
Hybrid Optimization:

Accelerating Convergence with

Robustness

in Optimization-Based Feedback

Control

Ricardo Sanfelice
Department Electrical and Computer Engineering

University of California

CoE Review @ Zoom - October 30, 2020

Outline of Recent Results

1. Estimation
◮ Finite-time Parameter Estimation via Hybrid Methods

ACC 21a, ACC 21b, ACC 21c (all submitted), + CoE collab

◮ Observers for Hybrid Systems ACC 20, CDC 19, CDC 20,

Automatica (submitted)

2. Safety
◮ Reachable maps for hybrid systems and regularity

HSCC 20, TAC 19, NAHS 20, HSCC 20, CDC 20 (submitted)

◮ (Necessary and Sufficient) Safety Certificates, with
Events ACC 21a, ACC 21d (submitted), TAC 20 + CoE collab

3. Optimization
◮ High Performance Optimization via Uniting Control

ACC 19, MTNS 20, ACC 20e (submitted) + AFRL/RV collab.

◮ Model Predictive Control for Hybrid Systems ACC 20,

CDC 20, IFAC WC 20 Workshop

Hybrid Optimal Control Problem

Problem (⋆)

Given an initial condition x0,

minimize
(x,u)∈SHP

(x0)
J (x, u)

subject to (T, J) ∈ T

x(T, J) ∈ X,

where (T, J) is the terminal time of (x, u).

Hybrid Optimal Control Problem

Problem (⋆)

Given an initial condition x0,

minimize
(x,u)∈SHP

(x0)
J (x, u)

subject to (T, J) ∈ T

x(T, J) ∈ X,

where (T, J) is the terminal time of (x, u).

◮ The feasible set X , set of all x0 with
feasible (x, u) ∈ SHP

(x0).
◮ The value function J ∗ : X → R≥0, defined as

J ∗(x0) := inf
(x,u)∈SHP

(x0)

(T,J)∈T
x(T,J)∈X

J (x, u) ∀x0 ∈ X .

Hybrid Optimization

◮ Solve optimization problems using accelerated methods with
guaranteed performance

Nesterov’s algorithm: ξ̈ + aξ̇ + b∇L(ξ + cξ̇) = 0

Heavy ball algorithm: ξ̈ + aξ̇ + b∇L(ξ) = 0

a, b, and c are constants, L is cost function

◮ Fast convergence to minimizers leads to overshoot/oscillations
◮ Constraints typically encoded as soft constraints

◮ Solve MPC problems (CT, DT, and hybrid) using accelerated
methods

Hybrid Optimization

◮ Solve optimization problems using accelerated methods with
guaranteed performance

Nesterov’s algorithm: ξ̈ + aξ̇ + b∇L(ξ + cξ̇) = 0

Heavy ball algorithm: ξ̈ + aξ̇ + b∇L(ξ) = 0

a, b, and c are constants, L is cost function

◮ Fast convergence to minimizers leads to overshoot/oscillations
◮ Constraints typically encoded as soft constraints

◮ Solve MPC problems (CT, DT, and hybrid) using accelerated
methods

Research collaboration with AFRL/RV (Christopher Petersen
and Sean Phillips) on optimization and hybrid systems, with

applications to orbital maneuvering

Accelerating Convergence with
Robustness in
Optimization-Based Feedback
Control

Dawn M. Hustig-Schultz
and Ricardo G. Sanfelice
Department of Electrical and Computer Engineering
Hybrid Systems Laboratory
University of California, Santa Cruz

Assured Autonomy in Contest Environments
—–

Fall 2020 Review
—–

October 30, 2020

Optimization Algorithms as ODEs

Accelerated gradient methods have an added “velocity” term

ξ̈ + 2dξ̇ +
1

Mζ2
∇L(ξ + βξ̇) = 0

From this ODE, derive a plant, where ξ := z1 and ξ̇ = z2 and output y = h(z).[
ż1

ż2

]
=

[
z2

u

]
(z, u) ∈ R2n × Rn

And derive a control algorithm, with Lipschitz constant M > 0,

κ(h(z)) = −2dz2 −
1

Mζ2
∇L(z1 + βz2) (?)

A static state-feedback law is given by (?)

