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QPs Arise Across Control and Optimization

I QPs take the general form

minimize
x

1
2x

TQx+ rTx

I Appear explicitly in
I Quadrotor trajectory generation
I Numerical optimal control
I Statistical learning

Overall Motivation
Design a multi-agent framework for solving QPs.
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Solving QPs in Contested Environments

I Adversaries can disrupt agents’
communications

I We don’t want agents to wait and
synchronize between computations

I We don’t want to require bounded delays

Algorithmic Goal
We want to allow totally asynchronous
operations by agents.
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Distributing Computations Across Agents

I Agent i stores a local copy of all decision variables, denoted xi

i jxi 6= xj

I Want agents to update only a small subset of system variables
I Promotes scalability
I Amenable to control problems in which agents compute

trajectories/control decisions

I Agent i updates only xi[i]
I Agent i waits to receive xi[j] from agent j

xi =



xi[1]
...
xi[i]
...
xi[n]
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Gradients are Robust to Asynchrony

I Asynchrony requires a sufficiently robust update law
I It should also be simple to decentralize and scale up

I Further want agents to execute updates as fast as possible
I We will use gradient descent as the template update law:

x(k + 1) = x(k)− γ∇f
(
x(k)

)
= x(k)− γ

(
Qx(k) + r

)
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Proposed Distributed QP Algorithm

I Split up Q and r via
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Algorithm 1
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− γ

(
Q[i]xi(k) + r[i]) agent i updates at time k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k

xi[j](k) otherwise
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Convergence of Distributed QP Algorithm

Theorem 1: Convergence
Suppose that
I Q is diagonally dominant
I γ < 1

Qii
for all i.

Then ‖xi(k)− x̂‖2 → 0 for all i and, for q ∈ (0, 1),
max
i∈[N ]

‖xi(k)− x̂‖︸ ︷︷ ︸
V (x(k))

≤ qops(k) max
i∈[N ]

‖xi(0)− x̂‖︸ ︷︷ ︸
V (x(0))

I Convergence is (imperfectly)
geometric
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Convergence Can Be Slow

I Lots of “reasonable” QPs are not well-conditioned
I Formally, if kQ = λ1(Q)

λn(Q) is large, then convergence is slow

I Convergence rate is dictated by q ∈ (0, 1) here, which is

q := sup
‖x‖∞=1

max
k∈[N ]

∥∥∥(I [k] − γQ[k])x∥∥∥
2

I As kQ →∞, find q → 1 and convergence comes to a halt
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Heterogeneous Parameter Selection

I We can regularize to make them better: Q+A replaces Q, now solve

minimize
x∈X

1
2x

T (Q+A)x+ rTx

I Conventionally, A = αI, but this requires agreeing on α
I We’d rather not have to agree on γ either
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Independently Regularizing

I Regularizing Q changes the solution
I Small regularizations ⇒ small error

I Consider relative error e(A) = |f(x̂reg)−f(x̂)|
|f(x̂)|

Theorem: Regularization Error
For ε ∈ (0, 1), get e(A) ≤ ε if

αi ≤
√
ε

1−
√
ε

∣∣∣Q[i]
ii

∣∣∣− n∑
j=1
j 6=i

∣∣∣Q[i]
ij

∣∣∣


︸ ︷︷ ︸
How diagonally dominant row i is

I Only requires knowledge of Q[i]!

x̂
x̂reg
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Independently Choosing Stepsizes

I Want stepsize rules that also depend only upon Q[i] and r[i]

Q[i]Q[i]

γi := γi , r[i]r[i]



I No reason for agent i to use one stepsize for every variable

I For `th variable, choose

γ` <
2∑N

j=1
∣∣Qkj∣∣+ α`
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Algorithm 2
For all i and all k:

xi[i](k + 1) =
{
xi[i](k)− Γi

(
Q[i]xi(k) + r[i] +Aix

i
[i](k)

)
i updates at k

xi[i](k) otherwise

xi[j](k + 1) =
{
xj[j] i receives j’s state at time k
xi[j](k) otherwise

I Converges geometrically again:

max
i∈[N ]

‖xi(k)−x̂‖ ≤ qops(k)
reg max

i∈[N ]
‖xi(0)−x̂‖

< qops(k) max
i∈[N ]

‖xi(0)−x̂‖
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Numerical Convergence

I Solving

minimize
x∈X

1
2x

TQx+ rTx

I Have kQ = 100
I Want e(A) ≤ 0.05

I Then αi ≤ 0.29, use stepsize rule
I kQ = 77.8 now
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