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A Distributed Newton Method for Network

Utility Maximization–I: Algorithm
Ermin Wei, Student Member, IEEE, Asuman Ozdaglar, Member, IEEE, and Ali Jadbabaie, Senior Member, IEEE

Abstract—Most existing works use dual decomposition and

first-order methods to solve Network Utility Maximization (NUM)

problems in a distributed manner, which suffer from slow rate

of convergence properties. This paper develops an alternative

distributed Newton-type fast converging algorithm for solving

NUM problems. By using novel matrix splitting techniques, both

primal and dual updates for the Newton step can be computed

using iterative schemes in a decentralized manner. We propose

a stepsize rule and provide a distributed procedure to compute

it in finitely many iterations. The key feature of our direction

and stepsize computation schemes is that both are implemented

using the same distributed information exchange mechanism

employed by first order methods. We describe the details of the

inexact algorithm here and in part II of this paper [31], we show

that under some assumptions, even when the Newton direction

and the stepsize in our method are computed within some error

(due to finite truncation of the iterative schemes), the resulting

objective function value still converges superlinearly in terms of

primal iterations to an explicitly characterized error neighbor-

hood. Simulation results demonstrate significant convergence rate

improvement of our algorithm relative to the existing first-order

methods based on dual decomposition.

Index Terms—Distributed optimization, distributed Newton

method, Network Utility Maximization (NUM), superlinear rate

of convergence.

I. INTRODUCTION

M OST of today’s communication networks are

large-scale and comprise of agents with heteroge-

neous preferences. Lack of access to centralized information in

such networks necessitates design of distributed control algo-

rithms that can operate based on locally available information.

Some applications include routing and congestion control in

the Internet, data collection and processing in sensor networks,

and cross-layer design in wireless networks. This work focuses

on the rate control problem in wireline networks, which can

be formulated in the Network Utility Maximization (NUM)
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framework proposed in [15] (see also [17], [26], and [7]).

NUM problems are characterized by a fixed network and a set

of sources, which send information over the network along

predetermined routes. Each source has a local utility function

over the rate at which it sends information. The goal is to

determine the source rates that maximize the sum of utilities

subject to link capacity constraints. The standard approach for

solving NUM problems relies on using dual decomposition

and subgradient (or first-order) methods, which through a price

feedback mechanism among the sources and the links yields

algorithms that can operate on the basis of local information

[14], [17].1 One major shortcoming of this approach is the slow

rate of convergence.

In this paper, we propose a novel Newton-type second-

order method for solving the NUM problem in a distributed

manner, which leads to significantly faster convergence. Our

approach involves transforming the inequality constrained

NUM problem to an equality-constrained one through in-

troducing slack variables and logarithmic barrier functions,

and using an equality-constrained Newton method for the

reformulated problem. There are two challenges in imple-

menting this method in a distributed manner. First challenge

is the computation of the Newton direction. This computa-

tion involves a matrix inversion, which is costly and requires

global information. We solve this problem by using an iterative

scheme based on a novel matrix splitting technique. Since the

objective function of the (equality-constrained) NUM problem

is separable, i.e., it is the sum of functions over each of the

variables, this splitting enables computation of the Newton

direction using decentralized algorithms based on limited

scalar information exchange between sources and links, in

a form similar to the feedback mechanism used by the subgra-

dient methods. This exchange involves destinations iteratively

sending route prices (aggregated link prices or dual variables

along a route) to the sources, and sources sending the route

price scaled by the corresponding Hessian element to the links

along its route.

