Nonsmooth Systems

Ricardo Sanfelice Department Electrical and Computer Engineering University of California

Duke

CoE Review @ Duke University - October 15, 2019

- Variables changing continuously (e.g., physical quantities) and discretely (e.g., logic variables, resetting timers).
- Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

- Variables changing continuously (e.g., physical quantities) and discretely (e.g., logic variables, resetting timers).
- Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems featuring switching and intermittency of information with provable robustness to uncertainties arising in real-world environments?

- Variables changing continuously (e.g., physical quantities) and discretely (e.g., logic variables, resetting timers).
- Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems featuring switching and intermittency of information with provable robustness to uncertainties arising in real-world environments?

Approach:

- Variables changing continuously (e.g., physical quantities) and discretely (e.g., logic variables, resetting timers).
- Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems featuring switching and intermittency of information with provable robustness to uncertainties arising in real-world environments?

Approach:

 Model continuous and discrete behavior using dynamical models that are hybrid.

- Variables changing continuously (e.g., physical quantities) and discretely (e.g., logic variables, resetting timers).
- Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems featuring switching and intermittency of information with provable robustness to uncertainties arising in real-world environments?

Approach:

- Model continuous and discrete behavior using dynamical models that are hybrid.
- Develop systematic control theoretical tools for stability, invariance, safety, and temporal logic, with robustness.

Modeling Hybrid Dynamical Systems

Hybrid dynamical systems include a wide range of systems

Switched systems Impulsive systems $\dot{z} = f_{\sigma(t)}(z)$ $\dot{z}(t) = f(z(t))$ $z(t^+) = g(z(t)) \qquad t = t_1, t_2, \dots$ σ switching signal **Differential-algebraic** Hybrid automata equations $\begin{array}{c}
q = 2 \\
\dot{z} = f_2(z)
\end{array}$ $\dot{q} = 1$ $\dot{z} = f_1(z)$ $\dot{z} = f(z, w)$ $0 = \eta(z, w)$ q=3 $\dot{z} = f_3(z)$ w algebraic variables

Prevalent Network Control Applications

Multi-agent Systems with Limited Information [Automatica 16, TAC 18] Control of Groups of Neurons [ACC 14, TCNS 16]

Coordination of Underactuated Vehicles [Automatica 15, TAC 16]

Prevalent Network Control Applications

Multi-agent Systems with Limited Information [Automatica 16, TAC 18] Control of Groups of Neurons [ACC 14, TCNS 16]

Key Features:

- Nonlinearities
- ► Fast time scales / events
- Limited information

Outline of Recent Results Relevant to the CoE

1. Optimization

 High Performance Optimization via Uniting Control ACC19, ACC20 (submitted), + CoE collab. (M. Hale)

Model Predictive Control for Hybrid Systems ACC19, CDC19, ACC20 (submitted), CDC19 Workshop + collab. w/ AFRL/RV (S. Phillips and C. Petersen)

2. Tools to Satisfy High-level Specifications

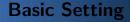
- Solution-independent Conditions for Invariance and Finite-time Attractivity Automatica 19, TAC 19, NAHS and IFAC WC20 (submitted) + Collab. w/ NASA (A. Mavridou)
- (Necessary and Sufficient) Safety Certificates

HSCC19, ACC19, and ACC20 (submitted)

3. Hybrid Control

- Global Robust Stabilization on Manifolds
 Automatica 19, TAC19, and ACC19 + CoE collab. (W. Dixon)
- Synchronization over Networks w/ Intermittent Information Automatica 19, ACC19, and ACC20 (submitted)

Safety Certificates

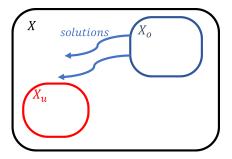


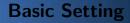
Consider the system

$$\dot{x} = f(x) \qquad x \in X$$

and the sets

$$\label{eq:constant} \begin{split} X_o \subset X \text{ the initial set}, \\ X_u \subset X \backslash X_o \text{ the unsafe set}. \end{split}$$



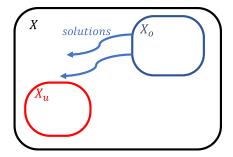


Consider the system

$$\dot{x} = f(x) \qquad x \in X$$

and the sets

$$\begin{split} X_o \subset X \text{ the initial set}, \\ X_u \subset X \backslash X_o \text{ the unsafe set}. \end{split}$$



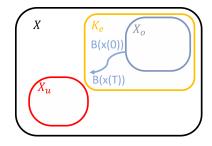
Safety with respect to $(X_o, X_u) \quad \Leftrightarrow \quad \operatorname{reach}(X_o) \cap X_u = \emptyset$

