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Common features in AFOSR applications:

» Variables changing continuously (e.g., physical quantities) and
discretely (e.g., logic variables, resetting timers).

» Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).
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How can we systematically design such systems featuring
switching and intermittency of information with provable
robustness to uncertainties arising in real-world environments?
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Common features in AFOSR applications:
» Variables changing continuously (e.g., physical quantities) and
discretely (e.g., logic variables, resetting timers).

> Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).
Driving Question:

How can we systematically design such systems featuring
switching and intermittency of information with provable
robustness to uncertainties arising in real-world environments?

Approach:
» Model continuous and discrete behavior using dynamical

models that are hybrid.
» Develop systematic control theoretical tools for stability,
invariance, safety, and temporal logic, with robustness.



Hybrid dynamical systems include a wide range of systems

Switched systems

2= fou(2)

o switching signal

Differential-algebraic
equations

w algebraic variables

Impulsive systems



Control of Groups of Neurons
Multi-agent Systems with Limited [ACC 14, TCNS 16]
Information [Automatica 16, TAC 18]

Coordination of
Underactuated Vehicles
[Automatica 15, TAC 16]
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Multi-agent Systems with Limited
Information [Automatica 16, TAC 18]

Key Features:
» Nonlinearities

» Fast time scales / events

» Limited information

Control of Groups of Neurons
[ACC 14, TCNS 16]
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{«\gjltlme of Recent Re

1. Optimization
High Performance Optimization via Uniting Control
ACC19, ACC20 (submitted), + CoE collab. (M. Hale)
Model Predictive Control for Hybrid Systems

ACC19, CDC19, ACC20 (submitted), CDC19 Workshop
+ collab. w/ AFRL/RV (S. Phillips and C. Petersen)

2. Tools to Satisfy High-level Specifications
Solution-independent Conditions for Invariance and
Finite-time Attractivity = Automatica 19, TAC 19, NAHS and
IFAC WC20 (submitted) + Collab. w/ NASA (A. Mavridou)
(Necessary and Sufficient) Safety Certificates

HSCC19, ACC19, and ACC20 (submitted)

3. Hybrid Control

Global Robust Stabilization on Manifolds

Automatica 19, TAC19, and ACC19 + CoE collab. (W. Dixon)
Synchronization over Networks w/ Intermittent
Information Automatica 19, ACC19, and ACC20 (submitted)




Safety Certificates



Consider the system
&= f(x) reX
and the sets

X, C X the initial set,

Xy C X\ X, the unsafe set.
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Consider the system
(X solutions Xa \
&= f(x) reX
and the sets
X, C X the initial set,
X, C X\X, the unsafe set. \ )

Safety with respect to (X,, X,) < reach(X,)NX, =10

reach(X,) :={x € R" : x = ¢(t; ,), with ¢ a solution from z, € X,

and any ¢t € dom ¢} — namely, the infinite reach set



4:«\«: ;ufficient Conditi
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Let B be continuous such that [X X, \

B(z) >0 Ve € X,

B(z) <0 Vo e X, @ B(x(T))
N /
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and for each solution ¢ from z, € R"\ K,

Let B be continuous such that

t — B(¢(t;z,)) is nonincreasing

where K, := {z € R?: B(z) <0} - the zero-sublevel set of B
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o_
B(z) >0 Vo € X, /

B(z) <0 Vo e X, @ B(x(T))
- /

and for each solution ¢ from z, € R"\ K,

Let B be continuous such that

t — B(¢(t;z,)) is nonincreasing

where K, := {z € R?: B(z) <0} - the zero-sublevel set of B

It follows that the system & = f(x) is safe w.r.t. (X,, Xy)




Given a safe system @ = f(z) w.r.t. (X,, X,), find a scalar
function B : R™ — R (at least continuous) such that

B(x) >0 VreX,, B(zx)<0 VxelX,

and ¢t — B(¢(t;z,)) is nonincreasing on R™\ K,
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Given a safe system © = f(z) w.r.t. (X,, Xy ), find a scalar
function B : R™ — R (at least continuous) such that

B(x) >0 VreX,, B(zx)<0 VxelX,

and ¢t — B(¢(t;z,)) is nonincreasing on R™\ K,

Two solutions to the converse safety problem in the literature are

[Prajna & Rantzer 05] when
1. fect

2. AV el st
(VV(x), f(z)) <O0Vz e X

3. (X, X,,X,) are compact
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Given a safe system © = f(z) w.r.t. (X,, Xy ), find a scalar
function B : R™ — R (at least continuous) such that

