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Autonomous agents deployed as a service:
• Perform knowledge extraction and communicate only the 

extracted knowledge.

• Communication is often “hard-label” i.e., there is no side 
information about the system’s reasoning.
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Context

Hard-label adversarial machine learning attacks are a 
“grand-prize”:
• Adversary only needs query access to generate “label-

flipped” samples (e.g., through compromised user)
• Hard-label attacks are gaining popularity, but not well 

characterized apart from convergence guarantees.
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Background

Gradient level setting: The goal of adversarial attacks is to 
generate adversarial sample x based on original sample x0 such 
that

Let for logits ,  formally satisfy the 
above goal by

for an adversarial loss function and  Lp-norm . 
A popular choice is the Carlini-Wagner objective

where y0 is the original label and      is a parameter for 
controlling “confidence” of the adversarial sample.
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Background

Hard-label setting: We get no logits information, only the 
step-function informing us of the label (i.e., no access to         ).

Instead, reformulate attack goal as a (continuous) function of 
distance to the model decision boundary           , along a 
search direction θ,

The optimal solution is of the form

(Cheng et al. 2019)



Background

Caveat: The gradient cannot be solved directly, we can 
only use evaluations of . 

Instead use zeroth-order optimization (ZOO) to estimate the 
gradient, a common choice is Randomized Gradient-Free (RGF) 
method over q random directions,

where u is a Gaussian vector and β > 0 is a small smoothing 
parameter. 

(Cheng et al. 2019)



Background

Many recent advances in hard-label attacks:
• Originated as random walk on decision boundary (Brendel et al. 

2017)

• First convergence guarantees using boundary-distance zeroth-
order formulation (Cheng et al. 2019, shown in previous 
slides) 

• Subsample search with sign estimate (Cheng et al. 2020): Sign-OPT

• Subsample search with single-point estimate (Chen et al. 2019): HSJA

• Subsample search with super-pixel grouping (Chen & Gu 2020): RayS

Query efficiency is gained through search subsampling.
Yet, this reduces search fidelity.



Central Problem

Query efficiency is achieved by searching over a dimension-reduced 
(reduced fidelity) version of the original.

Despite this: 
• search efficiency increases
• distortion is lowered

We want to understand this behavior in a controlled manner, thus
• Leverage geometric perspective of adversarial samples for context
• introduce dimension-reduced variant of each attack to measure effect 

of search fidelity



Approach

Build a perspective of hard-label attacks using recent 
developments:
• The boundary tilting perspective: ”Data-geometric” view of adversarial 

sample behavior (Tanay & Griffin 2016)

(Tanay & Griffin 2016)



Approach

Build a perspective of hard-label attacks using recent 
developments:
• Regular adversarial examples leave the data manifold, on-manifold 

adversarial examples are generalization errors (Stutz et al. 2019)

(Stutz et al. 2019)



Approach

Investigate search fidelity in a controlled way, by 
considering the dimension-reduced search variants, 

Notably we have θ’ the dimension-reduced θ, and u’ the 
dimension-reduced u.

How to get θ’? 
Use either a bilinear resizing function (BiLN) or trained encoder-
decoder functions (i.e., auto-encoder (AE)).
Now, how to measure zeroth-order search deviation from 
reduced fidelity? 



Approach

Instead, measure search deviation as a function of distance to manifold
• Leverage Fréchet Inception Distance (FID) proposed by Heusel et al. 

(2018). 
• FID leverages high level coding level of Inception-V3
• Thus FID will correlate with distortion of high-level features, and act as 

a surrogate for distance to manifold. 

(Heusel et al. 2018)



Setup

Compare attack behavior under different subsampling scenarios:
• 3 hard-label attacks, up to 4 variants each (3 BiLN, AE)

• Sign-OPT, HSJA, RayS
• 100 adversarial samples each

• Natural and ε-robust models for two image classification datasets:
• CIFAR-10: Madry et al. (2018) L∞ adversarial training (shown today)
• ImageNet: Cohen et al. (2020) L2 randomized smoothing 

(behavior was similar to CIFAR-10)

Approx. 2 weeks of cluster compute time

Primarily comparing:
• Distortion vs. number of queries

• Measures attack efficiency
• FID score 

• Measures approximate distance to the data manifold



Results

Average distortion by query count FID (approx. distance to manifold)

CIFAR-10 (L∞) 



Results

Average distortion by query count FID (approx. distance to manifold)

CIFAR-10 (L∞) 



Results

Average distortion by query count FID (approx. distance to manifold)

CIFAR-10 (L∞) 



Interpretation

Characterize hard-label attacks as a “data-geometric” hierarchy:
a) Regular attacks: leave the manifold, low similarity

b) Query-efficient attacks: Near the manifold, high similarity

c) On-manifold (e.g., AE-enabled) attacks: low similarity due to on-
manifold model and true boundaries
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Takeaways

Key observation: Query efficient attack samples lie closer to the 
manifold, robustness can hurt.

Our interpretation: Adversary leverages a “noisy manifold distance 
oracle” to improve query efficiency
Mutual information between model’s gradient and data manifold was 
shown by Engstrom et al. (2019). 

Our information theoretic argument (future work):
It can be shown by data processing inequality (Beaudry & Renner 2012) 
that,

for data manifold     , model gradient      , and ZO gradient estimate      . 

increases with



Thank you

w.garcia@ufl.edu
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