 $\operatorname{reach}(X_o) := \{ x \in \mathbb{R}^n : x = \phi(t; x_o), \text{with } \phi \text{ a solution from } x_o \in X_o \\ \text{and any } t \in \operatorname{dom} \phi \} - \text{namely, the infinite reach set} \end{cases}$

Sufficient Conditions for Safety when $X = \mathbb{R}^n$

Let B be continuous such that

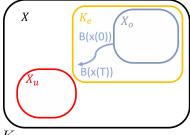
$$\begin{split} B(x) &> 0 \qquad \forall x \in X_u \\ B(x) &\leq 0 \qquad \forall x \in X_o \end{split}$$



Sufficient Conditions for Safety when $X = \mathbb{R}^n$

Let B be continuous such that

 $B(x) > 0 \qquad \forall x \in X_u$ $B(x) \le 0 \qquad \forall x \in X_o$



and for each solution ϕ from $x_o \in \mathbb{R}^n \setminus K_e$

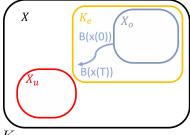
 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

where $K_e := \{x \in \mathbb{R}^2 : B(x) \le 0\}$ – the zero-sublevel set of B

Sufficient Conditions for Safety when $X = \mathbb{R}^n$

Let B be continuous such that

 $B(x) > 0 \qquad \forall x \in X_u$ $B(x) \le 0 \qquad \forall x \in X_o$



and for each solution ϕ from $x_o \in \mathbb{R}^n \backslash K_e$

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

where $K_e := \left\{ x \in \mathbb{R}^2 : B(x) \le 0 \right\}$ – the **zero-sublevel** set of B

It follows that the system $\dot{x} = f(x)$ is safe w.r.t. (X_o, X_u)

Converse Safety Problem

Given a safe system $\dot{x} = f(x)$ w.r.t. (X_o, X_u) , find a scalar function $B : \mathbb{R}^n \to \mathbb{R}$ (at least continuous) such that

 $B(x) > 0 \quad \forall x \in X_u, \ B(x) \le 0 \quad \forall x \in X_o$

and $t \mapsto B(\phi(t; x_o))$ is nonincreasing on $\mathbb{R}^n \setminus K_e$

Converse Safety Problem

Given a safe system $\dot{x} = f(x)$ w.r.t. (X_o, X_u) , find a scalar function $B : \mathbb{R}^n \to \mathbb{R}$ (at least continuous) such that

 $B(x) > 0 \quad \forall x \in X_u, \ B(x) \le 0 \quad \forall x \in X_o$

and $t \mapsto B(\phi(t; x_o))$ is nonincreasing on $\mathbb{R}^n \setminus K_e$

Two solutions to the converse safety problem in the literature are

[Prajna & Rantzer 05] when

- 1. $f \in C^1$
- 2. $\exists V \in \mathcal{C}^1$ s.t. $\langle \nabla V(x), f(x) \rangle < 0 \ \forall x \in X$
- **3**. (X, X_o, X_u) are compact

Converse Safety Problem

Given a safe system $\dot{x} = f(x)$ w.r.t. (X_o, X_u) , find a scalar function $B : \mathbb{R}^n \to \mathbb{R}$ (at least continuous) such that

 $B(x) > 0 \quad \forall x \in X_u, \ B(x) \le 0 \quad \forall x \in X_o$

and $t \mapsto B(\phi(t; x_o))$ is nonincreasing on $\mathbb{R}^n \setminus K_e$

Two solutions to the converse safety problem in the literature are

[Wisniewski & Sloth 17] when

[Prajna & Rantzer 05] when

- 1. $f \in \mathcal{C}^1$
- 2. $\exists V \in \mathcal{C}^1$ s.t. $\langle \nabla V(x), f(x) \rangle < 0 \ \forall x \in X$
- **3**. (X, X_o, X_u) are compact

- **1**. $f \in \mathcal{C}^1$
- 2. $\exists V \text{ smooth s.t.}$ $\langle \nabla V(x), f(x) \rangle < 0 \text{ on } X$ except at critical points of V+ geometric conditions
- 3. (X, X_o, X_u) are compact manifolds

