise
. 2l 1 receives j's state at time k
aiy(k+1) =40 s
() (k) otherwise
» Converges geometrically again:
max ||x || < °”S(k) max ||z -
max o (k) =) < 25 ma [l*(0) ]
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Algorithm 2

For all i and all k: o - _

why (k1) = xfﬂ (k) — T (QU* (k) + rld + Ajafy (k) i updates at &
g zi; (k) otherwise

1 receives j's state at time k

j
apy(k+1) = {mm

() (k) otherwise

» Converges geometrically again:

max ||z || < °”S(k) max ||z 2|l < ¢°**) max ||z z
ma ()21 < G225 a(0) ~] < @) ma *(0)
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» Solving
minimize leQx +rTx
reX 2

> Have kg =100
> Want e(A4) < 0.05
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> SOlVing 4 Relative Error Convergence
- Homegenous Stepsize
1 7 T £°° i
minimize —z" Qz + 1" §os M

reX 2 Q F or
> Have kg =100 gos
> Want e(4) < 0.05
» Then a; < 0.29, use stepsize rule B2

> kg = T77.8 now " —

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration Number

Ra;};}
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