The second challenge is related to the computation of a

stepsize rule that can guarantee local superlinear convergence

of the primal iterations. Instead of the iterative backtracking

rules typically used with Newton methods, we propose a

stepsize choice based on the rule proposed in [21], which is

inversely proportional to the inexact Newton decrement (where

the inexactness arises due to errors in the computation of the

1The price feedback mechanism involves destinations (end nodes of a route)

sending route prices (aggregated over the links along the route) to sources,

sources updating their rates based on these prices and finally links updating

prices based on new rates sent over the network.
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A Saddle Point Algorithm forNetworked

Online Convex Optim ization
AlecKoppel, FeliciaY. Jakubiec, and Alejandro Ribeiro

Abstract—An algorithm to learn optim alactionsin convex dis-
tributed online problem sisdeveloped. Learning isonline because
cost functionsare revealed sequentially and distributed because
they are revealed to agents of a network that can exchange in-
form ation with neighboring nodesonly. Learning ism easured in
term sof the globalnetwork regret, which isdefine d here asthe
accum ulated lossofcausalprediction with respectto acentralized
clairvoyantagenttowhichthe inform ation ofalltim esand agentsis
revealed atthe initialtim e. Avariantofthe Arrow–Hurwiczsaddle
pointalgorithm isproposed tocontrolthe growthofglobalnetwork
regret. Thisalgorithm usesLagrange m ultipliersto penalize the
discrepanciesbetween agentsand leadsto an im plem entation that
relieson localoperationsand exchange ofvariablesbetween neigh-
bors. W e show thatdecisionsm ade withthissaddle pointalgorithm

lead to regret whose order isnot larger than , where is
the totaloperating tim e. Num ericalbehavior isillustrated for the
particular case ofdistributed recursive least squares. An applica-
tion to com puter network securityin which service providersco-
operate to detect the signature ofm alicioususersisdeveloped to
illustrate the practicalvalue ofthe proposed algorithm .

Index Terms—Distributed optim ization, online learning, m ulti-
agent system s, convex optim ization, regret bounds, saddle point
m ethod.

I. INTRODUCTION

I N distributed online learning problem s, agentsofanetwork

wantto causallylearn astrategythatisasgood asthe one

theycould learn iftheyhad accessto the inform ation ofallother

agentswhile com m unicating withneighboring nodesonly. The

specific setting considered here consistsofconvex cost func-

tionsthatare sequentiallyrevealed to individualagents. In of-

fli

n

e centralized learning the functionsofallagentsand alltim es

are known beforehand and aconstant and common action isse-

lected foragentsto play. In online centralized learning, func-

tions are stillavailable at a centrallocation but are revealed

sequentially. The common action to be played byagentsisse-

lected ex ante using pastobservationsand incursacostex post

afterthe currentfunctionsbecom e available. In distributed on-

line learning the agentsselect actionsbased on previouscost
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functionsobserved locallyand m essagesreceived from neigh-

bors in past com m unication exchanges. Thispapersproposes

the use of a saddle point algorithm so that distributed online

strategiesachieve com parable perform ance to centralized of-

fli

n

e strategies.

Centralized online learning problem scanbe form ulated in the

language ofregretm inim ization [2], [3]. In thissetting, alearner

m akesasequence ofplaystowhichNature providesthe answer

in the form ofalossfunction. Regretisdefine d asthe accum ula-

tion overtim e ofthe lossdifference between the online learner

and aclairvoyant offline learnerto which cost functionshave

been revealed beforehand. We interpretregretasam easure of

the price forcausalprediction. When lossfunctionsare convex,

severalalgorithm sare known to achieve regretwhose growth

withthe accum ulated operating tim e issublinear– whichen-

tailsvanishing costdifferencesbetween online and offlin e plays

atspecific tim es. Germ ane to thispaperisonline gradient de-

scentin whichplaysare updated bydescending on the gradient

ofobserved costs. Despite the m ism atch ofdescending on the

prior function while incurring a cost in the current function,

online gradient descent achieves regret that grows not faster

than afunction oforder in generaland notfasterthan

underm ore stringent conditions[4]. Otherm ethods

to controlregretgrowthare proxim alm aps[5], m irrordescent

[6], [7], and dualaveraging [8]. Allofthese strategiesm aybe

understood asspecialcasesofastrategyknown as–follow the

regularized leader– [2].

Often, dataisgathered byagentsofanetwork. Nodeswould

like tocooperate tolearn globaloptim alstrategiesbutcollecting

dataataclearinghouse isslow, costly, and som etim esunsafe.

