
Asynchronous Constrained Convex
Optimization in Blocks

Katherine Hendrickson and Matthew Hale
Department of Mechanical and Aerospace Engineering
University of Florida

AFOSR Center of Excellence Review
October 30th, 2020

Computational problems must be decentralized

I Agents must interact to collectively solve problems

I Agents have limited energy and computational power
=∆ Challenge #1: Algorithms must be lightweight, simple to implement

I Agents can generate and share information with unpredictable timing
=∆ Challenge #2: Algorithms must be robust to asynchrony

Problems of interest
We are interested in problems from trajectory planning, machine learning,
estimation, and others arising in autonomy.

Computational problems must be decentralized

I Agents must interact to collectively solve problems

I Agents have limited energy and computational power
=∆ Challenge #1: Algorithms must be lightweight, simple to implement

I Agents can generate and share information with unpredictable timing
=∆ Challenge #2: Algorithms must be robust to asynchrony

Problems of interest
We are interested in problems from trajectory planning, machine learning,
estimation, and others arising in autonomy.

Computational problems must be decentralized

I Agents must interact to collectively solve problems

I Agents have limited energy and computational power
=∆ Challenge #1: Algorithms must be lightweight, simple to implement

I Agents can generate and share information with unpredictable timing
=∆ Challenge #2: Algorithms must be robust to asynchrony

Problems of interest
We are interested in problems from trajectory planning, machine learning,
estimation, and others arising in autonomy.

Computational problems must be decentralized

I Agents must interact to collectively solve problems

I Agents have limited energy and computational power
=∆ Challenge #1: Algorithms must be lightweight, simple to implement

I Agents can generate and share information with unpredictable timing
=∆ Challenge #2: Algorithms must be robust to asynchrony

Problems of interest
We are interested in problems from trajectory planning, machine learning,
estimation, and others arising in autonomy.

We will solve constrained optimization problems

General convex programs
The problems of interest (convex for now) are formalized as

minimize f(x)
subject to g(x) Æ 0

x œ X

In this talk
I Optimize in a distributed way that is robust to information delays
I Avoid averaging-based update laws:

1 Promotes scalability for computationally constrained agents
2 Respects division of responsibility in autonomy

We will solve constrained optimization problems

General convex programs
The problems of interest (convex for now) are formalized as

minimize f(x)
subject to g(x) Æ 0

x œ X

In this talk
I Optimize in a distributed way that is robust to information delays
I Avoid averaging-based update laws:

1 Promotes scalability for computationally constrained agents
2 Respects division of responsibility in autonomy

We use a Lagrangian saddle point formulation

Saddle point formulation

I We write problems as

minimize
xœX

maximize
µœRm

+
L–,—(x, µ) = f(x) + µT g(x)¸ ˚˙ ˝

Usual Lagrangian L(x,µ)

+–
2 ÎxÎ2 ≠ —

2 ÎµÎ2

I Regularizing makes L–,— strongly convex-strongly concave

I We now want a saddle point ẑ–,— =
!
x̂–,— , µ̂–,—

"

I Small (–, —) =∆ small Îẑ ≠ ẑ–,—Î

We use a Lagrangian saddle point formulation

Saddle point formulation

I We write problems as

minimize
xœX

maximize
µœRm

+
L–,—(x, µ) = f(x) + µT g(x)¸ ˚˙ ˝

Usual Lagrangian L(x,µ)

+–
2 ÎxÎ2 ≠ —

2 ÎµÎ2

I Regularizing makes L–,— strongly convex-strongly concave
I We now want a saddle point ẑ–,— =

!
x̂–,— , µ̂–,—

"

ẑ↵,�

I Small (–, —) =∆ small Îẑ ≠ ẑ–,—Î

We use a Lagrangian saddle point formulation

Saddle point formulation

I We write problems as

minimize
xœX

maximize
µœRm

+
L–,—(x, µ) = f(x) + µT g(x)¸ ˚˙ ˝

Usual Lagrangian L(x,µ)

+–
2 ÎxÎ2 ≠ —

2 ÎµÎ2

I Regularizing makes L–,— strongly convex-strongly concave
I We now want a saddle point ẑ–,— =

!
x̂–,— , µ̂–,—

"

ẑ↵,�

I Small (–, —) =∆ small Îẑ ≠ ẑ–,—Î

We must accommodate asynchronous interactions

I Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

I Comms. are asynchronous due to environmental hazards and jamming

I Agents disagree and we track their knowledge at each time:

Only one agent updates each decision variable

We must accommodate asynchronous interactions

I Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

I Comms. are asynchronous due to environmental hazards and jamming
I Agents disagree and we track their knowledge at each time:

i j

(xi(k), µi(k)) (xj(k), µj(k))6=

Only one agent updates each decision variable

We must accommodate asynchronous interactions

I Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

I Comms. are asynchronous due to environmental hazards and jamming
I Agents disagree and we track their knowledge at each time:

i j

(xi(k), µi(k)) (xj(k), µj(k))6=
Only one agent updates each decision variable

(xi(k), µi(k)) =

0

BBBBBBBBBB@

2

66666666664

xi
1(k)
...

xi
i(k)
...

xi
n(k)

3

77777777775

,

2

66666666664

µi
1(k)
...
...
...

µi
n(k)

3

77777777775

1

CCCCCCCCCCA

Updated & shared
by agent i

Asynchrony appears in 4 forms

I Interactions look like this:

I The 4 types of asynchrony are:
1 Computations of primal variables
2 Communication of primal variables
3 Computations of dual variables
4 Communication of dual variables

Asynchrony appears in 4 forms

I Interactions look like this:

I The 4 types of asynchrony are:
1 Computations of primal variables

2 Communication of primal variables
3 Computations of dual variables
4 Communication of dual variables

x1
1

x2
2

xn
n

µ1
1

µ2
2

µm
m

Asynchrony appears in 4 forms

I Interactions look like this:

I The 4 types of asynchrony are:
1 Computations of primal variables
2 Communication of primal variables

3 Computations of dual variables
4 Communication of dual variables

x1
1

x2
2

xn
n

µ1
1

µ2
2

µm
m

Asynchrony appears in 4 forms

I Interactions look like this:

I The 4 types of asynchrony are:
1 Computations of primal variables
2 Communication of primal variables
3 Computations of dual variables

4 Communication of dual variables

x1
1

x2
2

xn
n

µ1
1

µ2
2

µm
m

Asynchrony appears in 4 forms

I Interactions look like this:

I The 4 types of asynchrony are:
1 Computations of primal variables
2 Communication of primal variables
3 Computations of dual variables
4 Communication of dual variables

x1
1

x2
2

xn
n

µ1
1

µ2
2

µm
m

Asynchronous dual communications are problematic

• For µj ”= µi, agent i minimizes L–,—(· , µi) but agent j minimizes L–,—(· , µj)

L↵,�(· , µi)

x̂i

L↵,�(· , µj)
x̂j

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0, ‘ > 0. Then there is a problem under our assumptions s.t.

1 Îµi ≠ µjÎ < ‘

2 Îx̂i ≠ x̂jÎ > L

I This holds for a perfectly conditioned QP (with ⁄1(Q)
⁄n(Q) = 1):

minimize 1
2xT Qx + rT x subject to Ax Æ b

Asynchronous dual communications are problematic

• For µj ”= µi, agent i minimizes L–,—(· , µi) but agent j minimizes L–,—(· , µj)

L↵,�(· , µi)

x̂i

L↵,�(· , µj)
x̂j

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0, ‘ > 0. Then there is a problem under our assumptions s.t.

1 Îµi ≠ µjÎ < ‘

2 Îx̂i ≠ x̂jÎ > L

I This holds for a perfectly conditioned QP (with ⁄1(Q)
⁄n(Q) = 1):

minimize 1
2xT Qx + rT x subject to Ax Æ b

Asynchronous dual communications are problematic

• For µj ”= µi, agent i minimizes L–,—(· , µi) but agent j minimizes L–,—(· , µj)

L↵,�(· , µi)

x̂i

L↵,�(· , µj)
x̂j

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0, ‘ > 0. Then there is a problem under our assumptions s.t.

1 Îµi ≠ µjÎ < ‘

2 Îx̂i ≠ x̂jÎ > L

I This holds for a perfectly conditioned QP (with ⁄1(Q)
⁄n(Q) = 1):

minimize 1
2xT Qx + rT x subject to Ax Æ b

Other asynchrony can be mitigated with update laws

I Takeaway: Agents must agree on µ. Call it µp

Primal update law
I For primal agent i, do

xi
i(k + 1) = �Xi

Ë
xi

i(k) ≠ “
ˆL–,—

ˆxi

!
xi(k), µp(k)

"È

xi
j(k + 1) =

;
xj

j xj
j just received

xi
j(k) no message from agent j received

µp
¸ (k + 1) =

;
µ¸

¸ µ¸
¸ just received

µp
¸ (k) no message from dual agent ¸ just received

“Do gradient descent when you can with what you have”