B(x) >0 VreX,, B(zx)<0 VxelX,

and ¢t — B(¢(t;z,)) is nonincreasing on R™\ K,

Two solutions to the converse safety problem in the literature are

[Wisniewski & Sloth 17] when

[Prajna & Rantzer 05] when 1 fect
L fec! 2. 3V smooth s.t.
2.3V ellst. (VV(2), f(2)) <0on X
(VV(2), f(x)) <0Vze X except at critical points of V'

+ geometric conditions

3. (X, X,, X,) are compact
( or Xu) P 3. (X, X,,X,) are compact

manifolds
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Consider the planar continuous-time system [Krasovskii 63]

i1 = —x+rasin?(1/r)
iy = x1 4 roosin’(1/r)

where
r= ||
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Consider the planar continuous-time system [Krasovskii 63]

i1 = —xy+raysin®(1/r)
iy = x1 4 roosin’(1/r)
where
r= |zl

This system can be rewritten in polar coordinates (r,0) as

i = r?sin?(1/r), 6=1
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Consider the planar continuous-time system [Krasovskii 63]

i1 = —x+rasin?(1/r)
iy = x1 4 roosin’(1/r)
where
r= |zl

This system can be rewritten in polar coordinates (r,0) as
i = r?sin?(1/r), 6=1
Consider the initial and unsafe sets

X,:={0}, X, =R*6B withd>0



Consider the planar continuous-time system [Krasovskii 63]

i1 = —xy+raysin®(1/r)
iy = x1 4 roosin’(1/r)
where
r= |zl

This system can be rewritten in polar coordinates (r,0) as
i = r?sin?(1/r), 0=1
Consider the initial and unsafe sets

X,:={0}, X, =R*6B withd>0

It is easy to check that the system is safe w.r.t. (X,, Xy,)
due to X, being forward invariant
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There is no continuous barrier function with B(0) =0, B(x) >0
forall x € X, and t — B(¢(t; x,)) nonincreasing on R™ \ X,
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Hybrid closed-loop systems are given by hybrid inclusions

2 z = F(x) xelC
rt = G(x) zeD
where x is the state
» (Cis the flow set > D is the jump set
» [ is the flow map » (G is the jump map

Solutions are functions parameterized by hybrid time (, j):
» Flows parameterized by t € R>¢ := [0, +00)
» Jumps parameterized by j € N>o:={0,1,2,...}
Then, solutions to H are given by hybrid arcs x defined on

([0, 8] x {0H) L ([ta, b x {1H) U ([t tja] x {7 U

The hybrid system H satisfies the hybrid basic conditions if
C, D are closed and F', GG are “continuous”




Hybrid closed-loop systems are given by hybrid inclusions

2 &t € F(x) xelC
e G(z) zeD
where x is the state
» (Cis the flow set > D is the jump set
» [ is the flow map » (G is the jump map

Solutions are functions parameterized by hybrid time (, j):
» Flows parameterized by t € R>¢ := [0, +00)
» Jumps parameterized by j € N>o:={0,1,2,...}
Then, solutions to H are given by hybrid arcs x defined on

([0, 8] x {0H) L ([ta, b x {1H) U ([t tja] x {7 U

The hybrid system H satisfies the hybrid basic conditions if
C, D are closed and F', GG are “continuous”




Hybrid closed-loop systems are given by hybrid inclusions

&t = F(x) zeC
H {x+ = G(z) zeD

For this class of systems, we have the following:
» An initial set X, C C'U D and an unsafe set X,, C R™.



Hybrid closed-loop systems are given by hybrid inclusions

2 &t € F(x) zeC
zt e G(z) zeD

For this class of systems, we have the following:
» An initial set X, C C'U D and an unsafe set X,, C R™.

» Assume that R"\(C' U D) C X,,.



Hybrid closed-loop systems are given by hybrid inclusions

2 &t € F(x) xelC
zt e G(z) zeD

For this class of systems, we have the following:
» An initial set X, C C'U D and an unsafe set X,, C R™.

» Assume that R"\(C' U D) C X,,.

