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» Agents must interact to collectively solve problems
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» Agents have limited energy and computational power
—> Challenge #1: Algorithms must be lightweight, simple to implement

» Agents can generate and share information with unpredictable timing
—> Challenge #2: Algorithms must be robust to asynchrony

Problems of interest

We are interested in problems from trajectory planning, machine learning,
estimation, and others arising in autonomy.
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The problems of interest (convex for now) are formalized as
minimize f(x)
subject to g(z) <0
r e X
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General convex programs

The problems of interest (convex for now) are formalized as
minimize f(x)
subject to g(x) <0
r € X

In this talk
» Optimize in a distributed way that is robust to information delays

» Avoid averaging-based update laws:

Promotes scalability for computationally constrained agents
Respects division of responsibility in autonomy
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Saddle point formulation

» We write problems as

Q
minimize maximize L, g(x, ) = f(x) + ,uTg(a?) —I——||$||2 — éHMHQ
rcX pERT ~ v, 2 2

Usual Lagrangian L(x,u)

» Regularizing makes L, g strongly convex-strongly concave
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» We write problems as

o
minimize maximize L. g(z, 1) = f(z) 4+ p g(z) +=|z|° — éHMHQ
reX ,uE]R? S -~ 2 2

Usual Lagrangian L(x,u)

» Regularizing makes L, g strongly convex-strongly concave
» We now want a saddle point 2, g = (ﬁ:a,g,ﬂa,[g)
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» We write problems as

Q
minimize maximize L, g(x, ) = f(x) + ,uTg(a?) —I——||$||2 — éHMHQ
rcX pERT ~ v, 2 2

Usual Lagrangian L(x,u)

» Regularizing makes L, g strongly convex-strongly concave
» We now want a saddle point 2, g = a:a,g,,ua,g)

o

» Small (oz,ﬁ) —> small ||Z — 2, 3]
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» Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

» Comms. are asynchronous due to environmental hazards and jamming
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» Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

» Comms. are asynchronous due to environmental hazards and jamming

» Agents disagree and we track their knowledge at each time:
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(' (k), 1/ (k) £ (27 (k). 1 (k)
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» Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

» Comms. are asynchronous due to environmental hazards and jamming

» Agents disagree and we track their knowledge at each time:

(' (k), 1/ (k) £ (27 (k). 1 (k)

Only one agent updates each decision variable

Updated&shared( I :Ezl(k) 7 3 /Lﬁ(k) - \

by agent ¢
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Computations of primal variables
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» The 4 types of asynchrony are:

Computations of primal variables
Communication of primal variables
Computations of dual variables
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’ Asynchronous

o For ;17 # p', agent @ minimizes Lo (-, ") but agent j minimizes La g( -, 1)

La,ﬁ( T qu)

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0,e¢ > 0. Then there is a problem under our assumptions s.t.
I’ — 1 || < e
|2i — 25| > L

UF [FLORIDA



\/ Asynchronous d
B S ,

o For ;17 # p', agent @ minimizes Lo (-, ") but agent j minimizes La g( -, 1)

Loz,ﬁ( ) qu)

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0,e¢ > 0. Then there is a problem under our assumptions s.t.
I’ — 1 || < e
|2i — 25| > L

» This holds for a perfectly conditioned QP (with ;i((g% =1):

minimize ixTQzL‘ + 'z subject to Ax < b

T
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» Takeaway: Agents must agree on u. Call it u”

Primal update law
» For primal agent 7, do

(k1) = T, [2100) = 75222 (o' (), 7 0) |
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» Takeaway: Agents must agree on u. Call it u”

Primal update law
» For primal agent 7, do

2i(k+1) =1Ilx, [a:ﬁ(k) — vagzﬁ (=" (), Mp(k))}

: z’ 2’ just received

z;(k) no message from agent j received
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» Takeaway: Agents must agree on u. Call it u”

Primal update law
» For primal agent 7, do

2i(k+1) =1Ilx, [a:ﬁ(k) — vag;:ﬁ (=" (), Mp(k))}

| oy
ri(k+1)=<
i ) _z;(k) no message from agent j received

7 just received

just received
WP (k4 1) = < M L)

u” (k) no message from dual agent / just received
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» Takeaway: Agents must agree on p. Call it p”