Consider the planar continuous-time system [Krasovskii 63]

$$\dot{x}_1 = -x_2 + rx_1 \sin^2(1/r) \dot{x}_2 = x_1 + rx_2 \sin^2(1/r)$$

where

r = |x|

Consider the planar continuous-time system [Krasovskii 63]

$$\dot{x}_1 = -x_2 + rx_1 \sin^2(1/r)$$

 $\dot{x}_2 = x_1 + rx_2 \sin^2(1/r)$

where

r = |x|

This system can be rewritten in polar coordinates (r, θ) as

$$\dot{r} = r^2 \sin^2(1/r), \qquad \dot{\theta} = 1$$

Consider the planar continuous-time system [Krasovskii 63]

$$\dot{x}_1 = -x_2 + rx_1 \sin^2(1/r)$$

 $\dot{x}_2 = x_1 + rx_2 \sin^2(1/r)$

where

r = |x|

This system can be rewritten in polar coordinates (r, θ) as

$$\dot{r} = r^2 \sin^2(1/r), \qquad \dot{\theta} = 1$$

Consider the initial and unsafe sets

$$X_o := \{0\}, \qquad X_u := \mathbb{R}^2 \setminus \delta \mathbb{B} \quad \text{ with } \delta \ge 0$$

Consider the planar continuous-time system [Krasovskii 63]

$$\dot{x}_1 = -x_2 + rx_1 \sin^2(1/r)$$

 $\dot{x}_2 = x_1 + rx_2 \sin^2(1/r)$

where

r = |x|

This system can be rewritten in polar coordinates (r, θ) as

$$\dot{r} = r^2 \sin^2(1/r), \qquad \dot{\theta} = 1$$

Consider the initial and unsafe sets

$$X_o := \{0\}, \qquad X_u := \mathbb{R}^2 \setminus \delta \mathbb{B} \quad \text{ with } \delta \ge 0$$

It is easy to check that the system is safe w.r.t. (X_o, X_u) due to X_o being forward invariant

Safe System w/o C⁰ State-Dependent Barrier

Safe System w/o C⁰ State-Dependent Barrier

There is no continuous barrier function with B(0) = 0, B(x) > 0forall $x \in X_u$, and $t \mapsto B(\phi(t; x_o))$ nonincreasing on $\mathbb{R}^n \setminus X_o$

Hybrid closed-loop systems are given by hybrid inclusions

$$\mathcal{H} \left\{ \begin{array}{rrr} \dot{x} &=& F(x) & \quad x \in C \\ x^+ &=& G(x) & \quad x \in D \end{array} \right.$$

where x is the *state*

- C is the flow set
- ▶ F is the flow map

- D is the jump set
- G is the jump map

Solutions are functions parameterized by hybrid time (t, j):

- Flows parameterized by $t \in \mathbb{R}_{\geq 0} := [0, +\infty)$
- Jumps parameterized by $j \in \mathbb{N}_{\geq 0} := \{0, 1, 2, \ldots\}$

Then, solutions to $\ensuremath{\mathcal{H}}$ are given by hybrid arcs x defined on

 $([0,t_1] \times \{0\}) \cup ([t_1,t_2] \times \{1\}) \cup \dots ([t_j,t_{j+1}] \times \{j\}) \cup \dots$

The hybrid system \mathcal{H} satisfies the hybrid basic conditions if C, D are closed and F, G are "continuous"

Hybrid closed-loop systems are given by hybrid inclusions

$$\mathcal{H} \quad \left\{ \begin{array}{rrrr} \dot{x} & \in & F(x) & & x \in C \\ x^+ & \in & G(x) & & x \in D \end{array} \right.$$

where x is the *state*

- C is the flow set
- ▶ F is the flow map

- D is the jump set
- G is the jump map

Solutions are functions parameterized by hybrid time (t, j):

- Flows parameterized by $t \in \mathbb{R}_{\geq 0} := [0, +\infty)$
- Jumps parameterized by $j \in \mathbb{N}_{\geq 0} := \{0, 1, 2, \ldots\}$

Then, solutions to $\ensuremath{\mathcal{H}}$ are given by hybrid arcs x defined on

 $([0,t_1] \times \{0\}) \cup ([t_1,t_2] \times \{1\}) \cup \dots ([t_j,t_{j+1}] \times \{j\}) \cup \dots$

The hybrid system \mathcal{H} satisfies the hybrid basic conditions if C, D are closed and F, G are "continuous"

Hybrid closed-loop systems are given by hybrid inclusions

$$\mathcal{H} \begin{cases} \dot{x} = F(x) & x \in C \\ x^+ = G(x) & x \in D \end{cases}$$

For this class of systems, we have the following:

• An initial set $X_o \subset C \cup D$ and an unsafe set $X_u \subset \mathbb{R}^n$.

Hybrid closed-loop systems are given by hybrid inclusions

$$\mathcal{H} \left\{ egin{array}{ccc} \dot{x} &\in& F(x) & x \in C \ x^+ &\in& G(x) & x \in D \end{array}
ight.$$

For this class of systems, we have the following:

- An initial set $X_o \subset C \cup D$ and an unsafe set $X_u \subset \mathbb{R}^n$.
- Assume that $\mathbb{R}^n \setminus (C \cup D) \subset X_u$.

