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Basic Setting

Consider the system

ẋ = f(x) x ∈ X ⊂ R
n

and the sets

Xo ⊂ X the initial set,

Xu ⊂ X\Xo the unsafe set.



Basic Setting

Consider the system

ẋ = f(x) x ∈ X ⊂ R
n

and the sets

Xo ⊂ X the initial set,

Xu ⊂ X\Xo the unsafe set.

Safety with respect to (Xo,Xu) ⇔ reach(Xo) ∩Xu = ∅

reach(Xo) := {x ∈ R
n : x = φ(t;xo),with φ a solution from xo ∈ Xo

and t ∈ domφ} ← the infinite reach set

A solution to ẋ = f(x) is denoted t 7→ φ(t), and when starts at xo as t 7→ φ(t; xo)
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Context

Consider a constrained control system Hf := (C,F ) given by

ẋ ∈ F (x, u) x ∈ C ⊂ Rn, u ∈ Rm.

I Assume that C is closed and F : C × Rm ⇒ Rn is outer
semicontinuous, locally bounded, and with convex images.

I Consider a continuous feedback law κ : C → Rm that enforces a
control objective, e.g. stability, convergence, safety.

I Assume that the control input is updated only at a sequence to
times {ti}∞i=0 and the measurements are available only at that
sequence. Hence,

u(t) = κ(x(ti)) ∀t ∈ [ti, ti+1].

How does this implementation affects the control objective?

→ How to design {ti}∞i=0 such that (ti+1 − ti) is large?
→ What conditions guarantee (ti+1 − ti) ≥ T ∗s > 0?



Background

I Classical Digital Implementation [Franklin et al., 1997]

ti+1 = ti + Ts

I Constant inter-event times, analysis using heuristics (20 x the system
bandwidth), or viewing the digital implementation as a delayed input.

I Event-Triggered Control [Tabuada, 2007], given Γ : C 7→ R,

ti+1 = ti + max{t ≥ 0 : Γ(x(s+ ti)) > 0 ∀s ∈ [0, t]}.
I Measurements always available.

I Self-Triggered Control [Anta and Tabuada, 2010]. Let Ts : C 7→ R≥0 be
a sampling function; hence,

ti+1 = ti + Ts(x(ti)).

I Measurements available only at the sampling times.



Notions

Definition (Forward pre-Invariance)

A set X ⊂ C is forward pre-invariant for Hf if, for each xo ∈ X and for
each solution x to Hf starting at xo, x(t) ∈ X for all t ∈ domx.

Definition (Barrier Function Candidate)

A a scalar function ρ : C → R is a barrier function candidate defining the
set X ⊂ C if X = {x ∈ cl(C) : ρ(x) ≥ 0}.

Definition (Reachability Map)

Given xo ∈ C and T > 0, the reachability map R is given by

R(T, xo) := {φ(t) : φ ∈ SHf (xo), t ∈ domx ∩ [0, T ]}

where SHf (xo) be the set of solutions to Hf from xo.



Guaranteeing Forward Invariance

Theorem

Consider a system Hf := (C,F ), a closed set X ⊂ C, a continuously
differentiable barrier function candidate ρ : C → R, and a continuous
feedback κ : C 7→ Rm. Assume that, for each x ∈ C,

〈∇ρ(x), f〉 ≥ α(x) ∀f ∈ (F (x, κ(x)) ∩ TC(x)).

I When α(x) ≥ 0 for all x ∈ U(Xe)\X ∩ C. Then, X is forward
pre-invariant for the closed-loop of Hf using κ.

I When α(x) > 0 for all x ∈ ∂Xe ∩ C. Then, X is pre-contractive
for the closed-loop of Hf using κ.

Definition: A set X ⊂ C is pre-contractive for Hf if, for each xo ∈ X
and for each nontrivial solution x to Hf starting at xo, x(t) ∈ int(X)
for all t ∈ int(domx).

• Xe := {x ∈ Rn : ρ(x) ≥ 0} • U(X) is an open neighborhood around X



Guaranteeing Forward Invariance

Theorem

Consider a system Hf := (C,F ), a closed set X ⊂ C, a locally Lipschitz
barrier function candidate ρ : C → R, and a continuous feedback
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for all t ∈ int(domx).
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Problem Formulation

Consider a constrained control system Hf = (C,F ) and a feedback law
κ : C 7→ Rm that renders X forward pre-invariant for

Hclf : ẋ ∈ F (x, κ(x)) x ∈ C ⊂ Rn.

(P1) Find a function Ts : C 7→ R≥0 ∪ {∞} such that the sequence

ti+1 = ti + Ts(x(ti)).

guarantees forward pre-invariance of the self-triggered closed-loop
system.

