## Totally Asynchronous Distributed Quadratic Programming

Matthew Hale<br>Department of Mechanical and Aerospace Engineering University of Florida

AFOSR Center of Excellence on Assured Autonomy in Contested Environments October 15, 2019

Duke

© ULS SAITI CRINI

## QPs Arise Across Control and Optimization

- QPs take the general form

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} Q x+r^{T} x
$$

## QPs Arise Across Control and Optimization

- QPs take the general form

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} Q x+r^{T} x
$$

- Appear explicitly in
- Quadrotor trajectory generation
- Numerical optimal control
- Statistical learning

Duke

The Lnversiy of lixas at qust.11

## QPs Arise Across Control and Optimization

- QPs take the general form

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} Q x+r^{T} x
$$



- Appear explicitly in
- Quadrotor trajectory generation
- Numerical optimal control
- Statistical learning

Overall Motivation
Design a multi-agent framework for solving QPs.

Duke

## Solving QPs in Contested Environments

- Adversaries can disrupt agents' communications


Duke
WUL SHNIH CRULI

## Solving QPs in Contested Environments

- Adversaries can disrupt agents' communications
- We don't want agents to wait and synchronize between computations
- We don't want to require bounded delays


Duke

## Solving QPs in Contested Environments

- Adversaries can disrupt agents' communications
- We don't want agents to wait and synchronize between computations
- We don't want to require bounded delays

Algorithmic Goal
We want to allow totally asynchronous operations by agents.


Duke
(2)



## Distributing Computations Across Agents

- Agent $i$ stores a local copy of all decision variables, denoted $x^{i}$

$$
\text { (i) } x^{i} \neq x^{j} \bigcirc
$$

## Distributing Computations Across Agents

- Agent $i$ stores a local copy of all decision variables, denoted $x^{i}$

- Want agents to update only a small subset of system variables
- Promotes scalability
- Amenable to control problems in which agents compute trajectories/control decisions

Duke
TEXAS
The Lrivesty of IExds at qustil

## Distributing Computations Across Agents

- Agent $i$ stores a local copy of all decision variables, denoted $x^{i}$

- Want agents to update only a small subset of system variables
- Promotes scalability
- Amenable to control problems in which agents compute trajectories/control decisions
- Agent $i$ updates only $x_{[i]}^{i}$
- Agent $i$ waits to receive $x_{[j]}^{i}$ from agent $j$

$$
x^{i}=\left(\begin{array}{c}
x_{[1]}^{i} \\
\vdots \\
x_{[i]}^{i} \\
\vdots \\
x_{[n]}^{i}
\end{array}\right)
$$

Duke
(4CS SHNTH CRUZ

## Gradients are Robust to Asynchrony

- Asynchrony requires a sufficiently robust update law
- It should also be simple to decentralize and scale up


Duke
围TEXAS
WIL SHNTH CRULI

## Gradients are Robust to Asynchrony

- Asynchrony requires a sufficiently robust update law
- It should also be simple to decentralize and scale up

- Further want agents to execute updates as fast as possible

Duke
WIL SHNTH CRULI

## Gradients are Robust to Asynchrony

- Asynchrony requires a sufficiently robust update law
- It should also be simple to decentralize and scale up

- Further want agents to execute updates as fast as possible
- We will use gradient descent as the template update law:

$$
\begin{aligned}
x(k+1) & =x(k)-\gamma \nabla f(x(k)) \\
& =x(k)-\gamma(Q x(k)+r)
\end{aligned}
$$

## Proposed Distributed QP Algorithm

- Split up $Q$ and $r$ via



## Proposed Distributed QP Algorithm

- Split up $Q$ and $r$ via


Algorithm 1
For all $i$ and all $k$ :
$x_{[i]}^{i}(k+1)=\left\{x_{[i]}^{i}(k)-\gamma\left(Q^{[i]} x^{i}(k)+r^{[i]}\right) \quad\right.$ agent $i$ updates at time $k$