I Dual agent ¸ is analogous, but with gradient ascent law

µ¸
¸(k + 1) = �Rmi

+

Ë
µ¸

¸(k) + “
ˆL
ˆµ¸

!
µ¸(k), x¸(k)

"È

Other asynchrony can be mitigated with update laws

I Takeaway: Agents must agree on µ. Call it µp

Primal update law
I For primal agent i, do

xi
i(k + 1) = �Xi

Ë
xi

i(k) ≠ “
ˆL–,—

ˆxi

!
xi(k), µp(k)

"È

xi
j(k + 1) =

;
xj

j xj
j just received

xi
j(k) no message from agent j received

µp
¸ (k + 1) =

;
µ¸

¸ µ¸
¸ just received

µp
¸ (k) no message from dual agent ¸ just received

“Do gradient descent when you can with what you have”

I Dual agent ¸ is analogous, but with gradient ascent law

µ¸
¸(k + 1) = �Rmi

+

Ë
µ¸

¸(k) + “
ˆL
ˆµ¸

!
µ¸(k), x¸(k)

"È

Other asynchrony can be mitigated with update laws

I Takeaway: Agents must agree on µ. Call it µp

Primal update law
I For primal agent i, do

xi
i(k + 1) = �Xi

Ë
xi

i(k) ≠ “
ˆL–,—

ˆxi

!
xi(k), µp(k)

"È

xi
j(k + 1) =

;
xj

j xj
j just received

xi
j(k) no message from agent j received

µp
¸ (k + 1) =

;
µ¸

¸ µ¸
¸ just received

µp
¸ (k) no message from dual agent ¸ just received

“Do gradient descent when you can with what you have”

I Dual agent ¸ is analogous, but with gradient ascent law

µ¸
¸(k + 1) = �Rmi

+

Ë
µ¸

¸(k) + “
ˆL
ˆµ¸

!
µ¸(k), x¸(k)

"È

Other asynchrony can be mitigated with update laws

I Takeaway: Agents must agree on µ. Call it µp

Primal update law
I For primal agent i, do

xi
i(k + 1) = �Xi

Ë
xi

i(k) ≠ “
ˆL–,—

ˆxi

!
xi(k), µp(k)

"È

xi
j(k + 1) =

;
xj

j xj
j just received

xi
j(k) no message from agent j received

µp
¸ (k + 1) =

;
µ¸

¸ µ¸
¸ just received

µp
¸ (k) no message from dual agent ¸ just received

“Do gradient descent when you can with what you have”

I Dual agent ¸ is analogous, but with gradient ascent law

µ¸
¸(k + 1) = �Rmi

+

Ë
µ¸

¸(k) + “
ˆL
ˆµ¸

!
µ¸(k), x¸(k)

"È

Other asynchrony can be mitigated with update laws

I Takeaway: Agents must agree on µ. Call it µp

Primal update law
I For primal agent i, do

xi
i(k + 1) = �Xi

Ë
xi

i(k) ≠ “
ˆL–,—

ˆxi

!
xi(k), µp(k)

"È

xi
j(k + 1) =

;
xj

j xj
j just received

xi
j(k) no message from agent j received

µp
¸ (k + 1) =

;
µ¸

¸ µ¸
¸ just received

µp
¸ (k) no message from dual agent ¸ just received

“Do gradient descent when you can with what you have”

I Dual agent ¸ is analogous, but with gradient ascent law

µ¸
¸(k + 1) = �Rmi

+

Ë
µ¸

¸(k) + “
ˆL
ˆµ¸

!
µ¸(k), x¸(k)

"È

Other asynchrony can be mitigated with update laws

I Takeaway: Agents must agree on µ. Call it µp

Primal update law
I For primal agent i, do

xi
i(k + 1) = �Xi

Ë
xi

i(k) ≠ “
ˆL–,—

ˆxi

!
xi(k), µp(k)

"È

xi
j(k + 1) =

;
xj

j xj
j just received

xi
j(k) no message from agent j received

µp
¸ (k + 1) =

;
µ¸

¸ µ¸
¸ just received

µp
¸ (k) no message from dual agent ¸ just received

“Do gradient descent when you can with what you have”

I Dual agent ¸ is analogous, but with gradient ascent law

µ¸
¸(k + 1) = �Rmi

+

Ë
µ¸

¸(k) + “
ˆL
ˆµ¸

!
µ¸(k), x¸(k)

