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Motivation and Approach

Common features in AFOSR applications:
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discretely (e.g., logic variables, resetting timers).

! Abrupt changes in the dynamics (changes in the environment,
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Motivation and Approach

Common features in AFOSR applications:

! Variables changing continuously (e.g., physical quantities) and
discretely (e.g., logic variables, resetting timers).

! Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems featuring
switching and intermittency of information with provable
robustness to uncertainties arising in real-world environments?

Approach:
! Model continuous and discrete behavior using dynamical

models that are hybrid.
! Develop systematic control theoretical tools for stability,

invariance, safety, and temporal logic, with robustness.



Modeling Hybrid Dynamical Systems

Hybrid dynamical systems include a wide range of systems

Switched systems

ż = fσ(t)(z)

σ switching signal

Impulsive systems

ż(t) = f(z(t))

z(t+) = g(z(t)) t = t1, t2, . . .

Differential-algebraic
equations

ż = f(z, w)

0 = η(z, w)

w algebraic variables

Hybrid automata

q = 1 q = 2

q = 3

ż = f1(z) ż = f2(z)

ż = f3(z)



Prevalent Network Control Applications

Multi-agent Systems with Limited

Information [Automatica 16, TAC 18]

Control of Groups of Neurons

[ACC 14, TCNS 16]

Coordination of

Underactuated Vehicles

[Automatica 15, TAC 16]
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Prevalent Network Control Applications

Multi-agent Systems with Limited

Information [Automatica 16, TAC 18]

Control of Groups of Neurons

[ACC 14, TCNS 16]

Coordination of

Underactuated Vehicles

[Automatica 15, TAC 16]

Key Features:

! Nonlinearities

! Fast time scales / events

! Limited information
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Outline of Recent Results Relevant to the CoE

1. Optimization
! High Performance Optimization via Uniting Control

ACC19, ACC20 (submitted), + CoE collab. (M. Hale)

! Model Predictive Control for Hybrid Systems
ACC19, CDC19, ACC20 (submitted), CDC19 Workshop

+ collab. w/ AFRL/RV (S. Phillips and C. Petersen)

2. Tools to Satisfy High-level Specifications
! Solution-independent Conditions for Invariance and

Finite-time Attractivity Automatica 19, TAC 19, NAHS and

IFAC WC20 (submitted) + Collab. w/ NASA (A. Mavridou)

! (Necessary and Sufficient) Safety Certificates
HSCC19, ACC19, and ACC20 (submitted)

3. Hybrid Control
! Global Robust Stabilization on Manifolds

Automatica 19, TAC19, and ACC19 + CoE collab. (W. Dixon)

! Synchronization over Networks w/ Intermittent
Information Automatica 19, ACC19, and ACC20 (submitted)



Safety Certificates
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Basic Setting

Consider the system

ẋ = f(x) x ∈ X

and the sets

Xo ⊂ X the initial set,

Xu ⊂ X\Xo the unsafe set.

Safety with respect to (Xo,Xu) ⇔ reach(Xo) ∩Xu = ∅

reach(Xo) := {x ∈ R
n : x = φ(t;xo),with φ a solution from xo ∈ Xo

and any t ∈ domφ} – namely, the infinite reach set
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Sufficient Conditions for Safety when X = Rn

Let B be continuous such that

B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo

and for each solution φ from xo ∈ Rn\Ke

t (→ B(φ(t;xo)) is nonincreasing

where Ke :=
{

x ∈ R2 : B(x) ≤ 0
}

– the zero-sublevel set of B

It follows that the system ẋ = f(x) is safe w.r.t. (Xo,Xu)



Converse Safety Problem

Given a safe system ẋ = f(x) w.r.t. (Xo,Xu), find a scalar
function B : Rn → R (at least continuous) such that

B(x) > 0 ∀x ∈ Xu, B(x) ≤ 0 ∀x ∈ Xo

and t (→ B(φ(t;xo)) is nonincreasing on Rn\Ke
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Converse Safety Problem

Given a safe system ẋ = f(x) w.r.t. (Xo,Xu), find a scalar
function B : Rn → R (at least continuous) such that