I This optimization algorithm is an accelerated gradient method called the
Nesterov’s accelerated gradient descent [Nesterov 83].

I It models a mass-spring-damper with a curvature-dependent damping term
[Muehlebach and Jordan 19]. The constant ζ > 0 rescales solutions in time,
and d and β take different forms depending on the convexity of L.

Optimization Algorithms as ODEs

Accelerated gradient methods have an added “velocity” term

ξ̈ + 2dξ̇ +
1

Mζ2
∇L(ξ + βξ̇) = 0

From this ODE, derive a plant, where ξ := z1 and ξ̇ = z2 and output y = h(z).[
ż1

ż2

]
=

[
z2

u

]
(z, u) ∈ R2n × Rn

And derive a control algorithm, with Lipschitz constant M > 0,

κ(h(z)) = −2dz2 −
1

Mζ2
∇L(z1 + βz2) (?)

A static state-feedback law is given by (?)

I This optimization algorithm is an accelerated gradient method called the
Nesterov’s accelerated gradient descent [Nesterov 83].

I It models a mass-spring-damper with a curvature-dependent damping term
[Muehlebach and Jordan 19]. The constant ζ > 0 rescales solutions in time,
and d and β take different forms depending on the convexity of L.

Optimization Algorithms as ODEs

Accelerated gradient methods have an added “velocity” term

ξ̈ + 2dξ̇ +
1

Mζ2
∇L(ξ + βξ̇) = 0

From this ODE, derive a plant, where ξ := z1 and ξ̇ = z2 and output y = h(z).[
ż1

ż2

]
=

[
z2

u

]
(z, u) ∈ R2n × Rn

And derive a control algorithm, with Lipschitz constant M > 0,

κ(h(z)) = −2dz2 −
1

Mζ2
∇L(z1 + βz2) (?)

A static state-feedback law is given by (?)

I This optimization algorithm is an accelerated gradient method called the
Nesterov’s accelerated gradient descent [Nesterov 83].

I It models a mass-spring-damper with a curvature-dependent damping term
[Muehlebach and Jordan 19]. The constant ζ > 0 rescales solutions in time,
and d and β take different forms depending on the convexity of L.

Optimization Algorithms as ODEs

Accelerated gradient methods have an added “velocity” term

ξ̈ + 2dξ̇ +
1

Mζ2
∇L(ξ + βξ̇) = 0

From this ODE, derive a plant, where ξ := z1 and ξ̇ = z2 and output y = h(z).[
ż1

ż2

]
=

[
z2

u

]
(z, u) ∈ R2n × Rn

And derive a control algorithm, with Lipschitz constant M > 0,

κ(h(z)) = −2dz2 −
1

Mζ2
∇L(z1 + βz2) (?)

A static state-feedback law is given by (?)

I This optimization algorithm is an accelerated gradient method called the
Nesterov’s accelerated gradient descent [Nesterov 83].

I It models a mass-spring-damper with a curvature-dependent damping term
[Muehlebach and Jordan 19]. The constant ζ > 0 rescales solutions in time,
and d and β take different forms depending on the convexity of L.

Optimization Algorithms as ODEs

Accelerated gradient methods have an added “velocity” term

ξ̈ + 2dξ̇ +
1

Mζ2
∇L(ξ + βξ̇) = 0

From this ODE, derive a plant, where ξ := z1 and ξ̇ = z2 and output y = h(z).[
ż1

ż2

]
=

[
z2

u

]
(z, u) ∈ R2n × Rn

And derive a control algorithm, with Lipschitz constant M > 0,

κ(h(z)) = −2dz2 −
1

Mζ2
∇L(z1 + βz2) (?)

A static state-feedback law is given by (?)

I This optimization algorithm is an accelerated gradient method called the
Nesterov’s accelerated gradient descent [Nesterov 83].

I It models a mass-spring-damper with a curvature-dependent damping term
[Muehlebach and Jordan 19]. The constant ζ > 0 rescales solutions in time,
and d and β take different forms depending on the convexity of L.

Optimization Algorithms as ODEs

Another accelerated optimization algorithm adds a “velocity” term to classical
gradient descent

ξ̈ + λξ̇ + γ∇L(ξ) = 0

For ξ := z1 and ξ̇ = z2, we derive the same plant

[
ż1

ż2

]
=

[
z2

u

]
(z, u) ∈ R2n × Rn

with output y = h(z).