Hybrid closed-loop systems are given by hybrid inclusions

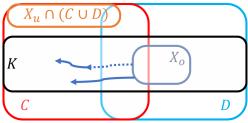
$$\mathcal{H} \left\{ egin{array}{ccc} \dot{x} &\in& F(x) & x \in C \ x^+ &\in& G(x) & x \in D \end{array}
ight.$$

For this class of systems, we have the following:

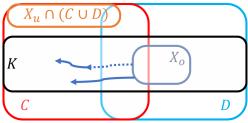
- An initial set $X_o \subset C \cup D$ and an unsafe set $X_u \subset \mathbb{R}^n$.
- Assume that $\mathbb{R}^n \setminus (C \cup D) \subset X_u$.
- ► A barrier function candidate $B : \mathbb{R}^n \to \mathbb{R}$ is defined as $B(x) > 0 \ \forall x \in X_u \cap (C \cup D)$ and $B(x) \le 0 \ \forall x \in X_o$.
- ► A barrier function candidate *B* defines the set

$$K:=\{x\in C\cup D: B(x)\leq 0\}$$

Theorem: The system \mathcal{H} is safe w.r.t. (X_o, X_u) if a **barrier** candidate B exists such that $K = \{x \in C \cup D : B(x) \leq 0\}$ is closed and forward pre-invariant for \mathcal{H} .

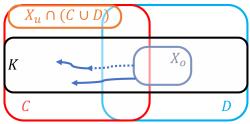


Theorem: The system \mathcal{H} is safe w.r.t. (X_o, X_u) if a **barrier** candidate B exists such that $K = \{x \in C \cup D : B(x) \leq 0\}$ is closed and forward pre-invariant for \mathcal{H} .



The closed set K is forward pre-invariant if

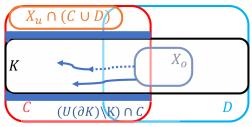
Theorem: The system \mathcal{H} is safe w.r.t. (X_o, X_u) if a **barrier** candidate B exists such that $K = \{x \in C \cup D : B(x) \leq 0\}$ is closed and forward pre-invariant for \mathcal{H} .



The closed set K is forward pre-invariant if

1. $B(\eta) \leq 0 \quad \forall \eta \in G(x) \; \forall x \in D \cap K$ 2. $G(D \cap K) \subset C \cup D$

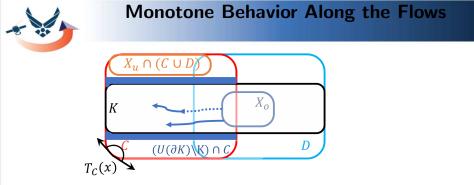
Theorem: The system \mathcal{H} is safe w.r.t. (X_o, X_u) if a **barrier** candidate B exists such that $K = \{x \in C \cup D : B(x) \leq 0\}$ is closed and forward pre-invariant for \mathcal{H} .



The closed set K is forward pre-invariant if

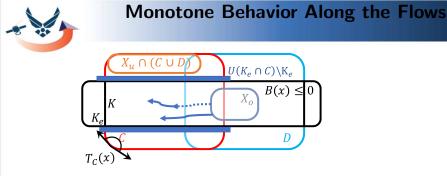
- **1.** $B(\eta) \leq 0 \quad \forall \eta \in G(x) \ \forall x \in D \cap K$
- $2. \ G(D \cap K) \subset \ C \cup D$
- 3. $t \mapsto B(\phi(t,0))$ is nonincreasing for flowing solutions $t \mapsto \phi(t,0)$ in $(U(\partial K) \backslash K) \cap C$

where ${\cal U}(S)$ is any neighborhood around the set S



Proposition:

- ▶ When B is C^1 , 3. is satisfied if $\langle \nabla B(x), \eta \rangle \leq 0 \ \forall x \in (U(\partial K_e) \setminus K_e) \cap C \ \forall \eta \in F(x) \cap T_C(x).$
- When B is loc. Lip., we replace ∇B by ∂B .

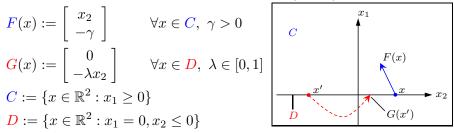


Proposition:

- ▶ When B is C^1 , 3. is satisfied if $\langle \nabla B(x), \eta \rangle \leq 0 \ \forall x \in (U(\partial K_e) \setminus K_e) \cap C \ \forall \eta \in F(x) \cap T_C(x).$
- When B is loc. Lip., we replace ∇B by ∂B .
- ▶ When B is lower semicontinuous and F locally bounded we replace ∇B by $\partial_p B$ and $(U(\partial K_e) \setminus K_e) \cap C$ by $U(K_e \cap C) \setminus K_e$, $K_e := \{x \in \mathbb{R}^n : B(x) \le 0\}$.