» A barrier function candidate B : R"” — R is defined as
B(z)>0Vx € X, N(CUD) and B(z) <0 Vzx e X,.

» A barrier function candidate B defines the set

K:={zxeCUD: B(x) <0}



Theorem: The system # is safe w.r.t. (X,,X,,) if a barrier
candidate B exists such that K = {x € CUD : B(z) <0} is
closed and forward pre-invariant for .

Xy N (CUDY) )
|




Theorem: The system # is safe w.r.t. (X,,X,,) if a barrier
candidate B exists such that K = {x € CUD : B(z) <0} is
closed and forward pre-invariant for .

Xy N(CUDY) )
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The closed set K is forward pre-invariant if



Theorem: The system # is safe w.r.t. (X,,X,,) if a barrier
candidate B exists such that K = {x € CUD : B(z) <0} is
closed and forward pre-invariant for .

Xy N(CUDY) )
|
K 4-\’_‘/_-[ X(}
C ‘ P D

The closed set K is forward pre-invariant if
1. Bn) <0 VneG(z)Vre DNK
2. GiDnK)c CuD



Theorem: The system # is safe w.r.t. (X,,X,,) if a barrier
candidate B exists such that K = {x € CUD : B(z) <0} is
closed and forward pre-invariant for .

X, N (CUDY)

¢ wen\wng/
The closed set K is forward pre-invariant if
1. Bn) < 0 YneG(x)Vee DNK
2. GIDnK)c CuD

3. t — B(¢(t,0)) is nonincreasing for flowing solutions
t— ¢(t,0) in (UOK)\K)NC
where U(S) is any neighborhood around the set S




wEK\) nc/

Te(x) X
Proposition:

» When B is C!, 3. is satisfied if
(VB(z),n) < 0Vx e (UOK.)\K.)NC Vn € F(x)NTo(x).
» When B is loc. Lip., we replace VB by 0B.



Tc¢ (x)\

Proposition:
» When B is C!, 3. is satisfied if
(VB(z),n) < 0Vz e (U(OK.)\K.)NC Vn € F(z) NTe(x).
» When B is loc. Lip., we replace VB by 0B.
» When B is lower semicontinuous and F' locally bounded we
replace VB by 0,B and (U(0K.)\K.) N C by
UK.NC)\K,, K¢ :={x € R": B(z) <0}.

(0B, 0,B,T¢) are the generalized gradient, the proximal
subdifferential, and the contingent cone w.r.t. C' [Clarke & al 08].
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Consider a hybrid system H = (C, F', D, G) modeling a ball
bouncing vertically on the ground, with = = (21, 22) € R? given by

F(z) ;:[ T2 ] Vz e, v>0 . L
| 0 F(x)
G(z) := [—)\m] Vo e D, Ae|0,1]

C:={zecR?:z; >0} N
D:={zcR*: 2 =0,z0 <0} D =)

//
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Consider a hybrid system H = (C, F', D, G) modeling a ball
bouncing vertically on the ground, with = = (21, 22) € R? given by

F(z) ;:[ T2 ] Vz e, v>0 . L
| 0 F(x)
G(z) := [—)\m] Vo e D, Ae|0,1]

C:={zecR?:z; >0} N
D:={zcR*: 2 =0,z0 <0} D =)

> Let X,:={zeC:|z|<1/(4v)} and
Xy ={zeC:x1>1/y, 22 =0}.

> Consider the barrier candidate B(x) := 2vx1 + (z2 — 1)(z2 + 1).

-




Consider a hybrid system H = (C, F', D, G) modeling a ball
bouncing vertically on the ground, with = = (21, 22) € R? given by

F(x)::[fi] VeeC, v>0
G(z) :== [_g@] Vo e D, Ae|0,1]

C:={zecR?:z; >0}
D::{xeRQ:m:O,xQSO}

> Let X,:={zxeC:|z|<1/(4v)} and
Xy ={zeC:x>1/y, z2=0}.

v

v

Condition 1) holds since

c

T
A

F(z)

X

7‘\

G(z')

> T2

Consider the barrier candidate B(x) := 2yx1 + (22 — 1)(x2 + 1).

B(G(z)) = 2yz1 + A\%23 — 1< 2yr1 +23-1<0Vx e KND.

v

v

Condition 2) holds since G(D) = {0} x R>o C CUD.
Condition 3) holds since (VB(x), F(x)) =0 Vx € C.