But with a different static state-feedback for the control algorithm

κ(h(z)) = −λz2 − γ∇L(z1) (?)

I This accelerated gradient method is called the heavy ball method [Polyak 63].
I It models the dynamics of a particle sliding on a profile defined by L (the

objective function), where λ > 0 represents friction and γ > 0 represents
gravity.

Unconstrained Hybrid
Optimization Algorithms

for Performance
Improvement

Motivation

0 2 4 6 8 10
-50

0

50

0 2 4 6 8 10
-50

0

50

0 2 4 6 8 10
-50

0

50

z1

z1

z1

t[s]

slow convergence without oscillations

large oscillations

fast convergence

no oscillationsfast convergence

Heavy ball:

I Large λ: slow

I Small λ: fast, but
large oscillations

Nesterov:

I Fast, but large
oscillations

I Hard to guarantee
uniform global
asymptotic stability
(UGAS)

A Logic-based algorithm, preserving the rates of the individual algorithms,
is needed to ensure fast convergence and UGAS of the set of minimizers.

Uniting Approach

Nesterov’s algorithm is used as global feedback to the plant, and heavy ball (with
large λ) is used as local feedback

κ0(h0(z)) := −λz2 − γ∇L(z1), κ1(h1(z)) := −2dz2 −
1

M
∇L(z1 + βz2)

where ζ = 1 and where d and β are defined, for condition number κ := M
µ and

strong convexity constant µ > 0, as

d :=
1√
κ+ 1

, β :=

√
κ− 1√
κ+ 1

and with h defined for the individual optimization algorithms as

h0(z) :=

[
z2

∇L(z1)

]
, h1(z) :=

[
z2

∇L(z1 + βz2)

]
Optimization parameters can be designed using both of the following:

I Lyapunov functions of the form (with a > 0 properly chosen)

V0(z) := γq (L(z1)− L∗) +
1

2
|z2|2

V1(z) :=
1

2
|a(z1 − z∗1) + z2|2 +

1

M
(L(z1)− L∗)

I The hybrid systems tools in [Goebel, Sanfelice, Teel, 12 PUP].

Uniting Approach

Nesterov’s algorithm is used as global feedback to the plant, and heavy ball (with
large λ) is used as local feedback

κ0(h0(z)) := −λz2 − γ∇L(z1), κ1(h1(z)) := −2dz2 −
1

M
∇L(z1 + βz2)

where ζ = 1 and where d and β are defined, for condition number κ := M
µ and

strong convexity constant µ > 0, as

d :=
1√
κ+ 1

, β :=

√
κ− 1√
κ+ 1

and with h defined for the individual optimization algorithms as

h0(z) :=

[
z2

∇L(z1)

]
, h1(z) :=

[
z2

∇L(z1 + βz2)

]
Optimization parameters can be designed using both of the following:

I Lyapunov functions of the form (with a > 0 properly chosen)

V0(z) := γq (L(z1)− L∗) +
1

2
|z2|2

V1(z) :=
1

2
|a(z1 − z∗1) + z2|2 +

1

M
(L(z1)− L∗)

I The hybrid systems tools in [Goebel, Sanfelice, Teel, 12 PUP].

Assumption 1 (Strong convexity of L)

L is strongly convex with µ > 0, namely, for all u1, z1 ∈ Rn,
1. ∇2L(z1) ≥ µI;

2. L(u1) ≥ L(z1) + 〈∇L(z1), u1 − z1〉+ µ
2 |u1 − z1|2.

Assumption 2 (Lipschitz continuity of L)

∇L is Lipschitz continuous with constant M > 0, namely,

|∇L(z1)−∇L(u1)| ≤M |z1 − u1|

for all u1, z1 ∈ Rn.