Thism otivatesthe use ofdistributed online learning algorithm s.

In determ inistic settings, optim alactionsofseparable convex

costsare com puted using distributed optim ization algorithm s

which can be categorized into prim alm ethods, dualm ethods,

and prim al-dualm ethods. In prim al m ethods agents descent

along their localgradientswhile averaging theirsignalswith

those oftheirneighbors, [7], [9]–[11]. In dualm ethodsagents

reform ulate distributed optim ization as an agreem ent con-

strained optim ization problem and ascend in the dualdom ain

using the fact that dualfunction gradients can be com puted

while cooperating with neighboring nodes only [12], [13].

V ariations of dual m ethods include the alternating direction

m ethod ofm ultipliers[14], [15] and the incipientdevelopm ent

ofsecond orderm ethodsthatrelyon separable approxim ations

of global Newton steps [16]. Prim al-dual m ethods com bine

prim aldescentwith dualascent[9], [17], [18]. Prim alm ethods

have been generalized to distributed online learning and have

1053-587X © 2015 IEEE. Personaluse isperm itted, butrepublication/redistribution requiresIEEE perm ission.
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Fig. 2. State trajectories of all agents.

in , , and in , , and

in , and , and in . Here, none

of the four graphs is balanced and their union is strongly connected.

The simulation results are shown in Fig. 2. It is clear that each agent

remains in its corresponding convex set for and

all agents finally reach a consensus in in the presence

of communication delays and topology variations, which is consistent

with Theorem 1.

VI. CONCLUSIONS

In this note, we have studied the constrained consensus problem

of multi-agent systems in dynamically changing unbalanced networks

with communication delays. Each agent is required to stay in a closed

convex set. The communication graphs are directed and only required

to have a mild assumption that the union of the graphs is strongly con-

nected among each time interval of some bounded length. Moreover,

the adjacency matrices are not assumed to be doubly stochastic. The

analysis has been performed based on an undelayed equivalent system

which has two parts: the linear main body and the error auxiliary. It

has been shown that the error auxiliary vanishes as time evolves and

the linear main body has an exponential convergence rate to a vector as

a separate system. On that basis, it has also been shown that the original

system finally reaches a consensus asymptotically even if the commu-

nication delays are arbitrarily bounded. Finally, a numerical example

has been given to illustrate the obtained theoretical results.
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Distributed Continuous-Time Convex Optimization

on Weight-Balanced Digraphs

Bahman Gharesifard and Jorge Cortés

Abstract—This technical note studies the continuous-time distributed op-

timization of a sum of convex functions over directed graphs. Contrary

to what is known in the consensus literature, where the same dynamics

works for both undirected and directed scenarios, we show that the con-

sensus-based dynamics that solves the continuous-time distributed opti-

mization problem for undirected graphs fails to converge when transcribed

to the directed setting. This study sets the basis for the design of an alterna-

tive distributed dynamics which we show is guaranteed to converge, on any

strongly connected weight-balanced digraph, to the set of minimizers of a

sum of convex differentiable functions with globally Lipschitz gradients.

Our technical approach combines notions of invariance and cocoercivity

with the positive definiteness properties of graph matrices to establish the

results.

Index Terms—Directed graphs, distributed optimization, networked

control systems.

I. INTRODUCTION

Distributed optimization of a sum of convex functions has appli-

cations in a variety of scenarios, including sensor networks, source

localization, and robust estimation, and has been intensively studied

in recent years, see e.g., [1]–[7]. Most of these works build on con-

sensus-based dynamics [8]–[10] to design discrete-time algorithms that

find the solution of the optimization problem. Recent exceptions are the

works [11], [12] that deal with continuous-time strategies on undirected
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Distributed Constrained Optimization by

Consensus-Based Primal-Dual Perturbation Method
Tsung-Hui Chang, Member, IEEE, Angelia Nedić, Member, IEEE, and Anna Scaglione, Fellow, IEEE

