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Given an initial condition g,
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Problem (*)

minimize  J(z,u)
(z,u)ESH p (w0)

subject to (T,J)eT
z(T,J) € X,

where (T, J) is the terminal time of (z,u).



Problem (*)

Given an initial condition g,
minimize  J(z,u)
(z,u)ESH p (w0)
subject to (1,J)eT
x(T,J) e X,

where (7', J) is the terminal time of (z,u).

» The feasible set X, set of all g with
feasible (z,u) € Sy, (o).
» The value function J* : X — R>g, defined as
T*(xg) = inf J(z,u) Vage X.
(z,u) €S p (T0)

(T, J)eT
z(T,J)eX



» Solve optimization problems using accelerated methods with
guaranteed performance

Nesterov’s algorithm: ¢ + af + bVL(E + c£) =0
Heavy ball algorithm: ¢ + af + bV L(¢) = 0

a, b, and c are constants, L is cost function

» Fast convergence to minimizers leads to overshoot/oscillations
» Constraints typically encoded as soft constraints

» Solve MPC problems (CT, DT, and hybrid) using accelerated
methods
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» Solve optimization problems using accelerated methods with
guaranteed performance

Nesterov’s algorithm: & + af + bVL({ + ¢f) = 0
Heavy ball algorithm: & + aé + bVL(E) = 0

a, b, and ¢ are constants, L is cost function

Fast convergence to minimizers leads to overshoot/oscillations
Constraints typically encoded as soft constraints

» Solve MPC problems (CT, DT, and hybrid) using accelerated
methods

Research collaboration with AFRL/RV (Christopher Petersen
and Sean Phillips) on optimization and hybrid systems, with
applications to orbital maneuvering
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Accelerated gradient methods have an added “velocity” term
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Accelerated gradient methods have an added “velocity” term
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From this ODE, derive a plant, where £ := z; and 5 = z5 and output y = h(z).

Fl] = {ﬂ (z,u) € R¥" x R™
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Accelerated gradient methods have an added “velocity” term
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£+2d£+MC2

VL(E+8) =0
From this ODE, derive a plant, where £ := z; and 5 = z5 and output y = h(z).

Fl] = {ﬂ (z,u) € R¥" x R™

22

And derive a control algorithm, with Lipschitz constant M > 0,

k(h(z)) = —2dzy — L(z + Bz2) (%)

1
M(2 v
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A static state-feedback law is given by (%)



{\w/} ation Algorithms as ODEs

Accelerated gradient methods have an added “velocity” term

. . 1 .
£+ 2dE + WVL(& +58) =0

From this ODE, derive a plant, where £ := z; and 5 = z5 and output y = h(z).

B

And derive a control algorithm, with Lipschitz constant M > 0,

m (,u) € R*" xR

k(h(2)) = —2dzp — —5 VL(21 + B22) (%)

A static state-feedback law is given by (%)

» This optimization algorithm is an accelerated gradient method called the
Nesterov'’s accelerated gradient descent [Nesterov 83].

» |t models a mass-spring-damper with a curvature-dependent damping term
[Muehlebach and Jordan 19]. The constant ¢ > 0 rescales solutions in time,
and d and [ take different forms depending on the convexity of L.



{\w/, ation Algorithms as ODEs

Another accelerated optimization algorithm adds a “velocity” term to classical
gradient descent

E+AE+AVLE) =0
For £ :== 2, and f = zo, we derive the same plant
{ZF] - {22} (z,u) € R*™ x R"
Z2 u
with output y = h(z).
But with a different static state-feedback for the control algorithm
k(h(z)) = —Aza —yVL(z1) (%)

» This accelerated gradient method is called the heavy ball method [Polyak 63].