Switching Rules

The algorithm is modeled as a hybrid system H with state
(z, q) ∈ R2n ×Q := {0, 1}, data (C,F,D,G), and c1,0 ∈ (0, c0), c0 > 0:

F (x) :=

 z2

κq(hq(z))
0

 ∀x ∈ C := C0 ∪ C1

G(x) :=

[
z

1− q

]
∀x ∈ D := D0 ∪D1

C0 :=
{
z ∈ R2 :V0(z) ≤ c0

}
× {0}

C1 :=
{
z ∈ R2 :V1(z) ≥ c1,0

}
× {1}

D0 :=
{
z ∈ R2 :V0(z) ≥ c0

}
× {0}

D1 :=
{
z ∈ R2 :V1(z) ≤ c1,0

}
× {1}

0 20 40 60
-30

-20

-10

0

10

20

30 400

400

40
0

400

400

111

111

111

111

z2

z1

V0(z) = c0

V1(z) = c1,0

Lyapunov Sublevel Sets

UGAS and Convergence Rate

Uniform global asymptotic stability for (UGAS) H: all solutions
that start close to the set of interest A for the state (z1, z2, q) stay
close to, and converge to A.

To construct this set, we want:
I The state z1 to be in the set of minimizers
A1 := {z1 ∈ Rn : ∇L(z1) = 0 };

I The state z2 to be zero;

I The state q = 0 (local algorithm active)

This yields the set of interest A := A1×{0}×{0}.

Convergence rate describes how fast, in the worst case, the value of
the objective function L approaches L∗. For example, the bound

L(z1(t))− L∗ ≤ (L(z1(0))− L∗) exp(−mt)

has the rate exp(−mt), with m > 0.

Main Results

Theorem (UGAS of A and convergence rate for H)

Let L satisfy Assumptions 1 and 2. Additionally, let λ > 0, γ > 0,
and c1,0 ∈ (0, c0), c0 > 0. Then, the set A is uniformly globally
asymptotically stable for H. Furthermore, each maximal solution
(t, j) 7→ x(t, j) = (z1(t, j), z2(t, j), q(t, j)) of the hybrid closed-
loop algorithm H starting from C1

a satisfies

L(z1(t, j))− L∗ ≤ (L(z1(0, 0))− L∗) exp(−at)

when q(t, j) = 1 and

L(z1(t1, 1))− L∗ ≤ (L(z1(0, 0))− L∗) exp(−2µt)

when q(t, j) = 0, for all (t, j) ∈ domx. The constant µ > 0 is the
strong convexity constant and a > 0 is defined, for κ := M

µ ≥ 1,
as

a := d+
β

2κ
=

1√
κ
− 1

2κ
.

aFor solutions not in C0, a similar bound, keeping track of the two jumps,
can be written.

Outline of Proof

I The heavy ball algorithm (H0) satisfies

V̇0 = 〈∇V0(z), Fp(z, κq(h(z)))〉 = −λ |z2|2 ≤ 0

for all λ > 0, and γ > 0, where FP is the plant and h0 is the output;

I The largest weakly invariant set for H0 contained in{
z ∈ R2n : V̇q(z) = 0

}
∩
{
z ∈ R2n : Vq(z) = rq

}
is when rq = 0, which is equal to A1 × {0};

I Nesterov’s algorithm (H1) satisfies V̇1(z) ≤ −aV1(z);

I By an invariance principle (for H0), since every maximal solution is
complete, H0 and H1 have A1 × {0} uniformly globally
asymptotically stable;

I Uniform global asymptotic stability of A for H follows from the
construction of G and D.

I Convergence rate for H0 follows from strong convexity of L, and
convergence rate for H1 follows from Grönwall’s Lemma.

Hybrid Algorithm for Comparison

In [Poveda and Li CDC19], a Nesterov-like reset algorithm for strongly convex L
was proposed. Using an alternate state space representation z1 := ξ and
z2 := ξ + τ

2 ξ̇, the HAND-2 algorithm has state (z, τ) ∈ R2n+1 and data
(C,F,D,G):

F (z, τ) :=

 2
τ (z2 − z1)
−2cτ∇L(z1)

1

 ∀(z, τ) ∈ C

G(z, τ) :=

[
Gz(z, τ)
Tmin

]
∀(z, τ) ∈ D

C :=
{

(z, τ) ∈ R2n+1 : τ ∈ [Tmin, Tmax]
}

D :=
{

(z, τ) ∈ R2n+1 : τ ≥ Tmax

}

where c > 0, Gz(z, τ) := [z>1 z
>
1]>, and 0 < Tmin < Tmax <∞.