 $(\partial B, \partial_p B, T_C)$ are the generalized gradient, the proximal subdifferential, and the contingent cone w.r.t. C [Clarke & al 08].

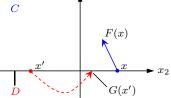
Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a ball bouncing vertically on the ground, with $x = (x_1, x_2) \in \mathbb{R}^2$ given by



Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a ball bouncing vertically on the ground, with $x = (x_1, x_2) \in \mathbb{R}^2$ given by

 $F(x) := \begin{bmatrix} x_2 \\ -\gamma \end{bmatrix} \qquad \forall x \in C, \ \gamma > 0$ $G(x) := \begin{bmatrix} 0 \\ -\lambda x_2 \end{bmatrix} \qquad \forall x \in D, \ \lambda \in [0, 1]$ F(x) $C := \{x \in \mathbb{R}^2 : x_1 \ge 0\}$

$$D := \{ x \in \mathbb{R}^2 : x_1 = 0, x_2 \le 0 \}$$

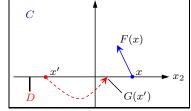


• Let $X_{\alpha} := \{x \in C : |x| < 1/(4\gamma)\}$ and $X_u := \{x \in C : x_1 > 1/\gamma, x_2 = 0\}$.

• Consider the barrier candidate $B(x) := 2\gamma x_1 + (x_2 - 1)(x_2 + 1)$.

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a ball bouncing vertically on the ground, with $x = (x_1, x_2) \in \mathbb{R}^2$ given by

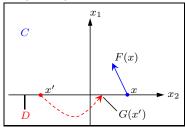
- $F(x) := \begin{bmatrix} x_2 \\ -\gamma \end{bmatrix} \qquad \forall x \in C, \ \gamma > 0$
- $G(x) := \begin{bmatrix} 0 \\ -\lambda x_2 \end{bmatrix} \quad \forall x \in D, \ \lambda \in [0, 1]$
- $C := \{x \in \mathbb{R}^2 : x_1 \ge 0\}$
- $D := \{ x \in \mathbb{R}^2 : x_1 = 0, x_2 \le 0 \}$



- ▶ Let $X_o := \{x \in C : |x| \le 1/(4\gamma)\}$ and $X_u := \{x \in C : x_1 > 1/\gamma, x_2 = 0\}$.
- Consider the barrier candidate $B(x) := 2\gamma x_1 + (x_2 1)(x_2 + 1)$.
- ► Condition 1) holds since $B(G(x)) = 2\gamma x_1 + \lambda^2 x_2^2 - 1 \le 2\gamma x_1 + x_2^2 - 1 \le 0 \quad \forall x \in K \cap D.$
- Condition 2) holds since $G(D) = \{0\} \times \mathbb{R}_{\geq 0} \subset C \cup D$.
- Condition 3) holds since $\langle \nabla B(x), F(x) \rangle = 0 \ \forall x \in C.$

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a ball bouncing vertically on the ground, with $x = (x_1, x_2) \in \mathbb{R}^2$ given by

- $F(x) := \begin{bmatrix} x_2 \\ -\gamma \end{bmatrix} \qquad \forall x \in C, \ \gamma > 0$
- $G(x) := \begin{bmatrix} 0 \\ -\lambda x_2 \end{bmatrix} \quad \forall x \in D, \ \lambda \in [0, 1]$
- $C := \{x \in \mathbb{R}^2 : x_1 \ge 0\}$
- $D := \{ x \in \mathbb{R}^2 : x_1 = 0, x_2 \le 0 \}$



- ▶ Let $X_o := \{x \in C : |x| \le 1/(4\gamma)\}$ and $X_u := \{x \in C : x_1 > 1/\gamma, x_2 = 0\}$.
- Consider the barrier candidate $B(x) := 2\gamma x_1 + (x_2 1)(x_2 + 1)$.
- Condition 1) holds since B(G(x)) = 2γx₁ + λ²x₂² − 1 ≤ 2γx₁ + x₂² − 1 ≤ 0 ∀x ∈ K ∩ D.
 Condition 2) holds since C(D) = {0} × ℝ₂ ⊂ C + D. The system H is safe with respect to (X₀, X_u)

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a thermostat system, with the state $x = (q, z) \in \mathcal{X} := \{0, 1\} \times \mathbb{R}$ given by

$$F(x) := \begin{bmatrix} 0 \\ -z + z_0 + z_\Delta q \end{bmatrix} \qquad \forall x \in C$$
$$G(x) := \begin{bmatrix} 1 - q \\ z \end{bmatrix} \qquad \forall x \in D$$

