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Goal: Share Information Without Oversharing

I In coalitions, we want to collaborate while keeping secrets

I To work together, red and blue must exchange information

I Agents must protect states from eavesdroppers and the other team

Fundamental Problem
How can agents safeguard state trajectories and still collaborate?
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How should we provide privacy?

Differential Privacy (DP)
DP is a privacy framework with a several key features:
I It offers a formal definition of “privacy”

I It is immune to post-processing
I x private ⇒ f(x) private for all f

I It is robust to side information

I Used by:

Apple Google Uber

DP Idea
Make “adjacent” state trajectories produce “similar” outputs
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Adjacency Specifies What to Protect

Adjacent trajectories in `p-spaces

We fix a constant b > 0 and define Adjb : `np × `np → {0, 1} as

Adjb(x1, x2) = 1⇐⇒ ‖x1 − x2‖`p ≤ b.

b



Differential Privacy is a Statistical Guarantee

Fundamental Inequality of Differential Privacy
For adjacent state trajectories x1 and x2, we want the outputs y1, y2 to
satisfy

P(y2) ≤ eεP(y1) + δ,

This is the definition of (ε, δ)-differential privacy.

P(y1)
P(y2)

eεP(y1) + δ
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Mechanisms for Differential Privacy

I Fix a probability space (Ω,Σ,P). Differential privacy is enforced by a
mechanism of the form

M : `np × Ω→ `rq.

I For us this will take the form

Output Map +

Noise ni(k)

xi(k) yi(k) ỹi(k)

State Output Private Output
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Formalizing Multi-Agent LQ

I Consider problems with N agents

I Agent i has the update and output maps

xi(k + 1) = Aixi(k) +Biui(k)

+ wi(k)

yi(k) = Cixi(k)

+ vi(k),

where wi(k) ∼ N (0,Wi), vi(k) ∼ N (0, Vi)
I Agent i wants to track {x̄i(k)}k∈N

x̄
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Generating Optimal LQG Control Values

I We want to minimize the quadratic cost

J = lim
Tf→∞

1
Tf

E

 Tf∑
k=1

(
x(k)− x̄(k)

)T
Q
(
x(k)− x̄(k)

)︸ ︷︷ ︸
Tracking error

+u(k)TRu(k)︸ ︷︷ ︸
Control energy



I Subject to the linear dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k)
y(k) = Cx(k) + v(k)

I Solution is
u∗(k) = LE[x(k)] +Mg

for known M , L, and g
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Agents Must Share State Information

I Agent i computes

u∗i (k) =
(
LE[x(k)]

)
i
+
(
Mg

)
i

I Computing E[x(k)] can be done with a Kalman filter, but requires
agents to share states

I Agent i privatizes its own transmissions by sending

ỹi(k) = Cixi(k) + vi(k) + ni(k)

i j

yi(k) + ni(k)

yj(k) + nj(k)
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Computing g also Requires Privacy

I Agents also need to compute

g = NQx̄,

but x̄ is very sensitive!

x̄

I Agent i instead shares x̃i := x̄i + w̄i

I Then agent i computes

u∗i (k) =
(
LE[x(k) | ỹ(k)]

)
i
+
(
MNQx̃

)
i
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When is this private?

I Need the Q-function: Q(θ) = 1√
2π

∫∞
θ
e−

z2
2 dz

θ

I Define Kδ = Q−1(δ) and κ(δ, ε) = 1
2ε
(
Kδ +

√
K2
δ + 2ε

)
Theorem: Multi-Agent LQ Privacy
Agent i uses εi > 0, δi ∈ (0, 1/2). Agent i attains (εi, δi)-privacy if:

i. x̃i := x̄i + w̄i has w̄i ∼ N
(
0, κ(δi, εi)bi

)
ii. ỹi(k) := y(k) + ni(k) has ni(k) ∼ N

(
0, κ(δi, εi)bi

√
λmax(Ci)

)
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What does privacy reveal?

I Privacy’s guarantees are only about information

I Its impact is often stated in terms of only ε and δ

Questions in Private Control

1 How does privacy affect control performance?
2 What are the tradeoffs between them?

P(y1)
P(y2)

eεP(y1) + δ
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How do we calibrate privacy?

I Quantifying the increase in J gives a natural control-theoretic cost
of privacy to use for privacy calibration

Theorem: Cost of Privacy
The cost of privatizing LQG is

∆J(ε, δ) = tr
(
M1Σ +M2Σ̄

)
− tr(M3) + tr(M4W̄ )

• is the covariance of privacy noise for x̄
• Σ solves the ARE

Σ = AΣAT −AΣCT
(
CΣCT + V (ε, δ)

)−1
CΣAT +W

• Σ̄ is computed via
Σ̄ = Σ− ΣCT (CΣCT + V )−1CΣ
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Can I relax privacy for better performance?

I A privacy rule of thumb is that “all small epsilons are alike”

I Slightly reducing privacy doesn’t reveal much more, can save on cost
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I Across many problems, increasing any ε < 0.5 leads to substantial
reductions in cost
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