It is shown that each maximal solution (t, j) 7→ (z1(t, j), z2(t, j), τ(t, j)) of the
HAND-2 algorithm satisfies

L(z1(t, j))− L∗ ≤ ka |z1(0, 0)− z∗1 |
2

exp
(
−k̃bα̃ (t+ j)

)
for all (t, j) ∈ dom(z, τ), where ka := 0.5k1M , M > 0, k1 :=

(cµ)−1+T 2
min

∆T 2 ,
∆T := Tmax − Tmin, 0 < Tmin < Tmax, 1

cµ < T 2
max − T 2

min,

k̃b := 1− (cµ)−1+T 2
min

T 2
max

, and j ≥ α̃(t+ j) := max{t+j−∆T,0}
∆T+1 .

Hybrid Algorithm for Comparison

In [Poveda and Li CDC19], a Nesterov-like reset algorithm for strongly convex L
was proposed. Using an alternate state space representation z1 := ξ and
z2 := ξ + τ

2 ξ̇, the HAND-2 algorithm has state (z, τ) ∈ R2n+1 and data
(C,F,D,G):

F (z, τ) :=

 2
τ (z2 − z1)
−2cτ∇L(z1)

1

 ∀(z, τ) ∈ C

G(z, τ) :=

[
Gz(z, τ)
Tmin

]
∀(z, τ) ∈ D

C :=
{

(z, τ) ∈ R2n+1 : τ ∈ [Tmin, Tmax]
}

D :=
{

(z, τ) ∈ R2n+1 : τ ≥ Tmax

}

where c > 0, Gz(z, τ) := [z>1 z
>
1]>, and 0 < Tmin < Tmax <∞.

It is shown that each maximal solution (t, j) 7→ (z1(t, j), z2(t, j), τ(t, j)) of the
HAND-2 algorithm satisfies

L(z1(t, j))− L∗ ≤ ka |z1(0, 0)− z∗1 |
2

exp
(
−k̃bα̃ (t+ j)

)
for all (t, j) ∈ dom(z, τ), where ka := 0.5k1M , M > 0, k1 :=

(cµ)−1+T 2
min

∆T 2 ,
∆T := Tmax − Tmin, 0 < Tmin < Tmax, 1

cµ < T 2
max − T 2

min,

k̃b := 1− (cµ)−1+T 2
min

T 2
max

, and j ≥ α̃(t+ j) := max{t+j−∆T,0}
∆T+1 .

This bound holds when: z1(0, 0) = z2(0, 0) and τ(0, 0) = Tmin.

Numerical Example

0 5 10 15
-20

0
20
40
60

z1

t[s]

I L(z1) := z2
1 , with single minimum A1 := {0}.

I H0: λ = 40, γ = 2
3 , H1: M = 2, κ = 1.

I Sublevel set2: c0 = 400, c1,0 = 111.
I HAND-2: Tmin = 3, Tmax = 5.63, c = 0.25.
I Initial conditions (H0, H1, and H): z1(0, 0) = 50, z2(0, 0) = 0, q = 0.
I HAND-2 initial conditions: z1(0, 0) = 50, z2(0, 0) = 50, τ = Tmin.

Conclusions

I The hybrid closed-loop system H is 8.6% faster than HAND-2, 72.7%
faster than H1, and 98.3% faster than H0.

I The different initial velocity of H is key to its improved performance and
lack of overshoot compared to HAND-2.

Constrained Optimization
For Fast Solvers

(A Work in Progress)
In collaboration with

AFRL/RV, C. Petersen
and S. Phillips

The Optimal Control Problem

For a plant ψk+1 := Adψk +Bdνk, ψk ∈ Rm and νk ∈ Rs:

min
z1

J(z1)

s.t. Gz1 − g = 0

Hz1 − h ≤ 0 z1 :=

x0

...
xN
u0

...
uN−1

For MPC, we want to

I Find the minimum z∗1 ∈ Rmz of the cost function J
(mz1 := N(m+ s));

I Use νk := u∗0 for one step of the plant;

I Repeat.