## Proposed Distributed QP Algorithm

- Split up $Q$ and $r$ via


$$
r=\left(\begin{array}{c}
\left.\begin{array}{|c}
r^{[1]} \\
\hline r^{[2]} \\
\vdots \\
\begin{array}{|c}
r^{[N]} \\
\hline
\end{array}
\end{array}\right) .\left(\begin{array}{c} 
\\
\hline
\end{array}\right) \\
\hline
\end{array}\right.
$$

Algorithm 1
For all $i$ and all $k$ :
$x_{[i]}^{i}(k+1)= \begin{cases}x_{[i]}^{i}(k)-\gamma\left(Q^{[i]} x^{i}(k)+r^{[i]}\right) & \text { agent } i \text { updates at time } k \\ x_{[i]}^{i}(k) & \text { otherwise }\end{cases}$

## Proposed Distributed QP Algorithm

- Split up $Q$ and $r$ via


Algorithm 1
For all $i$ and all $k$ :
$x_{[i]}^{i}(k+1)= \begin{cases}x_{[i]}^{i}(k)-\gamma\left(Q^{[i]} x^{i}(k)+r^{[i]}\right) & \text { agent } i \text { updates at time } k \\ x_{[i]}^{i}(k) & \text { otherwise }\end{cases}$
$x_{[j]}^{i}(k+1)= \begin{cases}x_{[j]}^{j} & i \text { receives } j \text { 's state at time } k\end{cases}$

TEXAS

## Proposed Distributed QP Algorithm

- Split up $Q$ and $r$ via


Algorithm 1
For all $i$ and all $k$ :

$$
\begin{aligned}
& x_{[i]}^{i}(k+1)= \begin{cases}x_{[i]}^{i}(k)-\gamma\left(Q^{[i]} x^{i}(k)+r^{[i]}\right) & \text { agent } i \text { updates at time } k \\
x_{[i]}^{i}(k) & \text { otherwise }\end{cases} \\
& x_{[j]}^{i}(k+1)= \begin{cases}x_{[j]}^{j} & i \text { receives } j \text { 's state at time } k \\
x_{[j]}^{i}(k) & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem 1: Convergence
Suppose that

- $Q$ is diagonally dominant
- $\gamma<\frac{1}{Q_{i i}}$ for all $i$.


## Convergence of Distributed QP Algorithm

Theorem 1: Convergence
Suppose that

- $Q$ is diagonally dominant
- $\gamma<\frac{1}{Q_{i i}}$ for all $i$.

Then $\left\|x^{i}(k)-\hat{x}\right\|_{2} \rightarrow 0$ for all $i$ and, for $q \in(0,1)$,

$$
\underbrace{\max _{i \in[N]}\left\|x^{i}(k)-\hat{x}\right\|}_{V(x(k))} \leq q^{\mathrm{ops}(k)} \underbrace{\max _{i \in[N]}\left\|x^{i}(0)-\hat{x}\right\|}_{V(x(0))}
$$

Theorem 1: Convergence
Suppose that

- $Q$ is diagonally dominant
- $\gamma<\frac{1}{Q_{i i}}$ for all $i$.

Then $\left\|x^{i}(k)-\hat{x}\right\|_{2} \rightarrow 0$ for all $i$ and, for $q \in(0,1)$,

$$
\underbrace{\max _{i \in[N]}\left\|x^{i}(k)-\hat{x}\right\|}_{V(x(k))} \leq q^{\text {ops }(k)} \underbrace{\max _{i \in[N]}\left\|x^{i}(0)-\hat{x}\right\|}_{V(x(0))}
$$

- Convergence is (imperfectly) geometric

Duke
( TLNAD

## Convergence Can Be Slow

- Lots of "reasonable" QPs are not well-conditioned
- Formally, if $k_{Q}=\frac{\lambda_{1}(Q)}{\lambda_{n}(Q)}$ is large, then convergence is slow