Consider a hybrid system H = (C, F', D, G) modeling a ball

bouncing vertically on the ground, with = = (21, 22) € R? given by

F(w)::[m] Veed, v>0

=] L)

C:={zecR?:z; >0}
D::{xGRQ:m:O,xQSO}

> Let Xp:={zeC:|z| <1/(4v)} and
Xy ={zeC:21>1/y, 22 =0}.

Vo e D, Ae|0,1]

1
A
C
~
! A Naw

> T2

> Consider the barrier candidate B(x) := 2vx1 + (z2 — 1)(z2 + 1).

> Condition 1) holds since

B(G(x)) = 2yz1 + N223 —1<2yz1 +23-1<0Ver e KND.

Canditian 2) halde cince (A(ND) — IOV 1%

el ARNN D)

The system H is safe with respect to (X,, X,,)




Consider a hybrid system H = (C, F, D, G) modeling a thermostat
system, with the state x = (¢, 2) € X := {0,1} x R given by

0
F(x)::[—z—kzo—i-qu] Ve el
G(x)::[lgq] Ve D
C:= ({0} x Co)U ({1} x C1), D := ({0} x Do) U ({1} x Dy).
Co={2€R:2>zpn} Dy:={z€R:z<zpin}
Cr:={2€R:2< 24} Dy ={2z€R: 2> zpe}

> 2 is the room temperature, z, the room temperature when the
heater is OFF

> za the capacity of the heater to raise the temperature
» ¢ the state of the heater 1 (ON) or 0 (OFF)



Consider a hybrid system H = (C, F, D, G) modeling a thermostat
system, with the state x = (¢, 2) € X := {0,1} x R given by

0
F(x)::[—Z-I-Zo-i-ZAq] Ve e C
G(x)::[lgq] Ve D
C:= {0} xCo) U ({1} xC1), D := ({0} x Do) U ({1} x Dy).
Oo::{ZGRZZZme} Do::{ZGRIZSZmin}
Cr:={z€R:z2<zpu} Dy ={2z€R: 2> zpe}

> 2 stays between z,,;, and 2,4, Satisfying
2o < Zmin < Zmaz < Zo + ZA.

» Let X, :={(q,2) € X: 2z € [2min/2, Zmaz/2]}

» Let X, :={(q,2) € X : 2z € (—00, Zmin) U (Zmaz, +0)}.

» Consider the barrier candidate B(x) := (2 — zmin) (2 — Zmaz)
and let K, := {z € R? : B(z) < 0}.



Consider a hybrid system H = (C, F, D, G) modeling a thermostat
system, with the state x = (¢, 2) € X := {0,1} x R given by

0
F(x)::[—z—kzo—i-qu] Ve el
G(x)::[lgq] Ve D
C:= ({0} x Co)U ({1} x C1), D := ({0} x Do) U ({1} x Dy).
Co={2€R:2>zpn} Dy:={z€R:z<zpin}
Cr:={2€R:2< 24} Dy ={2z€R: 2> zpe}

» CUD ={0,1} x R; hence, condition 2) holds since
Glz)=[l-q2"€eCuD VxecCuUD.

» Condition 1) holds since
B(G(z))=B([(1—q) 2]")=B(z) <0 VYoxec K.ND.



Consider a hybrid system H = (C, F, D, G) modeling a thermostat
system, with the state x = (¢, 2) € X := {0,1} x R given by

0
F(x)::[—z—kzo—i-qu] Ve el
G(x)::[lgq] Ve D
C:= ({0} x Co)U ({1} x C1), D := ({0} x Do) U ({1} x Dy).
Co={2€R:22>2pmin} Dy:={z€R:z<zpin}
01::{Z€Rizgzmax} D1::{Z€R2222max}

> Ke =R x [Zminazmax]-
» Furthermore, for some ¢ > 0, (U(K.)\K,)NC =
({0} X (Zmaxa Zmaz T 6)) U ({1} X (Zm'ina Zmin — 6)) Hence,
condition 3) holds since
<VB(33)7 F($)> = (me + Zmaz — 22)('2 — Ro — ZAQ) <0
for all z € (U(K,)\K.)NC.