The Optimal Control Problem

For a plant ψk+1 := Adψk +Bdνk, ψk ∈ Rm and νk ∈ Rs:

min
z1

J(z1)

s.t. Gz1 − g = 0

Hz1 − h ≤ 0 z1 :=

x0

...
xN
u0

...
uN−1

For MPC, we want to

I Find the minimum z∗1 ∈ Rmz of the cost function J
(mz1 := N(m+ s));

I Use νk := u∗0 for one step of the plant;

I Repeat.

Solving the OCP

I The Lagrangian for the reformulated problem, with weights
η ∈ Rmη and µ ∈ Rmh , mη = Nm, is

L(z1, η, µ) := J(z1) + η>(Gz1 − g) + µ>h(z1)

I The solution must satisfy the Karush-Kuhn-Tucker (KKT)
conditions:

∇z1L(z1, η, µ) = 0

g −Gz1 = 0

− h(z1) +N+(µ) 3 0

N+(µ) =

{
{w ∈ Rmh : 〈w, y − µ〉 ≤ 0 ∀y ≥ 0 } , if µ ≥ 0

∅, if µ < 0.

OCP Solver

In [Nicotra, et. al. IEEE TAC19] both the OCP and the KKT conditions
were solved with gradient flow. Let α > 0 and ξ̇ = ż1, ξ = z1:

Unconstrained
GF

ξ̇ = −α∇L(ξ)

Constrained GFż1

η̇
µ̇

 = −α

 ∇z1L(z1, η, µ)
g −Gz1

−h(z1) + PN (h(z1), µ)

PN (h(z1), µ) = argmin

w∈N+(µ)

|w − h(z1)|22

I In [Nicotra, et. al. IEEE TAC19], this constrained ODE was used to
control a continuous-time plant.

I We intend to use this ODE as a solver for MPC, for a discrete-time
plant.

I A uniting algorithm might be possible, if we can tune local and
global algorithms via scalar or time-varying α.

Application: Orbital Maneuvers

ψ̇ = Aψ =

0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

ψ1

ψ2

ψ̇1

ψ̇2

Ad := exp(AT)

Bd := Ad

[
02

I2

]
ψk+1 := Adψk +Bdνk

Photo: www.wikipedia.com

Let β > 0, ξ := z1, ξ̇ = z2, p1 := [z>1 η>1 µ>1]>, and p2 := [z>2 η>2 µ>2]>:

Unconstrained
HBF

ξ̈ = −βξ̇ − α∇L(ξ)

Constrained HBF[
ṗ1

ṗ2

]
=

[
p2

−αT (p1)− βp2

]

T (p1) :=

 ∇z1L(z1, η1, µ1)
g −Gz1

−h(z1) + P (h(z1), µ1)

Conclusion and Future Work

Uniting algorithm:

I In progress: derive and prove properties of switching rules not
requiring knowledge of z∗1 or L∗.

I Applications to learning.

Solver:

I Derive convergence rate for [Nicotra, et. al. IEEE TAC19].

I Derive and prove properties of accelerated algorithms for constrained
optimization (such as mirror descent), to use as a solver for MPC.

I Implement an aperiodic timer, for start of the optimization step.

I Implement early stopping mechanisms and time-varying parameters.

Nonstrongly Convex L

Denoting time as a state τ > 0, the global feedback (Nesterov) and local
feedback (heavy ball) to the plant are

κ0(h0(z)) := −λz2−γ∇L(z1), κ1(h1(z)) := −2d̄(τ)z2−
1

M
∇L(z1+β̄(τ)z2)

with d̄ and β̄ typically chosen as

d̄(τ) :=
3

2(τ + 2)
, β̄(τ) :=

τ − 1

τ + 2

The Lyapunov functions used to design the optimization parameters are

V0(z) := γq (L(z1)− L∗) +
1

2
|z2|2

V1(z) :=
1

2

∣∣ā(τ) |z1|A1
+ z2

∣∣2 +
1

M
(L(z1)− L∗)

where ā(τ) is

ā(τ) =
2

τ + 2

Nonstrongly Convex L

Denoting time as a state τ > 0, the global feedback (Nesterov) and local
feedback (heavy ball) to the plant are