» It models the dynamics of a particle sliding on a profile defined by L (the
objective function), where A > 0 represents friction and v > 0 represents
gravity.
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Unconstrained Hybrid
Optimization Algorithms
for Performance
Improvement



V] . .
Motivation
—%‘\qgo/J
5 : : : : ] Heavy ball:
N — _ ] > Large X slow
_500 éSIOW con\ilergence Wéthout oscglatlons . > Small \: fast, but

‘ ‘ ‘ large oscillations

50 ‘ ]
fast ergence Nesterov:
z1 0 '
~ large oscillations | » Fast, but large
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50 ‘ ‘ ‘ PT————
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50 ‘ | ‘ ‘ uniform global
0 2 4 ts] 6 8 10 asymptotic stability
(UGAS)

A Logic-based algorithm, preserving the rates of the individual algorithms,
is needed to ensure fast convergence and UGAS of the set of minimizers.



{\\w/} Uniting Approach

Nesterov's algorithm is used as global feedback to the plant, and heavy ball (with
large \) is used as local feedback

ko(ho(2)) 1= —Azs — AVL(z1),  a(ha(2)) = —2dz — %VL(zl +B2)

where ( =1 and where d and ( are defined, for condition number x := % and
strong convexity constant p > 0, as

1 VE—=1

d:zm7 ﬂ':ﬁ+1

and with h defined for the individual optimization algorithms as

ho(z) := {v;le)} ()= [VL(zfQJr 522)}

Optimization parameters can be designed using both of the following:

» Lyapunov functions of the form (with a > 0 properly chosen)
1
Vo(2) =7 (L(21) = L7) + 5 B

Vi) i= yla(en = 25) + 22l 4 1 (Do) — 1)

» The hybrid systems tools in [Goebel, Sanfelice, Teel, 12 PUP].



«\/’ Uniting Approach

Nesterov's algorithm is used as global feedback to the plant, and heavy ball (with
large ) is used as local feedback

Ho(ho(z)) = —)\22 — ’}/VL(Zl), m(hl(z)) = _2d22 — %VL(Zl + BZQ)

where ( = 1 and where d and 3 are defined, for condition number « := % and
strong convexity constant i > 0, as
1 o — 1
di=——— p:= vV
VeE+1 VE+1

and with h defined for the individual optimization algorithms as

Assumption 1 (Strong convexity of L)

L is strongly convex with 1 > 0, namely, for all uq,2; € R”,
1. V2L(z) > pl;
2. L(uy) > L(z1) +(VL(21),u1 — 21) + § |u1 — 2.
Assumption 2 (Lipschitz continuity of L)
VL is Lipschitz continuous with constant M > 0, namely,

|VL(2’1) - VL(U1)| S M |Zl — ’U,l‘

for all uy,z; € R™.
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Switching Rules

The algorithm is modeled as a hybrid system #H with state
(2,q9) € R?™ x Q :={0,1}, data (C, F, D, G), and c1 9 € (0,cp), co > O:

307
207

22

10y

22
= | rq(hq(2))
0
z
= |:1_q:| Ve e D :=DyUD;
Lyapunov Sublevel Sets
" Vo(2) = co

o
1 (?)\01,0
%,

VeeC:=CyuC;

60

Cy:= {z € R?%: Vo(z) < co} x {0}
Ci = {Z S R?: Vl(z) > 61,0} X {1}
Dy := {Z S RQ 0(2) > Co} X {0}
Dy :={zeR*:Vi(z) <10} x {1}
/ #1(hy(2)) - ,
Y global (¢=1) “ izsz o
tio(ho(2)) —
local (¢ =0)

Supervisor
q= (2,9) €C:=CUCT |
gt=1-q (2,9)€D:=DyUD;
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e N , S and Convergence Rate

Uniform global asymptotic stability for (UGAS) H: all solutions

that start close to the set of interest A for the state (21, 22, q) stay
close to, and converge to A.

To construct this set, we want:

> The state z; to be in the set of minimizers )
Ay = {21 eR” : VL(Zl) =0 }; L(z)®
> The state z> to be zero; '

» The state ¢ = 0 (local algorithm active)

Zol Mi
This yields the set of interest A := A; x {0} x {0}. 1

Convergence rate describes how fast, in the worst case, the value of
the objective function L approaches L*. For example, the bound

L(:1(8) — L* < (L(z1(0)) — L*) exp(—mt)

has the rate exp(—m¢t), with m > 0.




