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Environmental Menitoring

Many different (mobile) sensors collecting data that are connected to each other and the
infrastructure through dedicated wireless networks.
Goal: Real-time availability of information, which requires connectivity.
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From Connectivity Control to Intermittent
Communication

[Franceschelh Aut 2013] [Sabatt|n| IURR, 2013] and many more..

Realistic communication models
[Lindhe, CDC, 2010], [Ghaffarkhah, TAC, 2011], [Fink, IEEE, 2012], [Yan, TRO, 2012], [Zavlanos, TAC, 2013]

Intermittent Communication Frameworks

Consensus and Coverage Control
[Wen, IJRNC, 2014], [Wang, TAC, 2010]

Delay Tolerant Networks
[Jones, TMC, 2007], [Costa, JSAC, 2008]

Event-based Network Control
[Tabuada, TAC, 2007], [Wang, TAC, 2011], [Dimarogonas et al, TAC, 2012], [Seyboth, Aut, 2013]
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Intermittent Communication Applications

Communications-Limited
Environments

iy

Remote Sensing
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Qutline

Distributed Intermittent Communication Control

Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation
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Qutline

Distributed Intermittent Communication Control

Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation
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Problem Formulation
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The communication network is connected over time if communication at every node
occurs infinitely often. In disconnect mode, the robots can accomplish other tasks.
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Lets build some intuition...

Policy: Move to a meeting point and
stay there forever or until the other
robots arrive
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What if we change the initial condition?

Policy: Move to a meeting point and
stay there forever or until the other
robots arrive
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What if we change the mobility graph?
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Policy: Move to a meeting point and
stay there forever or until the other
robots arrive
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Intermittent communication over
arbitrary graphs?
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Challenges
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Problem Formulation

Given any initial configuration of the robots in the mobility graph G determine
distributed controllers for all robots such that connectivity of the communication graph is

guaranteed over time, infinitely often.
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Linear Temporal Logic (LTL)

LTL is a formal type of logic that consists of Boolean and temporal operators defined over a set
of atomic propositions/predicates.

Syntax: ¢ := true ‘ L ‘ q51 A ¢2 ’ _@ | O ¢ ‘ ¢1U¢2

Set AP of Atomic Propositions (Boolean variables).

Example:

v, 1 if robot r;; is in location v;
J 0 otherwise

Other useful temporal operators:
« Always []

. Eventually O

o Infinitely often 1
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Mathematical Formulation
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Automata-based Plan Synthesis

Transition
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Robot Mobility Abstraction

Motion is abstracted by a Transition System (TS):
State-Space:  Qi; = {q;;, 4 }

17 7
» 0
Initial state: ¢,
Transition relation:  —;;C Q;; X A;; X Q;;
Action set:  A;;
Atomic propositions: AP

Labeling function: L : Q;; — 247

wait
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wait

g/)

TSi; ={Qij, dij» —ijs Aij, AP, Lij }
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Decomposition of Global LTL Specification

JjEN;

Global LTL specification: ¢ = /\ <D<> AN )

Decomposition of ¢ into local LTL specification: ¢,

R
suchthat ¢ = /\ D, and  ¢v, = D<>< /\ WZJ)
1=1

JEN;
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Conflicting Robot Behaviors
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Distributed Control Synthesis

Hybrid Controller
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Conflict Resolution

General structure of motion plan 7;; as an infinite sequence of states

Tij = Tij (1)735(2) - - = [13;(m) ;5=

Rewrite motion plan 745 as an infinite sequence of finite paths pf’j as T = [p,’fj]zil

where
length £ = max{dy, R+
X...X H‘TSUTVJ(A> X
Robot waits at the Projection of the k-th Projection of the k-th
previous state state of plan 7, onto 1'S; state of plan 7+, onto T'5;;
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Correctness

Proposition: The proposed algorlthm can always construct finite paths pw with length at

most equal to ¢ = max{d,,};*, +1 .

Proposition: The proposed algorithm generates admissible discrete motion plans 7i; , i.e.,

motion plans that are free of conflicts and satisfy the transition rule —4; .

Proposition: The composition of motion plans 7i; generated by the proposed algorithm
satisfies the global LTL expression, i.e., connectivity of the robot network is ensured over

time, infinitely often.

prefix- sufﬂx structure, i.e., 7;; = Tgre [Tfj!lf w
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Numerical Experiments




Challenges
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Qutline

Distributed Intermittent Communication Control

Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation
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Incorporating Temporal Tasks

Robots are divided in A/ teams {7, }2_,

Multiple possible communication points for team 7,
in the set Cp,

Every robot can belong to more than two teams C5 ________ C

Intermittent connectivity requirement

M
Pcomm = /\ <D<> ( \/ (/\iETmﬂ-z"’j)))
m=1 v;ECr,

Every robot also has independent tasks modeled by LTL formulas ¢
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Example Temporal Tasks

Visit locations 8, 10, 12, 19, 24, and 34 infinitely often.
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Temporal Task Planning under Intermittent
Communication

Determine minimum cost discrete motion plans 7:; whose composition satisfies the global

LTL statement
¢ — (/\ngz) A chomm

Cs Meeting locations are not pre-
determined so the resulting motion
Cs plans determine a sequence

S meeting times (not locations) for
)€ TiNT2NTs all robots in every team.
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Distributed Control Synthesis

Construct motion plans that satisfy the LTL-based tasks.

Revise their suffix parts so that common communication points for all robots within a team are

selected and incorporated into the suffix structures in an optimal way.
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Numerical Experiments
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Experimental Validation
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Qutline

Distributed Intermittent Communication Control

Distributed Intermittent Communication Control with Independent Temporal Tasks

Distributed Intermittent Communication Control for Collaborative State Estimation
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Information-Driven Intermittent
Communication Control




Information-Driven Intermittent
Communication Control

Unknown state: x(t + 1) = f(x(¢),u(t), w(t))
Measurement model: ¥ (¢.q) = h(x(t),q,v(?))
N robots divided into M teams {7, }*_,

Robots in team 7,,, can communicate if they construct
a connected communication network

Determine motion plans for the robots that minimize estimation uncertainty of the state x(t)
while ensuring intermittent communication infinitely often.
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Numerical Experiments
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Numerical Experiments
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Numerical Experiments

| — — — global estimate team estimate

|
| | ~I~/?"ﬁ:\/
L e Y
i ! \435/”| |
o | i |
| | | | I | I I I ‘t I | I | ||
2000 4000 6000 8000 10000 12000 14000 16000
t
| | | B | | | [
] | | | [ L
N s
| W /\/b/ AT
: L/ \1 W VY Y
| | | | T
| | | | | | .
| | | | b | | T
| R R A N R R
2000 4000 6000 8000 10000 12000 14000 16000
1

Duke

UNIVERSITY




Robotic

. Networks
Wireless

Networks

Sensor
Networks

Environmental- Monitoring

Connectivity is necessary for real-time availability of information and distributed control.
In practice, it is not possible to ensure all-to-all connectivity for all time.

Intermittent communication control frameworks can provide an efficient solution while
allowing the robots to accomplish other tasks free of communication constraints.
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Distributed Intermittent Connectivity Control
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