Abstract—Various distributed optimization methods have been
developed for solving problems which have simple local constraint
sets and whose objective function is the sum of local cost func-
tions of distributed agents in a network. Motivated by emerging

applications in smart grid and distributed sparse regression, this
paper studies distributed optimization methods for solving general
problems which have a coupled global cost function and have
inequality constraints. We consider a network scenario where
each agent has no global knowledge and can access only its local
mapping and constraint functions. To solve this problem in a

distributed manner, we propose a consensus-based distributed

primal-dual perturbation (PDP) algorithm. In the algorithm,
agents employ the average consensus technique to estimate the
global cost and constraint functions via exchanging messages
with neighbors, and meanwhile use a local primal-dual perturbed

subgradient method to approach a global optimum. The proposed
PDP method not only can handle smooth inequality constraints

but also non-smooth constraints such as some sparsity promoting

constraints arising in sparse optimization. We prove that the pro-
posed PDP algorithm converges to an optimal primal-dual solution
of the original problem, under standard problem and network
assumptions. Numerical results illustrating the performance of

the proposed algorithm for a distributed demand response control
problem in smart grid are also presented.

Index Terms—Average consensus, constrained optimization, de-
mand side management control, distributed optimization, primal-

dual subgradient method, regression, smart grid.

I. INTRODUCTION

D
ISTRIBUTED optimization methods are becoming pop-

ular options for solving several engineering problems,

including parameter estimation, detection and localization

problems in sensor networks [1], [2], resource allocation prob-

lems in peer-to-peer/multi-cellular communication networks

[3], [4], and distributed learning and regression problems in

control [5] and machine learning [6]–[8], to name a few. In
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these applications, rather than pooling together all the relevant

parameters that define the optimization problem, distributed

agents, which have access to a local subset of such parameters,

collaborate with each other to minimize a global cost function,

subject to local variable constraints. Specifically, since it is not

always efficient for the agents to exchange across the network

the local cost and constraint functions, owing to the large size

of network, time-varying network topology, energy constraints

and/or privacy issues, distributed optimization methods that

utilize only local information and messages exchanged between

connecting neighbors have been of great interest; see [9]–[16]

and references therein.

Contributions: Different from the existing works [9]–[14]

where the local variable constraints are usually simple (in

the sense that they can be handled via simple projection)

and independent among agents, in this paper, we consider a

problem formulation that has a general set of convex inequality

constraints that couple all the agents’ optimization variables.

In addition, similar to [17], the considered problem has a

global (non-separable) convex cost function that is a function

of the sum of local mapping functions of the local optimization

variabless. Such a problem formulation appears, for example,

in the classical regression problems which have a wide range

of applications. In addition, the considered formulation also

arises in the demand response control and power flow control

problems in the emerging smart grid systems [18]–[20]. More

discussions about applications are presented in Section II-B.

In this paper, we assume that each agent knows only the

local mapping function and local constraint function. To solve

this problem in a distributed fashion, in this paper, we develop

a novel distributed consensus-based primal-dual perturbation

(PDP) algorithm, which combines the ideas of the primal-

dual perturbed (sub-)gradient method [21], [22] and the av-

erage consensus techniques [10], [23], [24]. In each iteration

of the proposed algorithm, agents exchange their local esti-

mates of the global cost and constraint functions with their

neighbors, followed by performing one-step of primal-dual

variable (sub-)gradient update. Instead of using the primal-dual

iterates computed at the preceding iteration as in most of the

existing primal-dual subgradient based methods [15], [16], the

(sub-)gradients in the proposed distributed PDP algorithm are

computed based on some perturbation points which can be ef-

ficiently computed using the messages exchanged from neigh-

bors. In particular, we provide two efficient ways to compute

the perturbation points that can respectively handle the smooth

and non-smooth constraint functions. More importantly, we

build convergence analysis results showing that the proposed

distributed PDP algorithm ensures a strong convergence of

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Distributed Random Projection Algorithm

for Convex Optimization
Soomin Lee and Angelia Nedić

Abstract—Random projection algorithm is of interest for con-
strained optimization when the constraint set is not known in

advance or the projection operation on the whole constraint set

is computationally prohibitive. This paper presents a distributed
random projection algorithm for constrained convex optimization

problems that can be used by multiple agents connected over a

time-varying network, where each agent has its own objective
function and its own constrained set. We prove that the iterates

of all agents converge to the same point in the optimal set almost

surely. Experiments on distributed support vector machines
demonstrate good performance of the algorithm.