,\\/) Main Results
A 2 y

Theorem (UGAS of A and convergence rate for H)

Let L satisfy Assumptions 1 and 2. Additionally, let A > 0, v > 0,
and ¢10 € (0,¢0), co > 0. Then, the set A is uniformly globally
asymptotically stable for 7. Furthermore, each maximal solution
(t,4) = @t ) = (21(t,5), 2(t,5),a(t,5)) of the hybrid closed-
loop algorithm 7 starting from C;? satisfies

L(z1(t,j)) — L* < (L(21(0,0)) — L) exp(—at)
when ¢(t,j) =1 and
L(z1(t1,1)) = L™ < (L(21(0,0)) — L") exp(—2ut)

when ¢(t, j) = 0, for all (¢,5) € domx. The constant & > 0 is the
strong convexity constant and a > 0 is defined, for k := % > 1,

as S B 1 1
' 2k k2K’
?For solutions not in Cp, a similar bound, keeping track of the two jumps,
can be written.




*'&’\c.»/’ Outline of Proof

> The heavy ball algorithm (H,) satisfies
Vo = (VVo(2), Fy(2, kg (h(2)))) = =A|22[* <0
for all A > 0, and v > 0, where Fp is the plant and hg is the output;
» The largest weakly invariant set for H contained in

{zERQ":f/}]()—O}ﬂ{zeRzn' z) =74}
is when 7, = 0, which is equal to A; x {0};

> Nesterov's algorithm (#,) satisfies Vi (z) < —aVi(2);

» By an invariance principle (for H;), since every maximal solution is
complete, Ho and H; have A; x {0} uniformly globally
asymptotically stable;

» Uniform global asymptotic stability of A for H follows from the
construction of G and D.

> Convergence rate for H, follows from strong convexity of L, and
convergence rate for H; follows from Gronwall's Lemma.



{\w/} Algorithm for Comparison

In [Poveda and Li CDC19], a Nesterov-like reset algorithm for strongly convex L
was proposed. Using an alternate state space representation 27 := £ and
23 = § 4 Z&, the HAND-2 algorithm has state (z,7) € R27*! and data

(C,F,D,G):
2(29— z) C:={(z,7) €R™ : 7€ [Tnin, Tinax) }
F(z,7):= | 2c7VL(z1)| VY(z,7)€C [ ._ {(z7) €R™MHL L 7> T )
1 ) . - max
G(z,7) = {G%(Z" T)] V(z,7) € D

where ¢ > 0, G, (2,7) :=[2{ 2] |7, and 0 < Tiin < Timax < 0.
It is shown that each maximal solution (¢, ) — (z1(¢,7), 22(¢, 7), 7(t,j)) of the
HAND-2 algorithm satisfies

L((8.9) = L' < ka|2(0,0) = 2 exp (o (¢ + )

for all (£, ) € dom(z,7), where kq := 0.5k, M, M > 0, ky := )+ T

AT := Tmax - Tminu 0< Tmin < Tmax: i < Tr%lax - Tg]in'
~ —1 2 .
ky:=1-— (C#)Té:—meinY and j > d(t +]) — max{tA-qullAT,O}.



*'6’\\%'/)’ Algorithm for Comparison

In [Poveda and Li CDC19], a Nesterov-like reset algorithm for strongly convex L
was proposed. Using an alternate state space representation 27 := £ and
zp 1= & + $&, the HAND-2 algorithm has state (z,7) € R?"*! and data

(C,F,D,G):
%(22 —2z1) C = {(z,T) e R*™ M 7 € [Tin, Tinax) }
F(z,7):= | 2c7VL(z1)| VY(z,7)€C [ ._ {(z7) €R™M L 7> T )
1 ) . - max
G(z,7) = {G%(Z" T)] V(z,7) € D

where ¢ > 0, G, (z,7) == [2] 27 |7, and 0 < Tinin < Tinax < 00.
It is shown that each maximal solution (¢, ) — (21(¢,7), 22(¢, 7), (¢, j)) of the
HAND-2 algorithm satisfies

Lz (t9) = L < ka|2(0,0) = 25 exp (<o (¢ + ) )

1 2

This bound holds when: z1(0,0) = 22(0,0) and 7(0,0) = Tinin. ]

— cp) "+ 1 g - ~ N . maxii+) Q1,01



L(z) := 2%, with single minimum A; := {0}.

