Asynchronous Constrained Convex
Optimization in Blocks

Katherine Hendrickson and Matthew Hale

University of Florida

AFOSR Center of Excellence Review
October 30th, 2020

UNIVERSITY “ D k
UFFioriDA &9 Luke

A y
CombiR
x\w/’ . _

» Agents must interact to collectively solve problems

(-

IIIIIIIIII

, Computa

» Agents must interact to collectively solve problems

(-

» Agents have limited energy and computational power
—> Challenge #1: Algorithms must be lightweight, simple to implement

UFkiokioa €

IIIIIIIIII

g

\j, Computa
Q

» Agents must interact to collectively solve problems

(-

» Agents have limited energy and computational power
—> Challenge #1: Algorithms must be lightweight, simple to implement

» Agents can generate and share information with unpredictable timing
—> Challenge #2: Algorithms must be robust to asynchrony

UFkiokiva €

IIIIIIIIII

\
\

4
4

, Computati

» Agents must interact to collectively solve problems

(-

» Agents have limited energy and computational power
—> Challenge #1: Algorithms must be lightweight, simple to implement

» Agents can generate and share information with unpredictable timing
—> Challenge #2: Algorithms must be robust to asynchrony

Problems of interest

We are interested in problems from trajectory planning, machine learning,
estimation, and others arising in autonomy.

Duke

UF [FLORIDA

The problems of interest (convex for now) are formalized as
minimize f(x)
subject to g(z) <0
r e X

UFkiskin €

T

A
JAN

L

4
/

’ We will solv

General convex programs

The problems of interest (convex for now) are formalized as
minimize f(x)
subject to g(x) <0
r € X

In this talk
» Optimize in a distributed way that is robust to information delays

» Avoid averaging-based update laws:

Promotes scalability for computationally constrained agents
Respects division of responsibility in autonomy

Duke

UNIVERSITY

UF [FLORIDA

We u

- §;6
Saddle point formulation

» We write problems as

Q
minimize maximize L, g(x,) = f(x) + ,uTg(a?) —I——||$||2 — éHMHQ
rcX pERT ~ v, 2 2

Usual Lagrangian L(x,u)

» Regularizing makes L, g strongly convex-strongly concave

@ TEXAS K
[EXAS &)

UF iisiiva €9

e

We u

- §;6

» We write problems as

o
minimize maximize L. g(z, 1) = f(z) 4+ p g(z) +=|z|° — éHMHQ
reX ,uE]R? S -~ 2 2

Usual Lagrangian L(x,u)

» Regularizing makes L, g strongly convex-strongly concave
» We now want a saddle point 2, g = (ﬁ:a,g,ﬂa,[g)

UF iisiiva €9

e

We u

» We write problems as

Q
minimize maximize L, g(x,) = f(x) + ,uTg(a?) —I——||$||2 — éHMHQ
rcX pERT ~ v, 2 2

Usual Lagrangian L(x,u)

» Regularizing makes L, g strongly convex-strongly concave
» We now want a saddle point 2, g = a:a,g,,ua,g)

o

» Small (oz,ﬁ) —> small ||Z — 2, 3]

UF FioRIDA €

e

" 8

\/’, We must a

» Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

» Comms. are asynchronous due to environmental hazards and jamming

IIIIIIIIII

" 8

\j, We must ac

» Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

» Comms. are asynchronous due to environmental hazards and jamming

» Agents disagree and we track their knowledge at each time:

())

(' (k), 1/ (k) £ (27 (k). 1 (k)

IIIIIIIIII

UFkiokiva €

» Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

» Comms. are asynchronous due to environmental hazards and jamming

» Agents disagree and we track their knowledge at each time:

(' (k), 1/ (k) £ (27 (k). 1 (k)

Only one agent updates each decision variable

Updated&shared(I :Ezl(k) 7 3 /Lﬁ(k) - \

by agent ¢

UF [FLORIDA

» |nteractions look like this:

L 4

%

» |nteractions look like this:

» The 4 types of asynchrony are:
Computations of primal variables

IIIIIIIIII

» The 4 types of asynchrony are:

Computations of primal variables
Communication of primal variables

UF iisiiva €9

» |nteractions look like this:

® @

» The 4 types of asynchrony are:

Computations of primal variables
Communication of primal variables
Computations of dual variables