B(x) > 0 ∀x ∈ Xu, B(x) ≤ 0 ∀x ∈ Xo

and t (→ B(φ(t;xo)) is nonincreasing on Rn\Ke

Two solutions to the converse safety problem in the literature are

[Prajna & Rantzer 05] when

1. f ∈ C1

2. ∃V ∈ C1 s.t.
⟨∇V (x), f(x)⟩ < 0 ∀x ∈ X

3. (X,Xo,Xu) are compact

[Wisniewski & Sloth 17] when

1. f ∈ C1

2. ∃V smooth s.t.
⟨∇V (x), f(x)⟩ < 0 on X
except at critical points of V
+ geometric conditions

3. (X,Xo,Xu) are compact
manifolds



Safe System but No Continuous Barrier Exists

Consider the planar continuous-time system [Krasovskii 63]
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r = |x|
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Safe System but No Continuous Barrier Exists

Consider the planar continuous-time system [Krasovskii 63]

ẋ1 = −x2 + rx1 sin
2(1/r)

ẋ2 = x1 + rx2 sin
2(1/r)

where
r = |x|

This system can be rewritten in polar coordinates (r, θ) as

ṙ = r2 sin2(1/r), θ̇ = 1

Consider the initial and unsafe sets

Xo := {0} , Xu := R
2\δB with δ ≥ 0

It is easy to check that the system is safe w.r.t. (Xo,Xu)
due to Xo being forward invariant



Safe System w/o C0 State-Dependent Barrier
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Safe System w/o C0 State-Dependent Barrier

There is no continuous barrier function with B(0) = 0, B(x) > 0
forall x ∈ Xu, and t (→ B(φ(t;xo)) nonincreasing on Rn \Xo
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Modeling Hybrid Systems: Closed Loop

Hybrid closed-loop systems are given by hybrid inclusions

H

{

ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

where x is the state

! C is the flow set

! F is the flow map

! D is the jump set

! G is the jump map

Solutions are functions parameterized by hybrid time (t, j):
! Flows parameterized by t ∈ R≥0 := [0,+∞)
! Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}

Then, solutions to H are given by hybrid arcs x defined on

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ([tj, tj+1]× {j}) ∪ . . .

The state x can have logic, memory, and timer components.The hybrid system H satisfies the hybrid basic conditions if
C, D are closed and F , G are “continuous”
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Modeling Hybrid Systems: Closed Loop

Hybrid closed-loop systems are given by hybrid inclusions

H

{

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

For this class of systems, we have the following:

! An initial set Xo ⊂ C ∪D and an unsafe set Xu ⊂ Rn.

! Assume that Rn\(C ∪D) ⊂ Xu.

! A barrier function candidate B : Rn → R is defined as
B(x) > 0 ∀x ∈ Xu ∩ (C ∪D) and B(x) ≤ 0 ∀x ∈ Xo.

! A barrier function candidate B defines the set

K := {x ∈ C ∪D : B(x) ≤ 0}



Sufficient Conditions for Safety

Theorem: The system H is safe w.r.t. (Xo,Xu) if a barrier
candidate B exists such that K = {x ∈ C ∪D : B(x) ≤ 0} is
closed and forward pre-invariant for H.
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Sufficient Conditions for Safety

Theorem: The system H is safe w.r.t. (Xo,Xu) if a barrier
candidate B exists such that K = {x ∈ C ∪D : B(x) ≤ 0} is
closed and forward pre-invariant for H.

The closed set K is forward pre-invariant if

1. B(η) ≤ 0 ∀η ∈ G(x) ∀x ∈ D ∩K

2. G(D ∩K) ⊂ C ∪D

3. t (→ B(φ(t, 0)) is nonincreasing for flowing solutions
t (→ φ(t, 0) in (U(∂K)\K) ∩ C

where U(S) is any neighborhood around the set S



Monotone Behavior Along the Flows

Proposition:

! When B is C1, 3. is satisfied if
⟨∇B(x), η⟩ ≤ 0 ∀x ∈ (U(∂Ke)\Ke) ∩C ∀η ∈ F (x) ∩ TC(x).