"È

Regularized geometry helps ensure convergence

I Given µp(k), all primal agents minimize L–,—

!
· , µp(k)

"

L↵,�(· , µp(k))

x̂k

x̂k+1
x̂k+2

I Since – > 0, agents at worst slide along level curves of L–,—

!
· , µp(k)

"

Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)
Using — > 0 lets us stitch together the above progress:

Îµ(k + t) ≠ µ̂–,—Î2 Æ
Ndÿ

j=1

qcj (t)Îµj(k) ≠ µ̂–,—,jÎ2

¸ ˚˙ ˝
Convergence of each block

+
maxj cj (t)ÿ

i=1

qi≠1Ki

¸ ˚˙ ˝
Penalty due to asynchrony

,

where q œ (0, 1) and cj(t) counts updates to µj in last t timesteps.

Regularized geometry helps ensure convergence

I Given µp(k), all primal agents minimize L–,—

!
· , µp(k)

"

L↵,�(· , µp(k))

x̂k L↵,�(· , µp(k + 1))

x̂k+1
x̂k+2

I Since – > 0, agents at worst slide along level curves of L–,—

!
· , µp(k)

"

Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)
Using — > 0 lets us stitch together the above progress:

Îµ(k + t) ≠ µ̂–,—Î2 Æ
Ndÿ

j=1

qcj (t)Îµj(k) ≠ µ̂–,—,jÎ2

¸ ˚˙ ˝
Convergence of each block

+
maxj cj (t)ÿ

i=1

qi≠1Ki

¸ ˚˙ ˝
Penalty due to asynchrony

,

where q œ (0, 1) and cj(t) counts updates to µj in last t timesteps.

Regularized geometry helps ensure convergence

I Given µp(k), all primal agents minimize L–,—

!
· , µp(k)

"

L↵,�(· , µp(k))

x̂k L↵,�(· , µp(k + 1))

x̂k+1

L↵,�(· , µp(k + 2))

x̂k+2

I Since – > 0, agents at worst slide along level curves of L–,—

!
· , µp(k)

"

Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)
Using — > 0 lets us stitch together the above progress:

Îµ(k + t) ≠ µ̂–,—Î2 Æ
Ndÿ

j=1

qcj (t)Îµj(k) ≠ µ̂–,—,jÎ2

¸ ˚˙ ˝
Convergence of each block

+
maxj cj (t)ÿ

i=1

qi≠1Ki

¸ ˚˙ ˝
Penalty due to asynchrony

,

where q œ (0, 1) and cj(t) counts updates to µj in last t timesteps.

Regularized geometry helps ensure convergence

I Given µp(k), all primal agents minimize L–,—

!
· , µp(k)

"

L↵,�(· , µp(k))

x̂k L↵,�(· , µp(k + 1))

x̂k+1

L↵,�(· , µp(k + 2))

x̂k+2

I Since – > 0, agents at worst slide along level curves of L–,—

!
· , µp(k)

"

Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)
Using — > 0 lets us stitch together the above progress:

Îµ(k + t) ≠ µ̂–,—Î2 Æ
Ndÿ

j=1

qcj (t)Îµj(k) ≠ µ̂–,—,jÎ2

¸ ˚˙ ˝
Convergence of each block

+
maxj cj (t)ÿ

i=1

qi≠1Ki

¸ ˚˙ ˝
Penalty due to asynchrony

,

where q œ (0, 1) and cj(t) counts updates to µj in last t timesteps.

Regularized geometry helps ensure convergence

I Given µp(k), all primal agents minimize L–,—

!
· , µp(k)

"

L↵,�(· , µp(k))

x̂k L↵,�(· , µp(k + 1))

x̂k+1

L↵,�(· , µp(k + 2))

x̂k+2

I Since – > 0, agents at worst slide along level curves of L–,—

!
· , µp(k)

"

Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)
Using — > 0 lets us stitch together the above progress:

Îµ(k + t) ≠ µ̂–,—Î2 Æ
Ndÿ

j=1

qcj (t)Îµj(k) ≠ µ̂–,—,jÎ2

¸ ˚˙ ˝
Convergence of each block

+
maxj cj (t)ÿ

i=1

qi≠1Ki

¸ ˚˙ ˝
Penalty due to asynchrony

,

where q œ (0, 1) and cj(t) counts updates to µj in last t timesteps.