Index Terms—Asynchronous algorithms, distributed convex

optimization, distributed multi-agent system, random gossip

network.

I. INTRODUCTION

A NUMBER of problems that arise in sensor, wireless

ad hoc and peer-to-peer networks can be formulated as

convex constrained minimization problems [1]–[3]. The goal

of the agents connected over such networks is to cooperatively

solve the following optimization problem:

(1)

where each is a convex function, representing

the local objective function of agent , and each is a

closed convex set, representing the local constraint set of agent

. The complete problem information is not available at a single

location because there is no central node that facilitates com-

putation and communication, or the allocation of all the objec-

tive and constraint components at one node is not possible due

to memory, computational power, or privacy constraints. In ad-

dition, the network topology itself may change with time due

to agent mobility or link failures. Therefore, an algorithm for

solving such problems must be robust, distributed, with local

agent communications, and adaptive to the changes in the net-

work topology.
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In this paper, we propose a distributed random projection

(DRP) algorithm for problem (1), where the constraint set

is defined as the intersection of finitely many simple convex

constraints. That is, , where is a finite1. In

our algorithm, each agent maintains its own iterate sequence

. At each iteration, each agent calculates weighted

average of the received iterates (from its neighbors) and its

own iterate, adjusts the iterate by using gradient information

of its local objective function and projects onto a constraint

that is selected randomly from its local constraint set . The

projections are performed locally by each agent based on the

random observations of the local constraints. In particular,

agent observes a local constraint set at time , where

is a random variable.

Our primary interest is in the case when the whole constraint

set for an agent is not known in advance, but its component

is revealed through random realizations . For example,

in collaborative filtering for recommender systems, user data is

huge and distributed over multiple machines. Users frequently

change and update their preferences in real time so the constraint

set of this problem is usually not known in advance. Another

case of interest is when the constraint set is known in ad-

vance but it has a huge number of components. For example,

in text classification problems, model parameters are trained on

hundred thousands or more text samples and each sample con-

stitutes a constraint (usually a halfspace) [4]. In such a case,

the projection operation on the constraint set is computation-

ally prohibitive if any of the traditional (sub)gradient projection

methods are used. In Section VI, we will experiment with Sup-

port Vector Machines to classify three text data sets.

The related distributed optimization literature includes

[5]–[12] for convex but unconstrained problems, and [13]–[17]

for constrained problems. The most relevant to the work in

this paper are [18]–[20] where, as in the DRP algorithm, the

constraint set is also distributed across agents and each agent

handles its own constraint set only. In [18], the convergence

analysis is done for a special case when the network is com-

pletely connected. The work in [19] extends the algorithm and

its analysis to a more general network including the presence

of noisy links, while [20] extends it to a general Markovian

network model. Unlike [18], where each agent can perform

projections on its entire constraint set, this paper addresses the

case when such projections are not possible or computation-

ally prohibitive. Related to this work are also the distributed

algorithms for estimation and inference problems proposed

and studied by Sayed et al. [21]–[24]. On a broader scale, the

1The finiteness of is not really crucial. The developed results also apply to

the case when the index sets are infinite.
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Multi-Agent Distributed Optimization

via Inexact Consensus ADMM
Tsung-Hui Chang, Member, IEEE, Mingyi Hong, and Xiangfeng Wang

Abstract—Multi-agent distributed consensus optimization

problems arise in many signal processing applications. Recently,

the alternating direction method of multipliers (ADMM) has been

used for solving this family of problems. ADMM based distributed

optimization method is shown to have faster convergence rate

compared with classic methods based on consensus subgradient,

but can be computationally expensive, especially for problems

with complicated structures or large dimensions. In this paper,

we propose low-complexity algorithms that can reduce the overall

computational cost of consensus ADMMby an order of magnitude

for certain large-scale problems. Central to the proposed algo-

rithms is the use of an inexact step for each ADMM update, which

enables the agents to perform cheap computation at each itera-

tion. Our convergence analyses show that the proposed methods

converge well under some convexity assumptions. Numerical

results show that the proposed algorithms offer considerably

lower computational complexity than the standard ADMM based
distributed optimization methods.