(P2) Find conditions under which there exists T ∗s > 0 such that

ti+1 − ti ≥ T ∗s ∀i ∈ N.



Overview

I Event-Triggered Stability [Tabuada, 2007], of the origin, F globally
Lipschitz. [Chai et al., 2017], of a compact set.

I Self-Triggered Stability [Anta and Tabuada, 2010], of the origin, F
homogeneous. [Tiberi and Johansson, 2012], of the origin, F globally
Lipschitz.

I Event-Triggered Forward Invariance [Taylor et al., 2020], a general
closed set X, F globally bounded, ρ continuously differentiable.

I Self-Triggered Forward-Invariance [Di Benedetto et al., 2013], X
compact, F smooth. [Kogel and Findeisen, 2014], X convex and compact,
linear systems.

Contributions: - We assume mild regularities on F , - we allow X to be
unbounded, - we allow ρ to be nonsmooth, - we avoid using a global
bounds on F .



Example

Consider a control system Hf = (R2, F ) with and

F (x, u) := (0, u)>.

Assume that for some V > 0, |F (x, u)| ≤ V for all (x, u) ∈ domF .

Let X := {x ∈ C : x1 < δ} and the
corresponding barrier function candidate
ρ(x) := δ − x1.

xo X

V

C \X

F (x, κ(xo))

Then, the sampling function Ts(xo) := ρ(xo)/V [Fainekos et al., 2009]

guarantees forward invariance of X for the self-triggered closed loop
system.

I The sampling function Ts(xo) is too conservative.

Indeed, solutions never approach ∂X, but Ts(xo) is calculated as if they
are.



A Reachabiliy Based Approach

Consider a control system Hf = (Rn, F ) with F single valued. Let a set
X be defined by a smooth barrier candidate ρ. Assume a continuous
feedback law κ renders X forward invariant for Hclf .

The speed of the solutions, starting from
xo ∈ X, towards ∂X on the interval
[0, T̄ ] is upper bounded by

M(T̄ , xo) := sup{〈−∇ρ(y), F (y, κ(xo)〉,
y ∈ R̂(T̄ , xo))}. xo

R̂(T̄ , xo)

F (y, κ(xo))
−∇ρ(y)

X

y

C \X

Hence, a sampling function guaranteeing forward invariance of X for the
self-triggered closed loop system is given by

Ts(xo) :=

{
T̄ if M(T̄ , xo) ≤ 0

min
{
T̄ , ρ(xo)

M(T̄ ,xo)

}
otherwise.

• R̂(T̄ , xo) overestimates R(T̄ , xo) along the solutions to ẋ = F (x, κ(xo)).
• T̄ is the forward propagation interval of the reachable set.
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Proposed Self-Triggered Control Strategy

Consider a system Hclf := (C,F ), a closed set X ⊂ C defined by a
continuously differentiable barrier function candidate ρ, and a feedback
law κ : C 7→ Rm such that, for each (x, η) ∈ C × C,

〈∇ρ(x), f〉 ≥ α(x)− γ(x, η)

∀f ∈ (F (x, κ(η)) ∩ TC(x)),

where α : Rn 7→ R and γ : Rn × Rn 7→ R are continuously differentiable
functions with α(x) > 0 for all x ∈ ∂X, and γ(x, x) = 0.

Then, the sampling sequence given by

ti+1 = ti + Ts(x(ti)) Ts(x(ti)) := max {T1(x(ti)), T2(x(ti))},

where T1, T2 are defined next, solves (P1).

(P1) Find a function Ts : C 7→ R≥0 ∪ {∞} such that the sequence ti+1 = ti + Ts(x(ti)).
guarantees forward pre-invariance of the self-triggered closed-loop system.



Proposed Self-Triggered Control Strategy

T1(xo) :=

{
T̄ if Mα(T̄ , xo)−Mγ(T̄ , xo) ≥ 0

min
{
T̄ , 2α(xo)

Mα(T̄ ,xo)−Mγ(T̄ ,xo)

}
otherwise,

T2(xo) :=

{
T̄ if M2(T̄ , xo) ≤ 0

min
{
T̄ , ρ(xo)/M2(xo, T̄ )

}
otherwise,

Mγ(T̄ , x) := sup{〈∇γ(y), η〉 : η ∈ F (y, κ(x)) ∩ TC(y), y ∈ R̂(T̄ , x)},
Mα(T̄ , x) := sup{〈−∇α(y), η〉 : η ∈ F (y, κ(x)) ∩ TC(y), y ∈ R̂(T̄ , x)},
M2(T̄ , x) := sup{〈−∇ρ(y), η〉 : η ∈ F (y, κ(xo)) ∩ TC(y), y ∈ R̂(T̄ , x)}

• R̂(T̄ , xo) overestimates R(T̄ , xo) along the solutions to ẋ = F (x, κ(xo)).