UFkiokioa €9

IIIIIIIIII

» |nteractions look like this:

» The 4 types of asynchrony are:

Computations of primal variables
Communication of primal variables
Computations of dual variables
Communication of dual variables

IIIIIIIIII

\ 7
A h
N st o

o For ;17 # p', agent @ minimizes Lo (-, ") but agent j minimizes La g(-, 1)

IIIIIIIIII

A
N

L

)
/

’ Asynchronous

o For ;17 # p', agent @ minimizes Lo (-, ") but agent j minimizes La g(-, 1)

La,ﬁ(T qu)

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0,e¢ > 0. Then there is a problem under our assumptions s.t.
I’ — 1 || < e
|2i — 25| > L

UF [FLORIDA

\/ Asynchronous d
B S ,

o For ;17 # p', agent @ minimizes Lo (-, ") but agent j minimizes La g(-, 1)

Loz,ﬁ() qu)

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0,e¢ > 0. Then there is a problem under our assumptions s.t.
I’ — 1 || < e
|2i — 25| > L

» This holds for a perfectly conditioned QP (with ;i((g% =1):

minimize ixTQzL‘ + 'z subject to Ax < b

T
-]
A
e Universsity of Texas at Austin

UF [FLORIDA

IIIIIIIIII

» Takeaway: Agents must agree on p. Call it "

% \\«c;»/}

IIIIIIIIII

» Takeaway: Agents must agree on u. Call it u”

Primal update law
» For primal agent 7, do

(k1) = T, [2100) = 75222 (o' (), 7 0) |

UF [FLORIDA

Other asynchro
‘%ﬂ

» Takeaway: Agents must agree on u. Call it u”

Primal update law
» For primal agent 7, do

2i(k+1) =1Ilx, [a:ﬁ(k) — vagzﬁ (=" (), Mp(k))}

: z’ 2’ just received

z;(k) no message from agent j received

UF [FLORIDA

IIIIIIIIII

Other asynchro

» Takeaway: Agents must agree on u. Call it u”

Primal update law
» For primal agent 7, do

2i(k+1) =1Ilx, [a:ﬁ(k) — vag;:ﬁ (=" (), Mp(k))}

| oy
ri(k+1)=<
i) _z;(k) no message from agent j received

7 just received

just received
WP (k4 1) = < M L)

u” (k) no message from dual agent / just received

UNIVERSITY ﬂf

UF [FLORIDA

Other asynchron

» Takeaway: Agents must agree on u. Call it u”

Primal update law
» For primal agent 7, do

2i(k+1) =1Ilx, [a:ﬁ(k) — vag;:ﬁ (=" (), Mp(k))}

| oy
ri(k+1)=<
i) _z;(k) no message from agent j received

7 just received

just received
WP (k4 1) = < M L)

u” (k) no message from dual agent / just received

“Do gradient descent when you can with what you have”

UF [FLORIDA

Other asynchron

» Takeaway: Agents must agree on p. Call it p”

Primal update law
» For primal agent 7, do

2i(k+1) =1Ilx, [a:ﬁ(k) — vag;:ﬁ (=" (), Mp(k))}

. ()
ri(k+1)=<
i) _z;(k) no message from agent j received

7 just received

just received
WP (k4 1) = < M L)

. (k) no message from dual agent / just received

“Do gradient descent when you can with what you have”

» Dual agent / is analogous, but with gradient ascent law

polk + 1) = Hgmi | o (k) +’7§7L(u (k), x (k))}

UF [FLORIDA

IIIIIIIIII

\ 7
: Regulari

» Given pu”(k), all primal agents minimize La,ﬁ(-,up(k))

IIIIIIIIII

\ 7
: Regulari

Given u”(k), all primal agents minimize L, 5(,up(k))

xk+1
((R +1))
Lo g(

UFkiokioa €9

IIIIIIIIII

\ 7
: Regulari

» Given pu”(k), all primal agents minimize La,5(°,up(k))

—— Thi1 ——

T Log(-, pl(k+1)) Lopg(-, p'(k+2))

UFkiokioa €9

IIIIIIIIII

\ 7
: Regulari

» Given p”(k), all primal agents minimize La,g(-,up(k))

. Tjyo
— Th11 ‘ y
Lol 1k + 1) At
Lo g(-5 u'(k))