Index Terms—ADMM, consensus, distributed optimization.

I. INTRODUCTION

W E consider a multi-agent network where the agents

seek to collaborate to accomplish certain task. For

example, distributed database servers may cooperate for pa-

rameter learning in order to fully exploit the data collected from

individual servers [2]. Another example arises from large-scale

machine learning applications [3], where a computation task

may be executed by collaborative microprocessors with in-

dividual memories and storage spaces [3]–[5]. Distributed

optimization becomes favorable as it is not always efficient to

pool all the local information for centralized computation, due

to large size of problem dimension, a large amount of local

data, energy constraints and privacy issues [6]–[9]. Many of the
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distributed optimization tasks, such as those described above,

can be cast as an optimization problem of the following form

(1)

where is the decision variable and

is the cost function associated with agent . Here the function

is composed of a smooth component

(possibly with extended values) and a non-smooth component

, i.e.,

(2)

where is some data matrix not necessarily of full

rank. Such model is common in practice: the smooth component

usually represents the cost function to be minimized, while the

non-smooth component is often used as a regularization func-

tion [10] or an indicator function representing that is subject

to a constraint set1.

In the setting of distributed optimization, it is commonly as-

sumed that each agent only has knowledge about the local in-

formation , and . The challenge is to obtain, for each

agent in the system, the optimal of using only local in-

formation and messages exchanged with neighbors [6]–[9].

In addition to , another common problem formulation

has the following form

(4)

where , and is given as in (2). Unlike

, in , each agent owns a local control variable2

, and these variables are coupled together through the

linear constraint. Examples of include the basis pursuit

(BP) problem [12], [13], the network flow control problem

[14] and interference management problem in communication

networks [15]. To relate with , let be the

Lagrange dual variable associated with the linear constraint

. The Lagrange dual problem of can be

equivalently written as

(5)

1For example, if for some set , then this can be implicitly

included in the nonsmooth component by letting [11, Section 5]

if

otherwise.
(3)

2Here we let all ’s have the same dimension without loss of generality.
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Coordination of Groups of Mobile Autonomous

Agents Using Nearest Neighbor Rules
Ali Jadbabaie, Jie Lin, and A. Stephen Morse, Fellow, IEEE

Abstract—In a recent Physical Review Letters article, Vicsek

et al. propose a simple but compelling discrete-time model of

autonomous agents (i.e., points or particles) all moving in the plane
with the same speed but with different headings. Each agent’s
heading is updated using a local rule based on the average of its
own heading plus the headings of its “neighbors.” In their paper,
Vicsek et al. provide simulation results which demonstrate that

the nearest neighbor rule they are studying can cause all agents

to eventually move in the same direction despite the absence of

centralized coordination and despite the fact that each agent’s
set of nearest neighbors change with time as the system evolves.

This paper provides a theoretical explanation for this observed

behavior. In addition, convergence results are derived for several
other similarly inspired models. The Vicsek model proves to be

a graphic example of a switched linear system which is stable,
but for which there does not exist a common quadratic Lyapunov
function.

Index Terms—Cooperative control, graph theory, infinite prod-
ucts, multiagent systems, switched systems.