Consider a hybrid system H = (C, F, D, G) modeling a thermostat
system, with the state x = (¢, 2) € X := {0,1} x R given by

0
F(x)::[—z—kzo—i-qu] Ve el
G(x)::[lgq] Ve D
C:= ({0} x Co)U ({1} x C1), D := ({0} x Do) U ({1} x Dy).
Co={2€R: 22> 2pmin} Dy:={z€R:z<zpin}
01::{Z€Rizgzmax} D1::{Z€R2222max}

» Ko =R x [zmimzmax]-

» Furthermore, for some ¢ > 0, (U(K.)\K,)NC =
({0} X (Zmazs Zmaz + €)) U ({1} X (Zmin, 2min — €)). Hence,
condition 3) holds since

The system H is safe with respect to (X,, Xy,) hg) <0

~ 11 T T/ T N\ T\ o~ Y




Safety-Base

Presented at 2019 CASE Robotics Conference — Best Paper Award Finalist
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{\\‘z ’/ Hybrid Control»

coning

H S
i,/ recovery
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intercept

glide tracking
set

obstacle

launch/

Achieving non-parabolic ballistic trajectories for a guided
munition using aggressive maneuvers using multiple controllers.
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if



{«\‘{uﬁcessary and Suff

Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if

there exists a lower semicontinuous barrier function
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>¢p x N x R” — R such that
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>9 x N x R" — R such that

(1,z) — B(1,k,x) is lower semicontinuous (uniformly in k)
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>¢p x N x R” — R such that

(1,z) — B(1,k,x) is lower semicontinuous (uniformly in k)
B is nonincreasing along the flows of H,
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>9 x N x R" — R such that

(1,z) — B(1,k,x) is lower semicontinuous (uniformly in k)
B is nonincreasing along the flows of H,
B(r,k,x) <0 V(1 k,z) € R>o x Nx X,
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>9 x N x R" — R such that

(1,z) — B(1,k,x) is lower semicontinuous (uniformly in k)
B is nonincreasing along the flows of H,

B(r,k,x) <0 V(1 k,z) € R>o x Nx X,

B(r,k,x) >0 V(71,k,x) € R>o x Nx (X, N (CUD))



{«\‘{uﬁcessary and Suff

Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>9 x N x R" — R such that

(1,z) — B(1,k,x) is lower semicontinuous (uniformly in k)

B is nonincreasing along the flows of H,

B(r,k,x) <0 V(1 k,z) € R>o x Nx X,

B(r,k,x) >0 V(7 k,z) € R>g x N x (X, N (CUD,))
B(r,k+1,m) <0 VneG(z), V(r,k,z) € K. N (R>9 x N x D)



uecessary and Sulffi
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Theorem: Assume that H is satisfies the hybrid basic conditions*

and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>9 x N x R" — R such that

(1,z) — B(1,k,x) is lower semicontinuous (uniformly in k)
Bis nonincreasing along the flows of H,
B(1,k,z) < V(1 k,z) € R>o x Nx X,
B(Tkx) V(Tkx)€R>0XNX(Xuﬁ(CUD))
B(Tk—|-177)<0 Vn e G(z), V(r,k,z) € K. N (R>0 x N x D)
Gx)cCUD VzxeD : (1,k,x) € K, (1,k) € R>g x N
where K. := {(1,k,z) € Ry x N x R" : B(1,k,z) <0}
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Theorem: Assume that H is satisfies the hybrid basic conditions*
and that the backward solutions are either bounded or complete.
The hybrid system H is safe w.r.t. (X,, X,,)

if and only if
there exists B : R>9 x N x R" — R such that

(1,z) — B(1,k,x) is lower semicontinuous (uniformly in k)
Bis nonincreasing along the flows of H,
B(1,k,z) < V(1 k,z) € R>o x Nx X,
B(Tkx) V(Tkx)ER>OXNX(Xuﬁ(CUD))
B(1,k+1, 77) <0 VneG(z), Y(r,k,z) € K.N(R>9 x N x D)
Gx)cCUD VzxeD : (1,k,x) € K, (1,k) € R>g x N
where K, := {(7,k,z) € R>o x Nx R" : B(r, k,z) < 0} Moreover,
» If X, is compact, then the pre-completeness condition on
the backward solutions is not needed.
» If the solutions to H are not Zeno, then the result holds with
B independent of k.
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