 $\begin{array}{ll} C := (\{0\} \times C_0) \cup (\{1\} \times C_1), & D := (\{0\} \times D_0) \cup (\{1\} \times D_1). \\ C_0 := \{z \in \mathbb{R} : z \ge z_{min}\} & D_0 := \{z \in \mathbb{R} : z \le z_{min}\} \\ C_1 := \{z \in \mathbb{R} : z \le z_{max}\} & D_1 := \{z \in \mathbb{R} : z \ge z_{max}\} \end{array}$

- $\blacktriangleright\ z$ is the room temperature, z_o the room temperature when the heater is OFF
- z_{Δ} the capacity of the heater to raise the temperature
- ▶ q the state of the heater 1 (ON) or 0 (OFF)

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a thermostat system, with the state $x = (q, z) \in \mathcal{X} := \{0, 1\} \times \mathbb{R}$ given by

$$F(x) := \begin{bmatrix} 0 \\ -z + z_0 + z_\Delta q \end{bmatrix} \qquad \forall x \in C$$
$$G(x) := \begin{bmatrix} 1 - q \\ z \end{bmatrix} \qquad \forall x \in D$$

 $\begin{array}{ll} C := (\{0\} \times C_0) \cup (\{1\} \times C_1), & D := (\{0\} \times D_0) \cup (\{1\} \times D_1). \\ C_0 := \{z \in \mathbb{R} : z \ge z_{min}\} & D_0 := \{z \in \mathbb{R} : z \le z_{min}\} \\ C_1 := \{z \in \mathbb{R} : z \le z_{max}\} & D_1 := \{z \in \mathbb{R} : z \ge z_{max}\} \end{array}$

• z stays between z_{min} and z_{max} satisfying

 $z_o < z_{min} < z_{max} < z_o + z_\Delta.$

• Let $X_o := \{(q, z) \in \mathcal{X} : z \in [z_{min}/2, z_{max}/2]\}.$

• Let $X_u := \{(q, z) \in \mathcal{X} : z \in (-\infty, z_{min}) \cup (z_{max}, +\infty)\}.$

► Consider the barrier candidate $B(x) := (z - z_{min})(z - z_{max})$ and let $K_e := \{x \in \mathbb{R}^2 : B(x) \le 0\}.$

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a thermostat system, with the state $x = (q, z) \in \mathcal{X} := \{0, 1\} \times \mathbb{R}$ given by

$$F(x) := \begin{bmatrix} 0 \\ -z + z_0 + z_\Delta q \end{bmatrix} \qquad \forall x \in C$$
$$G(x) := \begin{bmatrix} 1 - q \\ z \end{bmatrix} \qquad \forall x \in D$$

 $\begin{array}{ll} C := (\{0\} \times C_0) \cup (\{1\} \times C_1), & D := (\{0\} \times D_0) \cup (\{1\} \times D_1). \\ C_0 := \{z \in \mathbb{R} : z \ge z_{min}\} & D_0 := \{z \in \mathbb{R} : z \le z_{min}\} \\ C_1 := \{z \in \mathbb{R} : z \le z_{max}\} & D_1 := \{z \in \mathbb{R} : z \ge z_{max}\} \end{array}$

► $C \cup D = \{0, 1\} \times \mathbb{R}$; hence, condition 2) holds since $G(x) = [1 - q \ z]^\top \in C \cup D \quad \forall x \in C \cup D.$

► Condition 1) holds since $B(G(x)) = B([(1-q) \ z]^{\top}) = B(x) \leq 0 \quad \forall x \in K_e \cap D.$

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a thermostat system, with the state $x = (q, z) \in \mathcal{X} := \{0, 1\} \times \mathbb{R}$ given by

$$F(x) := \begin{bmatrix} 0 \\ -z + z_0 + z_\Delta q \end{bmatrix} \qquad \forall x \in C$$
$$G(x) := \begin{bmatrix} 1 - q \\ z \end{bmatrix} \qquad \forall x \in D$$

 $\begin{array}{ll} C := (\{0\} \times C_0) \cup (\{1\} \times C_1), & D := (\{0\} \times D_0) \cup (\{1\} \times D_1). \\ C_0 := \{z \in \mathbb{R} : z \ge z_{min}\} & D_0 := \{z \in \mathbb{R} : z \le z_{min}\} \\ C_1 := \{z \in \mathbb{R} : z \le z_{max}\} & D_1 := \{z \in \mathbb{R} : z \ge z_{max}\} \end{array}$

 $\blacktriangleright K_e = \mathbb{R} \times [z_{min}, z_{max}].$

Furthermore, for some ε > 0, (U(K_e)\K_e) ∩ C = ({0} × (z_{max}, z_{max} + ε)) ∪ ({1} × (z_{min}, z_{min} − ε)). Hence, condition 3) holds since

 $\langle \nabla B(x), F(x) \rangle = (z_{min} + z_{max} - 2z)(z - z_o - z_\Delta q) \le 0$ for all $x \in (U(K_e) \setminus K_e) \cap C$.