Ho: A=40,y =3 Hi: M =2, k=1

Sublevel set2: ¢y = 400, ¢1,9 = 111.

HAND-2: Tiin = 3, Tmax = 5.63, ¢ = 0.25.

Initial conditions (Ho, Hi, and H): 21(0,0) = 50, 22(0,0) =0, ¢ = 0.
HAND-2 initial conditions: z1(0,0) = 50, 22(0,0) = 50, 7 = Tinin-

VYyVYVYYVYY

» The hybrid closed-loop system H is 8.6% faster than HAND-2, 72.7%
faster than H;, and 98.3% faster than H,.

» The different initial velocity of H is key to its improved performance and
lack of overshoot compared to HAND-2.




Constrained Optimization
For Fast Solvers
(A Work in Progress)
In collaboration with
AFRL/RV, C. Petersen
and S. Phillips



{\w/’ 8 Optimal Control Problem

For a plant ¥p4+1 := Ag¥r + Bavk, Y € R™ and v, € R®:

Stage cost Terminal cost

Horizon {N '_LB [ 20 ]
in J
i Zl(%w + | ) ;
st. Gz1 —g=0 -
s.t. xrog = wk -1 g Jy— TN
Equality Hzy —h <0 #1771 g
g(xy, up) =0 Constraints
xn € Xy .
Inequality UN—
h(uy) < 0} constraints -

For MPC, we want to
» Find the minimum 2z € R of the cost function J
(my, == N(m+ s));
> Use v := ug for one step of the plant;
> Repeat.



éf\‘.’/} ptimal Control Problem

Solving the OCP

» The Lagrangian for the reformulated problem, with weights

m n € R™n and u € R™*, m,; = Nm, is 0
Tk .
L(z1,m,p) == J(z1) + 7' (Gz1 — g) + " h(z1) '
9 N
> The solution must satisfy the Karush-Kuhn-Tucker (KKT) 0
conditions: :
Vz1£(21>777M> =0 L
g—Gz =0

—h(z1) + Ny (1) 20

{weR™ : (w,y—p)<0Vy>0}, ifu>0

N lp) = {@, if 4 <O0.




{\\w/} OCP Solver

In [Nicotra, et. al. IEEE TAC19] both the OCP and the KKT conditions
were solved with gradient flow. Let & > 0 and & = 21, £ = 21:

Unconstrained Constrained GF

GF
21 vzlﬁ(zh 7, M)

£ = —aVL(O) ‘ 0| =—a g-Gn
I —h(z1) + Pn(h(21), 1)

Py (h(z1), p) = argmin [w — h(z1)[
weN (1)

» In [Nicotra, et. al. IEEE TAC19], this constrained ODE was used to
control a continuous-time plant.

» We intend to use this ODE as a solver for MPC, for a discrete-time
plant.

» A uniting algorithm might be possible, if we can tune local and
global algorithms via scalar or time-varying a.



‘\/’ tion: Orbital Maneuvers

0 0 1 0 P1
; 0 0 0 1] %
b =A = 32 0 0 2n| |¢1
0 0 —-2n O o
Ag = exp(AT)
— 4. |02
b a2
Va1 = Ag¥r + Bavy = e
Photo: www.wikipedia.com
Let >0, &=z, € =2, pri= [z 0 ul]", and pzi=1[z3 13 pg]':
Unconstrained Constrained HBF

)T

) _ p2|  |—aT(p1) — Bp2

(--pé-ovie)  EEEp Vo £er, )
T(p1) := g— Gz

—h(z1) + P(h(z1), 1)




Uniting algorithm:
» In progress: derive and prove properties of switching rules not
requiring knowledge of 2} or L*.
» Applications to learning.
Solver:
» Derive convergence rate for [Nicotra, et. al. IEEE TAC19].