» Since a > 0, agents at worst slide along level curves of L, g (: ,up(k))

UFkiokioa €9

IIIIIIIIII

Regularized

-
2 <

\y

» Given pu”(k), all primal agents minimize La,[g(-,up(k))

) Ty
) Tk1] y
Z%k L@)ﬁ(',ﬂp(k_F 1)) L&,ﬁ(.7u <k+2>)
Lo pg(-5 u'(k))

> Since a > 0, agents at worst slide along level curves of Ly s(-, u?(k))
Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)

Using 5 > O lets us stitch together the above progress:

max; c;(t)

Ng
A 2 C; A 2 1—1
|k +8) = fasl® <Y a9 ONps(k) — papslP+ > ¢ 'K
71=1

1=1
. y \ - _J/
v V

Convergence of each block Penalty due to asynchrony

where g € (0,1) and ¢;(t) counts updates to p; in last ¢ timesteps.

UF [FLORIDA

A

4
Yy - e e i

» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xﬁ(k)T)

» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xﬁ(k)T)

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)

T

The distributed asynchronous primal-dual algorithm converges according to

|2 (k) = &apll* < CLa™ + Ca [|u(k) = s

V

Rate from last slide

for ¢ € (0,1) and ops(k) the # of operations completed with u” (k) onboard

UF [FLORIDA

» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xﬁ(k)T)

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)

T

The distributed asynchronous primal-dual algorithm converges according to

|2 (k) = &apll* < CLa™ + Ca [|u(k) = s

V

Rate from last slide

for ¢ € (0,1) and ops(k) the # of operations completed with u” (k) onboard

» There is a fundamental principle underlying these results

UF [FLORIDA

» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xZ(k)T)

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)

The distributed asynchronous primal-dual algorithm converges according to

|2 (k) = &apll* < CLa™ + Ca [|u(k) = s

WV
Rate from last slide

for ¢ € (0,1) and ops(k) the # of operations completed with u” (k) onboard

» There is a fundamental principle underlying these results
> (1989) Without g(x) < 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

b‘-'l- VAL AALRS S BA A ~ T A REAY AR VALLALSA Nl A ‘l.\duu“b\iu T AW

the messages have the same delays. We may con-

clude that, in the case of monotone iterations, it
is preferable to perform as many updates as pos-

sible even if they are based on outdated informa-

tion and, therefore, asynchronous algorithms are

advantageous.

UF [FLORIDA

» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xZ(k)T)

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)

T

The distributed asynchronous primal-dual algorithm converges according to

|2 (k) = &apll* < CLa™ + Ca [|u(k) = s

V

Rate from last slide

for ¢ € (0,1) and ops(k) the # of operations completed with u” (k) onboard

» There is a fundamental principle underlying these results
> (1989) Without g(x) < 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

b‘-'l- VAL AALRS S BA A ~ T A REAY AR VALLALSA Nl A ‘l.\duu“bvu T AW

the messages have the same delays. We may con-

clude that, in the case of monotone iterations, it
is preferable to perform as many updates as pos-

sible even if they are based on outdated informa-

tion and, therefore, asynchronous algorithms are

advantageous.

» (2020) With g(x) < 0: faster dual updates can slow convergence down!

Ty
s m""”ﬁ,‘

UF iickivh €9

\ 7
: d

» Consider n = 10 agents solving the problem

10 n
minimize f(x) Zx —|— — > > —z;)°
1=1 i=1 57=1

J 7T
subject to Az < b and z € [1,10]"°

IIIIIIIIII

\ 7
: d

» Consider n = 10 agents solving the problem

10 n
minimize f(x) = Zx + —> > i —x5)°
1=1 1=1 7=1

J 7T
subject to Az < b and z € [1,10]"°

» Agents have a 25% chance of communicating at each time
» Set a = 5 = 0.001

UNIVERSITY of 2 HI o
UF Fiokivh §9) Duke B

\ 72
- *:'/J

» Consider n = 10 agents solving the problem

10
minimize f(x) = Zx —|——> > i —x5)°

j?fi
subject to Az < b and z € [1,10]"°

» Agents have a 25% chance of communicating at each time

30

25|

N
o

Primal Error
o

10

1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Number of Iterations

UF fioriDA &)

IIIIIIIIII

T hank you

UF iisiiva €