Primal update law
» For primal agent 7, do

2i(k+1) =1Ilx, [a:ﬁ(k) — vag;:ﬁ (=" (), Mp(k))}

. ()
ri(k+1)=<
i ) _z;(k) no message from agent j received

7 just received

just received
WP (k4 1) = < M L)

. (k) no message from dual agent / just received

“Do gradient descent when you can with what you have”

» Dual agent / is analogous, but with gradient ascent law

polk + 1) = Hgmi | o (k) +’7§7L(u (k), x (k))}
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Given u”(k), all primal agents minimize L, 5( ,up(k))

xk+1
( (R +1))
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» Given pu”(k), all primal agents minimize La,5(°,up(k))

—— Thi1 ——

T Log(-, pl(k+1)) Lopg( -, p'(k+2))
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» Given p”(k), all primal agents minimize La,g(-,up(k))

. Tjyo
— Th11 ‘ y
Lol 1k + 1) At
Lo g( -5 u'(k))

» Since a > 0, agents at worst slide along level curves of L, g ( : ,up(k))
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» Given pu”(k), all primal agents minimize La,[g(-,up(k))

) Ty
) Tk1 ] y
Z%k L@)ﬁ(',ﬂp(k_F 1)) L&,ﬁ(.7u <k+2>)
Lo pg( -5 u'(k))

> Since a > 0, agents at worst slide along level curves of Ly s( -, u?(k))
Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)

Using 5 > O lets us stitch together the above progress:

max; c;(t)

Ng
A 2 C; A 2 1—1
|k +8) = fasl® <Y a9 ONps(k) — papslP+ > ¢ 'K
71=1

1=1
. y \ - _J/
v V

Convergence of each block Penalty due to asynchrony

where g € (0,1) and ¢;(t) counts updates to p; in last ¢ timesteps.
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» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xﬁ(k)T)




» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xﬁ(k)T)

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)

T

The distributed asynchronous primal-dual algorithm converges according to

|2 (k) = &apll* < CLa™ + Ca [|u(k) = s

V

Rate from last slide

for ¢ € (0,1) and ops(k) the # of operations completed with u” (k) onboard
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» Define the “omniscient iterate”
x(k) = (x%(k)T, z5(k)", ... ,xZ(k)T)

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)

The distributed asynchronous primal-dual algorithm converges according to

|2 (k) = &apll* < CLa™ + Ca [|u(k) = s

WV
Rate from last slide

for ¢ € (0,1) and ops(k) the # of operations completed with u” (k) onboard

» There is a fundamental principle underlying these results
> (1989) Without g(x) < 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

b‘-'l- VAL AALRS S BA A ~ T A REAY AR VALLALSA Nl A ‘l.\duu“b\iu T AW

the messages have the same delays. We may con-

clude that, in the case of monotone iterations, it
is preferable to perform as many updates as pos-

sible even if they are based on outdated informa-

tion and, therefore, asynchronous algorithms are

advantageous.
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V

Rate from last slide

for ¢ € (0,1) and ops(k) the # of operations completed with u” (k) onboard

» There is a fundamental principle underlying these results
> (1989) Without g(x) < 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

b‘-'l- VAL AALRS S BA A ~ T A REAY AR VALLALSA Nl A ‘l.\duu“bvu T AW

the messages have the same delays. We may con-

clude that, in the case of monotone iterations, it
is preferable to perform as many updates as pos-

sible even if they are based on outdated informa-

tion and, therefore, asynchronous algorithms are

advantageous.

» (2020) With g(x) < 0: faster dual updates can slow convergence down!
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» Consider n = 10 agents solving the problem

10 n
minimize f(x) Zx —|— — > > —z;)°
1=1 i=1 57=1

J 7T
subject to Az < b and z € [1,10]"°
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» Consider n = 10 agents solving the problem

10 n
minimize f(x) = Zx + —> > i —x5)°
1=1 1=1 7=1

J 7T
subject to Az < b and z € [1,10]"°

» Agents have a 25% chance of communicating at each time
» Set a = 5 = 0.001
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» Consider n = 10 agents solving the problem

10
minimize f(x) = Zx —|——> > i —x5)°

j?fi
subject to Az < b and z € [1,10]"°

» Agents have a 25% chance of communicating at each time

30

25|

N
o

Primal Error
o

10

1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Number of Iterations
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