κ0(h0(z)) := −λz2−γ∇L(z1), κ1(h1(z)) := −2d̄(τ)z2−
1

M
∇L(z1+β̄(τ)z2)

with d̄ and β̄ typically chosen as

d̄(τ) :=
3

2(τ + 2)
, β̄(τ) :=

τ − 1

τ + 2

The Lyapunov functions used to design the optimization parameters are

V0(z) := γq (L(z1)− L∗) +
1

2
|z2|2

V1(z) :=
1

2

∣∣ā(τ) |z1|A1
+ z2

∣∣2 +
1

M
(L(z1)− L∗)

where ā(τ) is

ā(τ) =
2

τ + 2

The algorithm is modeled as a hybrid system H with state (z, q, τ) ∈
R2n × Q × R≥0, Q := {0, 1}, data (C,F,D,G), and c1,0 ∈ (0, c0),
c0 > 0, as follows:

F (x) :=

[

z2

κq(hq(z))

]
0
q

 ∀x ∈ C := C0 ∪ C1

G(x) :=

 z
1− q

0

 ∀x ∈ D := D0 ∪D1

C0 :=
{
z ∈ R2 :V0(z) ≤ c0

}
× {0} × R≥0

C1 :=
{
z ∈ R2 :V1(z) ≥ c1,0

}
× {1} × R≥0

D0 :=
{
z ∈ R2 :V0(z) ≥ c0

}
× {0} × R≥0

D1 :=
{
z ∈ R2 :V1(z) ≤ c1,0

}
× {1} × R≥0

Results for Nonstrongly Convex L

Assumption 3 (Nonstrongly convex L)

L is nonstrongly convex. Namely, for all u1, z1 ∈ Rn,

L(u1) ≥ L(z1) + 〈∇L(z1), u1 − z1〉

Assumption 4 (Properties of L with respect to A)

1. A1 is compact and connected;

2. L is positive definite with respect to A1.

Results for Nonstrongly Convex L

Assumption 3 (Nonstrongly convex L)

L is nonstrongly convex. Namely, for all u1, z1 ∈ Rn,

L(u1) ≥ L(z1) + 〈∇L(z1), u1 − z1〉

Assumption 4 (Properties of L with respect to A)

1. A1 is compact and connected;

2. L is positive definite with respect to A1.

Theorem (UGAS of A and convergence rate for H)

Let L satisfy Assumptions 2, 3, and 4. Additionally, let λ > 0,
γ > 0, and c1,0 ∈ (0, c0), c0 > 0. Then, the set A is uniformly glob-
ally asymptotically stable for H. Furthermore, each maximal solution
(t, j) 7→ x(t, j) = (z1(t, j), z2(t, j), q(t, j)) of the hybrid closed-loop
algorithm H starting from C1 satisfies

1

M
(L(z1(t, j))− L∗) ≤ 9C̄

(t+ 2)2

(
|z1(0, 0)|2A1

+ |z2(0, 0)|2
)

for all t ≥ 1 when q(t, j) = 1 and

L(z1(T, 1))− L∗ ≤ V (z(0, 0))− V (z(T, j(T)))

λt

when q(t, j) = 0, where C̄ ∈ (0, 2 exp(M)), M > 0 is the Lips-

chitz constant of ∇L, and z1(T, j(T)) = 1
T

∫ T
0
z1(t, j(T))dta, (T, 1) ∈

domx.
aThis equality is used to derive the bound for q = 0, via Jensen’s inequality.

Numerical Example

0 5 10 15
-20

0
20
40
60

z1

t[s]

I L(z1) := z2
1 , with single minimum A1 := {0}.

I H0 parameters: λ = 40, γ = 2
3 , H1 parameter: M = 2.

I Sublevel set constants: c0 = 400, c1,0 = 111.
I HAND-1 parameters [Poveda and Li CDC19]: Tmin ≈ 3.1047,
Tmax = Tmed + 1, c = 0.25, r = 51, δ = 4236.

I Initial conditions (H0, H1, and H): z1(0, 0) = 50, z2(0, 0) = 0, q = 0.
I HAND-1 ICs: z1(0, 0) = 50, z2(0, 0) = 50, τ = Tmin.

Conclusions

I The hybrid closed-loop system H is 8.6% faster than HAND-1,
72.7% faster than H1, and 98.3% faster than H0.

I The different initial velocity of H is key to its improved
performance and lack of overshoot compared to HAND-1.

