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Computational problems must be decentralized

I Agents must interact to collectively solve problems

I Agents have limited energy and computational power
=∆ Challenge #1: Algorithms must be lightweight, simple to implement

I Agents can generate and share information with unpredictable timing
=∆ Challenge #2: Algorithms must be robust to asynchrony

Problems of interest
We are interested in problems from trajectory planning, machine learning,
estimation, and others arising in autonomy.
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We will solve constrained optimization problems

General convex programs
The problems of interest (convex for now) are formalized as

minimize f(x)
subject to g(x) Æ 0

x œ X

In this talk
I Optimize in a distributed way that is robust to information delays
I Avoid averaging-based update laws:

1 Promotes scalability for computationally constrained agents
2 Respects division of responsibility in autonomy
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We use a Lagrangian saddle point formulation

Saddle point formulation

I We write problems as

minimize
xœX

maximize
µœRm

+
L–,—(x, µ) = f(x) + µT g(x)¸ ˚˙ ˝

Usual Lagrangian L(x,µ)

+–
2 ÎxÎ2 ≠ —

2 ÎµÎ2

I Regularizing makes L–,— strongly convex-strongly concave

I We now want a saddle point ẑ–,— =
!
x̂–,— , µ̂–,—

"

I Small (–, —) =∆ small Îẑ ≠ ẑ–,—Î
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ẑ↵,�

I Small (–, —) =∆ small Îẑ ≠ ẑ–,—Î
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We must accommodate asynchronous interactions

I Agents’ computations are asynchronous due to clock mismatches and
heterogeneous hardware

I Comms. are asynchronous due to environmental hazards and jamming

I Agents disagree and we track their knowledge at each time:

Only one agent updates each decision variable
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Asynchrony appears in 4 forms

I Interactions look like this:

I The 4 types of asynchrony are:
1 Computations of primal variables
2 Communication of primal variables
3 Computations of dual variables
4 Communication of dual variables
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Asynchronous dual communications are problematic

• For µj ”= µi, agent i minimizes L–,—( · , µi) but agent j minimizes L–,—( · , µj)

L↵,�( · , µi)

x̂i

L↵,�( · , µj)
x̂j

Theorem 1: Dual asynchrony stops convergence (Hendrickson&Hale, CDC2020)
Choose any L > 0, ‘ > 0. Then there is a problem under our assumptions s.t.

1 Îµi ≠ µjÎ < ‘

2 Îx̂i ≠ x̂jÎ > L

I This holds for a perfectly conditioned QP (with ⁄1(Q)
⁄n(Q) = 1):

minimize 1
2xT Qx + rT x subject to Ax Æ b
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Other asynchrony can be mitigated with update laws

I Takeaway: Agents must agree on µ. Call it µp

Primal update law
I For primal agent i, do
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“Do gradient descent when you can with what you have”

I Dual agent ¸ is analogous, but with gradient ascent law
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Regularized geometry helps ensure convergence

I Given µp(k), all primal agents minimize L–,—

!
· , µp(k)

"

L↵,�( · , µp(k))

x̂k

x̂k+1
x̂k+2

I Since – > 0, agents at worst slide along level curves of L–,—

!
· , µp(k)

"

Theorem 2: Dual convergence (Hendrickson & Hale CDC2020)
Using — > 0 lets us stitch together the above progress:

Îµ(k + t) ≠ µ̂–,—Î2 Æ
Ndÿ

j=1

qcj (t)Îµj(k) ≠ µ̂–,—,jÎ2

¸ ˚˙ ˝
Convergence of each block

+
maxj cj (t)ÿ

i=1

qi≠1Ki

¸ ˚˙ ˝
Penalty due to asynchrony

,

where q œ (0, 1) and cj(t) counts updates to µj in last t timesteps.
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We also have primal convergence

I Define the “omniscient iterate”
x(k) =

!
x1

1(k)T , x2
2(k)T , . . . , xn

n(k)T
"T

Theorem 3: Primal Convergence (Hendrickson & Hale, In preparation)
The distributed asynchronous primal-dual algorithm converges according to

Îx(k) ≠ x̂–,—Î2 Æ C1qops(k) + C2 Îµ(k) ≠ µ̂–,—ÎÎ
¸ ˚˙ ˝

Rate from last slide

for q œ (0, 1) and ops(k) the # of operations completed with µp(k) onboard
I There is a fundamental principle underlying these results
I (1989) Without g(x) Æ 0: faster computations always converge faster

(Bertsekas & Tsitsiklis, 1989)

I (2020) With g(x) Æ 0: faster dual updates can slow convergence down!
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Convergence is predictably non-monotone

I Consider n = 10 agents solving the problem

minimize f(x) =
10ÿ

i=1

x4
i + 1

20

10ÿ

i=1

nÿ

j=1
j ”=i

(xi ≠ xj)2

subject to Ax Æ b and x œ [1, 10]10

I Agents have a 25% chance of communicating at each time
I Set – = — = 0.001
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Thank you