## Convergence Can Be Slow

- Lots of "reasonable" QPs are not well-conditioned
- Formally, if $k_{Q}=\frac{\lambda_{1}(Q)}{\lambda_{n}(Q)}$ is large, then convergence is slow

- Convergence rate is dictated by $q \in(0,1)$ here, which is

$$
q:=\sup _{\|x\|_{\infty}=1} \max _{k \in[N]}\left\|\left(I^{[k]}-\gamma Q^{[k]}\right) x\right\|_{2}
$$

Duke
TEXAS
©ULS SANTA CRUL

## Convergence Can Be Slow

- Lots of "reasonable" QPs are not well-conditioned
- Formally, if $k_{Q}=\frac{\lambda_{1}(Q)}{\lambda_{n}(Q)}$ is large, then convergence is slow

- Convergence rate is dictated by $q \in(0,1)$ here, which is

$$
q:=\sup _{\|x\|_{\infty}=1} \max _{k \in[N]}\left\|\left(I^{[k]}-\gamma Q^{[k]}\right) x\right\|_{2}
$$

- As $k_{Q} \rightarrow \infty$, find $q \rightarrow 1$ and convergence comes to a halt
©ULS SHNTH CRUL


## Heterogeneous Parameter Selection

- We can regularize to make them better: $Q+A$ replaces $Q$, now solve

$$
\underset{x \in X}{\operatorname{minimize}} \frac{1}{2} x^{T}(Q+A) x+r^{T} x
$$



Duke

## Heterogeneous Parameter Selection

- We can regularize to make them better: $Q+A$ replaces $Q$, now solve

$$
\underset{x \in X}{\operatorname{minimize}} \frac{1}{2} x^{T}(Q+A) x+r^{T} x
$$



- Conventionally, $A=\alpha I$, but this requires agreeing on $\alpha$

Duke
TEXAS

## Heterogeneous Parameter Selection

- We can regularize to make them better: $Q+A$ replaces $Q$, now solve

$$
\underset{x \in X}{\operatorname{minimize}} \frac{1}{2} x^{T}(Q+A) x+r^{T} x
$$



- Conventionally, $A=\alpha I$, but this requires agreeing on $\alpha$
- We'd rather not have to agree on $\gamma$ either

Duke
TEXAS

## Independently Regularizing

- Regularizing $Q$ changes the solution
- Small regularizations $\Rightarrow$ small error



## Independently Regularizing

- Regularizing $Q$ changes the solution
- Small regularizations $\Rightarrow$ small error
- Consider relative error $e(A)=\frac{\left|f\left(\hat{x}_{r e g}\right)-f(\hat{x})\right|}{|f(\hat{x})|}$

- Regularizing $Q$ changes the solution
- Small regularizations $\Rightarrow$ small error
- Consider relative error $e(A)=\frac{\left|f\left(\hat{x}_{r e g}\right)-f(\hat{x})\right|}{|f(\hat{x})|}$


Theorem: Regularization Error
For $\epsilon \in(0,1)$, get $e(A) \leq \epsilon$ if

$$
\alpha_{i} \leq \frac{\sqrt{\epsilon}}{1-\sqrt{\epsilon}} \underbrace{\left(\left|Q_{i i}^{[i]}\right|-\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|Q_{i j}^{[i]}\right|\right)}_{\text {How diagonally dominant row } i \text { is }}
$$

- Only requires knowledge of $Q^{[i]}$ !