Consider a hybrid system $\mathcal{H} = (C, F, D, G)$ modeling a thermostat system, with the state $x = (q, z) \in \mathcal{X} := \{0, 1\} \times \mathbb{R}$ given by

$$F(x) := \begin{bmatrix} 0 \\ -z + z_0 + z_\Delta q \end{bmatrix} \qquad \forall x \in C$$
$$G(x) := \begin{bmatrix} 1 - q \\ z \end{bmatrix} \qquad \forall x \in D$$

 $\begin{array}{ll} \mathbf{C} := (\{0\} \times C_0) \cup (\{1\} \times C_1), & \mathbf{D} := (\{0\} \times D_0) \cup (\{1\} \times D_1). \\ C_0 := \{z \in \mathbb{R} : z \ge z_{min}\} & D_0 := \{z \in \mathbb{R} : z \le z_{min}\} \\ C_1 := \{z \in \mathbb{R} : z \le z_{max}\} & D_1 := \{z \in \mathbb{R} : z \ge z_{max}\} \end{array}$

 $\blacktriangleright K_e = \mathbb{R} \times [z_{min}, z_{max}].$

▶ Furthermore, for some $\epsilon > 0$, $(U(K_e) \setminus K_e) \cap C = (\{0\} \times (z_{max}, z_{max} + \epsilon)) \cup (\{1\} \times (z_{min}, z_{min} - \epsilon))$. Hence, condition 3) holds since

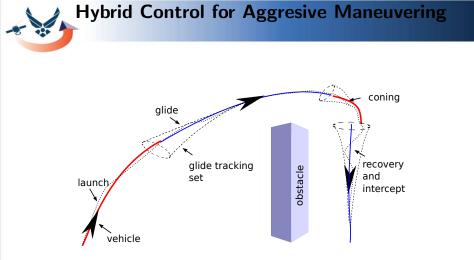
 $(\Delta q) \leq 0$

The system \mathcal{H} is safe with respect to (X_o, X_u)

 $\int (U(V) \setminus V) \circ O$

Safety-Based Control for Agile Evasion

Presented at 2019 CASE Robotics Conference – Best Paper Award Finalist



Achieving non-parabolic ballistic trajectories for a guided munition using aggressive maneuvers using multiple controllers.

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions* and that the backward solutions are either bounded or complete.

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_0, X_u)

if and only if

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists a lower semicontinuous barrier function

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $(\tau, x) \mapsto B(\tau, k, x)$ is lower semicontinuous (uniformly in k)

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $(\tau, x) \mapsto B(\tau, k, x)$ is lower semicontinuous (uniformly in k) B is nonincreasing along the flows of \mathcal{H} ,

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $\begin{array}{l} (\tau,x)\mapsto B(\tau,k,x) \text{ is lower semicontinuous (uniformly in }k) \\ B \text{ is nonincreasing along the flows of }\mathcal{H}, \\ B(\tau,k,x)\leq 0 \qquad \forall (\tau,k,x)\in \mathbb{R}_{\geq 0}\times\mathbb{N}\times X_{o} \end{array}$

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $\begin{array}{l} (\tau, x) \mapsto B(\tau, k, x) \text{ is lower semicontinuous (uniformly in } k) \\ B \text{ is nonincreasing along the flows of } \mathcal{H}, \\ B(\tau, k, x) \leq 0 \qquad \forall (\tau, k, x) \in \mathbb{R}_{\geq 0} \times \mathbb{N} \times X_o \\ B(\tau, k, x) > 0 \qquad \forall (\tau, k, x) \in \mathbb{R}_{> 0} \times \mathbb{N} \times (X_u \cap (C \cup D)) \end{array}$

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $\begin{aligned} &(\tau,x)\mapsto B(\tau,k,x) \text{ is lower semicontinuous (uniformly in }k)\\ &B \text{ is nonincreasing along the flows of }\mathcal{H},\\ &B(\tau,k,x)\leq 0 \qquad \forall (\tau,k,x)\in \mathbb{R}_{\geq 0}\times \mathbb{N}\times X_o\\ &B(\tau,k,x)>0 \qquad \forall (\tau,k,x)\in \mathbb{R}_{\geq 0}\times \mathbb{N}\times (X_u\cap (C\cup D))\\ &B(\tau,k+1,\eta)\leq 0 \qquad \forall \eta\in G(x), \ \forall (\tau,k,x)\in K_e\cap (\mathbb{R}_{\geq 0}\times \mathbb{N}\times D) \end{aligned}$