I. INTRODUCTION

I
N [1], Vicsek et al. propose a simple but compelling

discrete-time model of autonomous agents (i.e., points

or particles) all moving in the plane with the same speed but

with different headings. Each agent’s heading is updated using

a local rule based on the average of its own heading plus the

headings of its “neighbors.” Agent ’s neighbors at time , are

those agents which are either in or on a circle of pre-specified

radius centered at agent ’s current position. The Vicsek

model turns out to be a special version of a model introduced

previously by Reynolds [2] for simulating visually satisfying

flocking and schooling behaviors for the animation industry. In

their paper, Vicsek et al. provide a variety of interesting simu-

lation results which demonstrate that the nearest neighbor rule

they are studying can cause all agents to eventually move in the

same direction despite the absence of centralized coordination

and despite the fact that each agent’s set of nearest neighbors

change with time as the system evolves. In this paper, we

provide a theoretical explanation for this observed behavior.
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There is a large and growing literature concerned with

the coordination of groups of mobile autonomous agents.

Included here is the work of Czirok et al. [3] who propose

one-dimensional models which exhibit the same type of

behavior as Vicsek’s. In [4] and [5], Toner and Tu construct

a continuous ”hydrodynamic" model of the group of agents,

while other authors such as Mikhailov and Zanette [6] consider

the behavior of populations of self propelled particles with

long range interactions. Schenk et al. determined interactions

between individual self-propelled spots from underlying reac-

tion-diffusion equation [7]. Meanwhile, in modeling biological

systems, Grünbaum and Okubo use statistical methods to

analyze group behavior in animal aggregations [8]. This paper

and, for example, the work reported in [9]–[12] are part of a

large literature in the biological sciences focusing on many

aspects of aggregation behavior in different species.

In addition to these modeling and simulation studies, research

papers focusing on the detailed mathematical analysis of emer-

gent behaviors are beginning to appear. For example, Lui et al.

[13] use Lyapunov methods and Leonard et al. [14] and Ol-

fati and Murray [15] use potential function theory to understand

flocking behavior, and Ögren et al. [16] uses control Lyapunov

function-based ideas to analyze formation stability, while Fax

and Murray [17] and Desai et al. [18] employ graph theoretic

techniques for the same purpose.

The one feature which sharply distinguishes previous ana-

lyzes from that undertaken here is that this paper explicitly takes

into account possible changes in nearest neighbors over time.

Changing nearest neighbor sets is an inherent property of the

Vicsek model and in the other models we consider. To ana-

lyze such models, it proves useful to appeal to well-known re-

sults [19], [20] characterizing the convergence of infinite prod-

ucts of certain types of nonnegative matrices. The study of in-

finite matrix products is ongoing [21]–[26], and is undoubtedly

producing results which will find application in the theoretical

study of emergent behaviors.

Vicsek’s model is set up in Section II as a system of

simultaneous, one-dimensional recursion equations, one for

each agent. A family of simple graphs on vertices is then

introduced to characterize all possible neighbor relationships.

Doing this makes it possible to represent the Vicsek model

as an -dimensional switched linear system whose switching

signal takes values in the set of indices which parameterize

the family of graphs. The matrices which are switched within

the system turn out to be nonnegative with special structural

properties. By exploiting these properties and making use of a

classical convergence result due to Wolfowitz [19], we prove

that all agents’ headings converge to a common steady state

0018-9286/03$17.00 © 2003 IEEE



From Connectivity Control to Intermittent 

Communication

Connectivity Control

• Graph theoretic methods
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Distributed Intermittent Communication Control

Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation



Outline

Distributed Intermittent Communication Control

Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation



Assume        communication points positioned at 

Paths                                  that connect nodes     and   .  

mobile robots         move back and forth between 

nodes    and     along the path.

Communication at node      occurs if

Problem Formulation

The communication network is connected over time if communication at every node 

occurs infinitely often. In disconnect mode, the robots can accomplish other tasks.



Lets build some intuition…

Policy: Move to a meeting point and 

stay there forever or until the other 

robots arrive



What if we change the initial condition?

Policy: Move to a meeting point and 

stay there forever or until the other 

robots arrive



What if we change the mobility graph?

Policy: Move to a meeting point and 

stay there forever or until the other 

robots arrive



Intermittent communication over 

arbitrary graphs?



Challenges

Does a deadlock-free periodic 

meeting schedule exist?

If yes, what is the period?

How can we find it in a 

decentralized way?