» Derive and prove properties of accelerated algorithms for constrained
optimization (such as mirror descent), to use as a solver for MPC.

» Implement an aperiodic timer, for start of the optimization step.

» Implement early stopping mechanisms and time-varying parameters.



{\w/, Nonstrongly Convex L

Denoting time as a state 7 > 0, the global feedback (Nesterov) and local
feedback (heavy ball) to the plant are

ko(ho(2)) == —Aza—yVL(z1), ki(h1(2)) := —267(7)22—%VL(21+5(T)22)

with d and 3 typically chosen as

T—1

- 3
d
T T+ 2

()¢:m7

™I

(r) =

The Lyapunov functions used to design the optimization parameters are
. 1
Vol#) i= 7 (L(z1) = 1)+ 5 |
1

Vi(z) := 5 |EL(7’) |z1] 4, + Z2|2 + %(L(Zl) -L")

where a(7) is




g
The algorithm is modeled as a hybrid system H with state (z,q,7) €
R x @ x Rxo, Q := {0,1}, data (C, F,D,G), and c19 € (0,cp),
co > 0, as follows:
Lo
F(a) = | LFalhe() Vo€ C = CoUC
L q
[ 2
Gx):=|1—¢q Vo € D := Do U D,
| 0
Co = {z € R*:Vp(2) < co} x {0} x Rxg
Cr:={z¢€ R?:V1(2) > e10} x {1} x Rxo
Dy = {z € R*:Vp(2) > co} x {0} x Rxg
D = {z eR%:Vi(2) < 01,0} x {1} x Ry

\/ ’ Nonstrongly Convex L

7)z2)
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- N ? Nonstrongly Convex L

Assumption 3 (Nonstrongly convex L)

L is nonstrongly convex. Namely, for all uq,2; € R™,

L(Ul) 2 L(Zl) I <VL(21),U1 — Zl>

Assumption 4 (Properties of L with respect to .A)

1. Aj is compact and connected,;

2. L is positive definite with respect to Aj;.




,‘\ﬂ/’ ‘ Nonstrongly Convex L

Theorem (UGAS of A and convergence rate for )

Let L satisfy Assumptions 2, 3, and 4. Additionally, let A > 0,
v >0, and ¢19 € (0,c0), co > 0. Then, the set A is uniformly glob-
ally asymptotically stable for . Furthermore, each maximal solution
(t,7) — x(t,j) = (21(t,4),22(t,4),q(t,5)) of the hybrid closed-loop
algorithm # starting from C; satisfies

9C

T (Lo (t,) - 1) <

DL (110,00, +122(0,0)%)

for all ¢ > 1 when ¢(¢,7) =1 and

V(2(0,0)) = V(=(T, §(T)))
At

L(z1(T,1)) - L* <

when ¢(t,7) = 0, where C € (0,2exp(M)), M > 0 is the Lips-
chitz constant of VL, and z, (T, §(T)) = & fOT 21(t, j(T))de?, (T, 1) €
dom z.

aThis equality is used to derive the bound for ¢ = 0, via Jensen’s inequality.




vVvyyvyy

vy

\/, Numerical Example

. 28 2.6257s 8.7813 |
2.30805= =
-20 ‘ ‘
0 5 10 15

t[s]
L(z) = 22, with single minimum A; := {0}.
Ho parameters: A =40, vy = % ‘H, parameter: M = 2.
Sublevel set constants: co = 400, ¢;,0 = 111.
HAND-1 parameters [Poveda and Li CDC19]: Ty, =~ 3.1047,
Tonax = Toed + 1, ¢ = 0.25, 7 = 51, § = 4236.
Initial conditions (Ho, H1, and H): z1(0,0) = 50, z2(0,0) =0, ¢ = 0.
HAND-1 ICs: z(0,0) = 50, 22(0,0) = 50, 7 = Trnin-

» The hybrid closed-loop system H is 8.6% faster than HAND-1,
72.7% faster than H;, and 98.3% faster than H,.

» The different initial velocity of # is key to its improved
performance and lack of overshoot compared to HAND-1.