We also have primal convergence

I Define the “omniscient iterate”
x(k) =

!
x1

1(k)T , x2
2(k)T , . . . , xn

n(k)T
"T

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)
The distributed asynchronous primal-dual algorithm converges according to

Îx(k) ≠ x̂–,—Î2 Æ C1qops(k) + C2 Îµ(k) ≠ µ̂–,—ÎÎ
¸ ˚˙ ˝

Rate from last slide

for q œ (0, 1) and ops(k) the # of operations completed with µp(k) onboard
I There is a fundamental principle underlying these results
I (1989) Without g(x) Æ 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

I (2020) With g(x) Æ 0: faster dual updates can slow convergence down!

We also have primal convergence

I Define the “omniscient iterate”
x(k) =

!
x1

1(k)T , x2
2(k)T , . . . , xn

n(k)T
"T

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)
The distributed asynchronous primal-dual algorithm converges according to

Îx(k) ≠ x̂–,—Î2 Æ C1qops(k) + C2 Îµ(k) ≠ µ̂–,—ÎÎ
¸ ˚˙ ˝

Rate from last slide

for q œ (0, 1) and ops(k) the # of operations completed with µp(k) onboard

I There is a fundamental principle underlying these results
I (1989) Without g(x) Æ 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

I (2020) With g(x) Æ 0: faster dual updates can slow convergence down!

We also have primal convergence

I Define the “omniscient iterate”
x(k) =

!
x1

1(k)T , x2
2(k)T , . . . , xn

n(k)T
"T

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)
The distributed asynchronous primal-dual algorithm converges according to

Îx(k) ≠ x̂–,—Î2 Æ C1qops(k) + C2 Îµ(k) ≠ µ̂–,—ÎÎ
¸ ˚˙ ˝

Rate from last slide

for q œ (0, 1) and ops(k) the # of operations completed with µp(k) onboard
I There is a fundamental principle underlying these results

I (1989) Without g(x) Æ 0: faster computations always converge faster
(Bertsekas & Tsitsiklis, 1989)

I (2020) With g(x) Æ 0: faster dual updates can slow convergence down!

We also have primal convergence

I Define the “omniscient iterate”
x(k) =

!
x1

1(k)T , x2
2(k)T , . . . , xn

n(k)T
"T

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)
The distributed asynchronous primal-dual algorithm converges according to

Îx(k) ≠ x̂–,—Î2 Æ C1qops(k) + C2 Îµ(k) ≠ µ̂–,—ÎÎ
¸ ˚˙ ˝

Rate from last slide

for q œ (0, 1) and ops(k) the # of operations completed with µp(k) onboard
I There is a fundamental principle underlying these results
I (1989) Without g(x) Æ 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

I (2020) With g(x) Æ 0: faster dual updates can slow convergence down!

We also have primal convergence

I Define the “omniscient iterate”
x(k) =

!
x1

1(k)T , x2
2(k)T , . . . , xn

n(k)T
"T

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)
The distributed asynchronous primal-dual algorithm converges according to

Îx(k) ≠ x̂–,—Î2 Æ C1qops(k) + C2 Îµ(k) ≠ µ̂–,—ÎÎ
¸ ˚˙ ˝

Rate from last slide

for q œ (0, 1) and ops(k) the # of operations completed with µp(k) onboard
I There is a fundamental principle underlying these results
I (1989) Without g(x) Æ 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

I (2020) With g(x) Æ 0: faster dual updates can slow convergence down!

Convergence is predictably non-monotone

I Consider n = 10 agents solving the problem

minimize f(x) =
10ÿ

i=1

x4
i + 1

20

10ÿ

i=1

nÿ

j=1
j ”=i

(xi ≠ xj)2

subject to Ax Æ b and x œ [1, 10]10

I Agents have a 25% chance of communicating at each time
I Set – = — = 0.001

Convergence is predictably non-monotone

I Consider n = 10 agents solving the problem

minimize f(x) =
10ÿ

i=1

x4
i + 1

20

10ÿ

i=1

nÿ

j=1
j ”=i

(xi ≠ xj)2

subject to Ax Æ b and x œ [1, 10]10

I Agents have a 25% chance of communicating at each time
I Set – = — = 0.001

Convergence is predictably non-monotone

I Consider n = 10 agents solving the problem

minimize f(x) =
10ÿ

i=1

x4
i + 1

20

10ÿ

i=1

nÿ

j=1
j ”=i

(xi ≠ xj)2

subject to Ax Æ b and x œ [1, 10]10

I Agents have a 25% chance of communicating at each time
I Set – = — = 0.001

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations

0

5

10

15

20

25

30

P
ri
m

a
l
E

rr
o
r

Thank you