! When B is loc. Lip., we replace ∇B by ∂B.



Monotone Behavior Along the Flows

Proposition:

! When B is C1, 3. is satisfied if
⟨∇B(x), η⟩ ≤ 0 ∀x ∈ (U(∂Ke)\Ke) ∩C ∀η ∈ F (x) ∩ TC(x).

! When B is loc. Lip., we replace ∇B by ∂B.

! When B is lower semicontinuous and F locally bounded we
replace ∇B by ∂pB and (U(∂Ke)\Ke) ∩ C by
U(Ke ∩C)\Ke, Ke := {x ∈ Rn : B(x) ≤ 0}.

(∂B, ∂pB,TC) are the generalized gradient, the proximal
subdifferential, and the contingent cone w.r.t. C [Clarke & al 08].



Safety for Bouncing Ball

Consider a hybrid system H = (C,F ,D,G) modeling a ball
bouncing vertically on the ground, with x = (x1, x2) ∈ R2 given by

F (x) :=

[

x2
−γ

]

∀x ∈ C, γ > 0

G(x) :=

[

0
−λx2

]

∀x ∈ D, λ ∈ [0, 1]

C := {x ∈ R
2 : x1 ≥ 0}

D := {x ∈ R
2 : x1 = 0, x2 ≤ 0}
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! Let Xo := {x ∈ C : |x| ≤ 1/(4γ)} and
Xu := {x ∈ C : x1 > 1/γ, x2 = 0} .

! Consider the barrier candidate B(x) := 2γx1 + (x2 − 1)(x2 + 1).
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! Let Xo := {x ∈ C : |x| ≤ 1/(4γ)} and
Xu := {x ∈ C : x1 > 1/γ, x2 = 0} .

! Consider the barrier candidate B(x) := 2γx1 + (x2 − 1)(x2 + 1).

! Condition 1) holds since
B(G(x)) = 2γx1 + λ2x2

2 − 1 ≤ 2γx1 + x2
2 − 1 ≤ 0 ∀x ∈ K ∩D.

! Condition 2) holds since G(D) = {0}× R≥0 ⊂ C ∪D.

! Condition 3) holds since ⟨∇B(x), F (x)⟩ = 0 ∀x ∈ C.
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Consider a hybrid system H = (C,F ,D,G) modeling a ball
bouncing vertically on the ground, with x = (x1, x2) ∈ R2 given by

F (x) :=

[

x2
−γ

]

∀x ∈ C, γ > 0

G(x) :=

[

0
−λx2

]

∀x ∈ D, λ ∈ [0, 1]

C := {x ∈ R
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2 : x1 = 0, x2 ≤ 0}
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! Let Xo := {x ∈ C : |x| ≤ 1/(4γ)} and
Xu := {x ∈ C : x1 > 1/γ, x2 = 0} .

! Consider the barrier candidate B(x) := 2γx1 + (x2 − 1)(x2 + 1).

! Condition 1) holds since
B(G(x)) = 2γx1 + λ2x2

2 − 1 ≤ 2γx1 + x2
2 − 1 ≤ 0 ∀x ∈ K ∩D.

! Condition 2) holds since G(D) = {0}× R≥0 ⊂ C ∪D.

! Condition 3) holds since ⟨∇B(x), F (x)⟩ = 0 ∀x ∈ C.
The system H is safe with respect to (Xo, Xu)



Safety for System with Discrete States

Consider a hybrid system H = (C,F ,D,G) modeling a thermostat
system, with the state x = (q, z) ∈ X := {0, 1} × R given by

F (x) :=

[

0
−z + z0 + z∆q

]

∀x ∈ C

G(x) :=

[

1− q
z

]

∀x ∈ D

C := ({0} × C0) ∪ ({1} × C1),
C0 := {z ∈ R : z ≥ zmin}
C1 := {z ∈ R : z ≤ zmax}

D := ({0} ×D0) ∪ ({1} ×D1).
D0 := {z ∈ R : z ≤ zmin}
D1 := {z ∈ R : z ≥ zmax}

! z is the room temperature, zo the room temperature when the
heater is OFF

! z∆ the capacity of the heater to raise the temperature

! q the state of the heater 1 (ON) or 0 (OFF)