## Independently Choosing Stepsizes

- Want stepsize rules that also depend only upon $Q^{[i]}$ and $r^{[i]}$


TEXAS

## Independently Choosing Stepsizes

- Want stepsize rules that also depend only upon $Q^{[i]}$ and $r^{[i]}$

- No reason for agent $i$ to use one stepsize for every variable

Duke
( TEXAS

## Independently Choosing Stepsizes

- Want stepsize rules that also depend only upon $Q^{[i]}$ and $r^{[i]}$

- No reason for agent $i$ to use one stepsize for every variable
- For $\ell^{t h}$ variable, choose

$$
\gamma_{\ell}<\frac{2}{\sum_{j=1}^{N}\left|Q_{k j}\right|+\alpha_{\ell}}
$$

Duke
TEXAS


Algorithm 2
For all $i$ and all $k$ :
$x_{[i]}^{i}(k+1)= \begin{cases}x_{[i]}^{i}(k)-\Gamma_{i}\left(Q^{[i]} x^{i}(k)+r^{[i]}+A_{i} x_{[i]}^{i}(k)\right) & i \text { updates at } k \\ x_{[i]}^{i}(k) & \text { otherwise }\end{cases}$

Algorithm 2
For all $i$ and all $k$ :
$x_{[i]}^{i}(k+1)= \begin{cases}x_{[i]}^{i}(k)-\Gamma_{i}\left(Q^{[i]} x^{i}(k)+r^{[i]}+A_{i} x_{[i]}^{i}(k)\right) & i \text { updates at } k \\ x_{[i]}^{i}(k) & \text { otherwise }\end{cases}$
$x_{[j]}^{i}(k+1)= \begin{cases}x_{[j]}^{j} & i \text { receives } j \text { 's state at time } k \\ x_{[j]}^{i}(k) & \text { otherwise }\end{cases}$

圈TEXAS

Algorithm 2
For all $i$ and all $k$ :
$x_{[i]}^{i}(k+1)= \begin{cases}x_{[i]}^{i}(k)-\Gamma_{i}\left(Q^{[i]} x^{i}(k)+r^{[i]}+A_{i} x_{[i]}^{i}(k)\right) & i \text { updates at } k \\ x_{[i]}^{i}(k) & \text { otherwise }\end{cases}$
$x_{[j]}^{i}(k+1)= \begin{cases}x_{[j]}^{j} & i \text { receives } j \text { 's state at time } k \\ x_{[j]}^{i}(k) & \text { otherwise }\end{cases}$

- Converges geometrically again:

$$
\max _{i \in[N]}\left\|x^{i}(k)-\hat{x}\right\| \leq q_{r e g}^{\operatorname{ops}(k)} \max _{i \in[N]}\left\|x^{i}(0)-\hat{x}\right\|
$$

## Algorithm 2

For all $i$ and all $k$ :
$x_{[i]}^{i}(k+1)= \begin{cases}x_{[i]}^{i}(k)-\Gamma_{i}\left(Q^{[i]} x^{i}(k)+r^{[i]}+A_{i} x_{[i]}^{i}(k)\right) & i \text { updates at } k \\ x_{[i]}^{i}(k) & \text { otherwise }\end{cases}$
$x_{[j]}^{i}(k+1)= \begin{cases}x_{[j]}^{j} & i \text { receives } j \text { 's state at time } k \\ x_{[j]}^{i}(k) & \text { otherwise }\end{cases}$

- Converges geometrically again:

$$
\max _{i \in[N]}\left\|x^{i}(k)-\hat{x}\right\| \leq q_{r e g}^{\operatorname{ops}(k)} \max _{i \in[N]}\left\|x^{i}(0)-\hat{x}\right\|<q^{\operatorname{ops}(k)} \max _{i \in[N]}\left\|x^{i}(0)-\hat{x}\right\|
$$

- Solving

$$
\underset{x \in X}{\operatorname{minimize}} \frac{1}{2} x^{T} Q x+r^{T} x
$$

- Have $k_{Q}=100$
- Want $e(A) \leq 0.05$

罗TEXAS
©icsixif cinl

- Solving

$$
\underset{x \in X}{\operatorname{minimize}} \frac{1}{2} x^{T} Q x+r^{T} x
$$

- Have $k_{Q}=100$
- Want $e(A) \leq 0.05$
- Then $\alpha_{i} \leq 0.29$, use stepsize rule
- $k_{Q}=77.8$ now


Duke