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $\begin{array}{l} (\tau,x)\mapsto B(\tau,k,x) \text{ is lower semicontinuous (uniformly in }k)\\ B \text{ is nonincreasing along the flows of }\mathcal{H},\\ B(\tau,k,x)\leq 0 \qquad \forall (\tau,k,x)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\times X_o\\ B(\tau,k,x)>0 \qquad \forall (\tau,k,x)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\times (X_u\cap(C\cup D))\\ B(\tau,k+1,\eta)\leq 0 \quad \forall \eta\in G(x), \;\forall (\tau,k,x)\in K_e\cap(\mathbb{R}_{\geq 0}\times\mathbb{N}\times D)\\ G(x)\subset C\cup D \quad \forall x\in D \;:\; (\tau,k,x)\in K_e, (\tau,k)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\\ \text{ where } K_e:=\{(\tau,k,x)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\times\mathbb{R}^n:B(\tau,k,x)\leq 0\} \end{array}$

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $\begin{array}{l} (\tau,x)\mapsto B(\tau,k,x) \text{ is lower semicontinuous (uniformly in }k)\\ B \text{ is nonincreasing along the flows of }\mathcal{H},\\ B(\tau,k,x)\leq 0 \qquad \forall (\tau,k,x)\in \mathbb{R}_{\geq 0}\times\mathbb{N}\times X_{o}\\ B(\tau,k,x)> 0 \qquad \forall (\tau,k,x)\in \mathbb{R}_{\geq 0}\times\mathbb{N}\times (X_{u}\cap (C\cup D))\\ B(\tau,k+1,\eta)\leq 0 \qquad \forall \eta\in G(x), \ \forall (\tau,k,x)\in K_{e}\cap (\mathbb{R}_{\geq 0}\times\mathbb{N}\times D)\\ G(x)\subset C\cup D \quad \forall x\in D \ : \ (\tau,k,x)\in K_{e}, (\tau,k)\in \mathbb{R}_{\geq 0}\times\mathbb{N}\\ \text{ where } K_{e}:=\{(\tau,k,x)\in \mathbb{R}_{\geq 0}\times\mathbb{N}\times\mathbb{R}^{n}: B(\tau,k,x)\leq 0\} \text{ Moreover,} \end{array}$

► If *X_o* is **compact**, then the **pre-completeness** condition on the backward solutions is not needed.

Theorem: Assume that \mathcal{H} is satisfies the hybrid basic conditions^{*} and that the backward solutions are either bounded or complete. The hybrid system \mathcal{H} is safe w.r.t. (X_o, X_u)

if and only if

there exists $B: \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ such that

 $\begin{array}{l} (\tau,x)\mapsto B(\tau,k,x) \text{ is lower semicontinuous (uniformly in }k)\\ B \text{ is nonincreasing along the flows of }\mathcal{H},\\ B(\tau,k,x)\leq 0 \qquad \forall (\tau,k,x)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\times X_{o}\\ B(\tau,k,x)>0 \qquad \forall (\tau,k,x)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\times (X_{u}\cap(C\cup D))\\ B(\tau,k+1,\eta)\leq 0 \qquad \forall \eta\in G(x), \ \forall (\tau,k,x)\in K_{e}\cap(\mathbb{R}_{\geq 0}\times\mathbb{N}\times D)\\ G(x)\subset C\cup D \quad \forall x\in D \ : \ (\tau,k,x)\in K_{e}, (\tau,k)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\\ \text{ where } K_{e}:=\{(\tau,k,x)\in\mathbb{R}_{\geq 0}\times\mathbb{N}\times\mathbb{R}^{n}:B(\tau,k,x)\leq 0\} \text{ Moreover,} \end{array}$

- ► If *X_o* is **compact**, then the **pre-completeness** condition on the backward solutions is not needed.
- ► If the solutions to H are not Zeno, then the result holds with B independent of k.

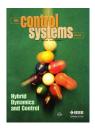
- Overview of Recent Results
- Introduction to Safety
- Sufficient Conditions
- Necessary and Sufficient Conditions

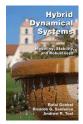
Next steps:

- Estimation
- Reachability
- Approximations
- Robustness

References at hybrid.soe.ucsc.edu

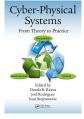
Acknowledgments: Partially supported by NSF, AFOSR, AFRL and by CITRIS and the Banatao Institute at the University of California





IEEE 2009

Princeton U. Press 2012



CRC Press 2015