Safety for System with Discrete States

Consider a hybrid system H = (C,F ,D,G) modeling a thermostat
system, with the state x = (q, z) ∈ X := {0, 1} × R given by

F (x) :=

[

0
−z + z0 + z∆q

]

∀x ∈ C

G(x) :=

[

1− q
z

]

∀x ∈ D

C := ({0} × C0) ∪ ({1} × C1),
C0 := {z ∈ R : z ≥ zmin}
C1 := {z ∈ R : z ≤ zmax}

D := ({0} ×D0) ∪ ({1} ×D1).
D0 := {z ∈ R : z ≤ zmin}
D1 := {z ∈ R : z ≥ zmax}

! z stays between zmin and zmax satisfying
zo < zmin < zmax < zo + z∆.

! Let Xo := {(q, z) ∈ X : z ∈ [zmin/2, zmax/2]}.
! Let Xu := {(q, z) ∈ X : z ∈ (−∞, zmin) ∪ (zmax,+∞)}.
! Consider the barrier candidate B(x) := (z − zmin)(z − zmax)

and let Ke := {x ∈ R2 : B(x) ≤ 0}.



Safety for System with Discrete States

Consider a hybrid system H = (C,F ,D,G) modeling a thermostat
system, with the state x = (q, z) ∈ X := {0, 1} × R given by

F (x) :=

[

0
−z + z0 + z∆q

]

∀x ∈ C

G(x) :=

[

1− q
z

]

∀x ∈ D

C := ({0} × C0) ∪ ({1} × C1),
C0 := {z ∈ R : z ≥ zmin}
C1 := {z ∈ R : z ≤ zmax}

D := ({0} ×D0) ∪ ({1} ×D1).
D0 := {z ∈ R : z ≤ zmin}
D1 := {z ∈ R : z ≥ zmax}

! C ∪D = {0, 1} × R; hence, condition 2) holds since
G(x) = [1− q z]⊤ ∈ C ∪D ∀x ∈ C ∪D.

! Condition 1) holds since
B(G(x)) = B([(1− q) z]⊤) = B(x) ≤ 0 ∀x ∈ Ke ∩D.



Safety for System with Discrete States

Consider a hybrid system H = (C,F ,D,G) modeling a thermostat
system, with the state x = (q, z) ∈ X := {0, 1} × R given by
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condition 3) holds since
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for all x ∈ (U(Ke)\Ke) ∩ C.



Safety for System with Discrete States

Consider a hybrid system H = (C,F ,D,G) modeling a thermostat
system, with the state x = (q, z) ∈ X := {0, 1} × R given by

F (x) :=

[

0
−z + z0 + z∆q

]

∀x ∈ C

G(x) :=

[

1− q
z

]
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! Ke = R× [zmin, zmax].
! Furthermore, for some ϵ > 0, (U(Ke)\Ke) ∩C =

({0}× (zmax, zmax + ϵ)) ∪ ({1}× (zmin, zmin − ϵ)). Hence,
condition 3) holds since

⟨∇B(x), F (x)⟩ = (zmin + zmax − 2z)(z − zo − z∆q) ≤ 0

for all x ∈ (U(K )\K ) ∩ C.

The system H is safe with respect to (Xo,Xu)



Safety-Based Control for Agile Evasion

Presented at 2019 CASE Robotics Conference – Best Paper Award Finalist
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Hybrid Control for Aggresive Maneuvering
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where Ke := {(τ, k, x) ∈ R≥0 × N× Rn : B(τ, k, x) ≤ 0} Moreover,
! If Xo is compact, then the pre-completeness condition on

the backward solutions is not needed.
! If the solutions to H are not Zeno, then the result holds with

B independent of k.
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! Overview of Recent Results
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! Sufficient Conditions
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Next steps:

! Estimation

! Reachability
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