Problem Formulation

Given any initial configuration of the robots in the mobility graph      determine 

distributed controllers for all robots such that connectivity of the communication graph is 

guaranteed over time, infinitely often.



Linear Temporal Logic (LTL)

Other useful temporal operators:

• Always
•

• Eventually

• Infinitely often

LTL is a formal type of logic that consists of Boolean and temporal operators defined over a set

of atomic propositions/predicates.

Syntax:

Set of Atomic Propositions (Boolean variables).

Example:



Mathematical Formulation

All robots adjacent to every meeting point should meet at their assigned meeting point 

infinitely often, i.e.,

where

for a sufficiently small              .



Automata-based Plan Synthesis



Robot Mobility Abstraction

Motion is abstracted by a Transition System (TS):

State-Space:

Initial state:

Transition relation:

Action set:

Atomic propositions:

Labeling function:



Decomposition of Global LTL Specification

Plan Prefix Plan Suffix

Global LTL specification:

Decomposition of into local LTL specification:

such that and

Discrete motion plans such that

Initial robot states Robots move to node i Robots wait indefinitely 

at node i



Conflicting Robot Behaviors



Distributed Control Synthesis



Conflict Resolution

General structure of motion plan as an infinite sequence of states

Rewrite motion plan as an infinite sequence of finite paths as

where

Robot waits at the 

previous state

Projection of the k-th

state of plan          onto 

Projection of the k-th

state of plan         onto 



Correctness

Proposition: The proposed algorithm can always construct finite paths with length at

most equal to .

Proposition: The proposed algorithm generates admissible discrete motion plans , i.e.,

motion plans that are free of conflicts and satisfy the transition rule .

Proposition: The composition of motion plans generated by the proposed algorithm

satisfies the global LTL expression, i.e., connectivity of the robot network is ensured over

time, infinitely often.

Proposition: The proposed algorithm generates discrete motion plans for all robots in a 

prefix-suffix structure, i.e.,                                  .



Numerical Experiments



Challenges

Does a deadlock-free periodic 

meeting schedule exist?

If yes, what is the period?

How can we find it in a 

decentralized way?
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Distributed Intermittent Communication Control

Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation



Incorporating Temporal Tasks

Robots are divided in teams

Multiple possible communication points for team

in the set

Intermittent connectivity requirement

Every robot also has independent tasks modeled by LTL formulas

Every robot can belong to more than two teams



Example Temporal Tasks

Visit locations 8, 10, 12, 19, 24, and 34 infinitely often.

Tasks

Color-coded 

(associated with teams) 

communication points



Temporal Task Planning under Intermittent 

Communication

Determine minimum cost discrete motion plans whose composition satisfies the global

LTL statement

Meeting locations are not pre-

determined so the resulting motion 

plans determine a sequence 

meeting times (not locations) for 

all robots in every team.



Distributed Control Synthesis

• Construct motion plans that satisfy the LTL-based tasks.

• Revise their suffix parts so that common communication points for all robots within a team are

selected and incorporated into the suffix structures in an optimal way.



Numerical Experiments



Experimental Validation
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Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation



Information-Driven Intermittent 

Communication Control



Information-Driven Intermittent 

Communication Control

Unknown state:

Measurement model:

N robots divided into M teams

Robots in team can communicate if they construct

a connected communication network

Determine motion plans for the robots that minimize estimation uncertainty of the state x(t) 

while ensuring intermittent communication infinitely often.



Numerical Experiments



Numerical Experiments



Numerical Experiments
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Summary

Connectivity is necessary for real-time availability of information and distributed control.

In practice, it is not possible to ensure all-to-all connectivity for all time.

Intermittent communication control frameworks can provide an efficient solution while 

allowing the robots to accomplish other tasks free of communication constraints.

Wireless 

Networks

Robotic 

Networks

Sensor

Networks

Environmental Monitoring

Patrol Robots

Autonomous Vehicles

City Monitoring

Hospital Robots

Mapping & Reconstruction



But also…

Bucket Brigade

Transportation
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