Proposed Self-Triggered Control Strategy

Consider a system Hclf := (C,F ), a closed set X ⊂ C defined by a
locally Lipschitz barrier function candidate ρ, and a feedback law
κ : C 7→ Rm such that, for each (x, η) ∈ C × C,

〈ζ, f〉 ≥ α(x)− γ(x, η)

∀(ζ, f) ∈ ∂Cρ(x)× (F (x, κ(η)) ∩ TC(x)),

where α : Rn 7→ R and γ : Rn × Rn 7→ R are locally Lipschitz functions
with α(x) > 0 for all x ∈ ∂X, and γ(x, x) = 0.

Then, the sampling sequence given by

ti+1 = ti + Ts(x(ti)) Ts(x(ti)) := max {T1(x(ti)), T2(x(ti))},

where T1, T2 are defined next, solves (P1).

(P1) Find a function Ts : C 7→ R≥0 ∪ {∞} such that the sequence ti+1 = ti + Ts(x(ti)).
guarantees forward pre-invariance of the self-triggered closed-loop system.



Proposed Self-Triggered Control Strategy

T1(xo) :=

{
T̄ if Mα(T̄ , xo)−Mγ(T̄ , xo) ≥ 0

min
{
T̄ , 2α(xo)

Mα(T̄ ,xo)−Mγ(T̄ ,xo)

}
otherwise,

T2(xo) :=

{
T̄ if M2(T̄ , xo) ≤ 0

min
{
T̄ , ρ(xo)/M2(xo, T̄ )

}
otherwise,

Mγ(T̄ , x) := sup{〈γ1, η〉 : γ1 ∈ ∂Cγ(y, x),

η ∈ F (y, κ(x)) ∩ TC(y), y ∈ R̂(T̄ , x)},
Mα(T̄ , x) := sup{〈−γ2, η〉 : γ2 ∈ ∂Cα(y),

η ∈ F (y, κ(x)) ∩ TC(y), y ∈ R̂(T̄ , x)},
M2(xo, T̄ ) := sup{〈−γ, η〉 : γ ∈ ∂Cρ(y),

η ∈ F (y, κ(xo)) ∩ TC(y), y ∈ R̂(T̄ , xo)}

• R̂(T̄ , xo) overestimates R(T̄ , xo) along the solutions to ẋ = F (x, κ(xo)).



Guaranteeing a Uniform Lower Bound

Assume that, given T̄ > 0 and β > 0, the following hold:

(A1) There exists T ∗1 > 0 such that
min {T1(x) : x ∈ G} ≥ T ∗1 ,
G := {x ∈ X, |x|∂Xe ≤ β}.

C
Xe

K

G
T ∗2

T ∗1

X

(A2) There exists T ∗2 > 0 such that, for each solution x to
ẋ ∈ F (x, κ(xo)) x ∈ C from xo ∈ K := {x ∈ X : |x|∂Xe ≥ β}, we
have x(t) ∈ X for all t ∈ [0, T ∗2 ].

Then, (P1) and (P2) are solved with

ti+1 = ti + Ts(x(ti))

Ts(x(ti)) := max {T ∗2 , T1(x(ti)), T2(x(ti))}



Particular Scenarios

Assume, that, given T̄ > 0 and β > 0, the following hold:

(A1) min {T1(x) : x ∈ G} > 0,
G := {x ∈ X, |x|∂Xe ≤ β}.

(A3) The set
K := {x ∈ X : |x|∂Xe ≥ β} is
compact.

K

X

(A4) The set-valued map o 7→ R̂(T̄ , xo) is outer semicontinuous and
locally bounded on K.

Then, the sampling sequence given by

ti+1 = ti + Ts(x(ti)) Ts(x(ti)) := max {T1(x(ti)), T2(x(ti))}

solves (P1) and (P2).
In Fact, under (A3) and (A4), we prove that, there exists T ∗2 > 0 such
that min {T2(x) : x ∈ K} ≥ T ∗2 .



Particular Scenarios

Assume, that, given T̄ > 0 and β > 0,

(A4) The set-valued map o 7→ R̂(T̄ , xo) is outer
semicontinuous and locally bounded on
G := {x ∈ X : |x|∂Xe ≤ β}.

C
Xe

K

G
T ∗2

T ∗1

X

Furthermore, one of the following holds:

(A5) The set G is compact.

(A5’) The maps xo 7→ ∂Cγ(R̂(T̄ , xo), xo), xo 7→ ∂Cα(R̂(T̄ , xo)),
xo 7→ F (R̂(T̄ , xo), κ(xo)), and xo 7→ α(xo) are uniformly upper
semicontinuous on G and bounded on ∂Xe ∩X, and
inf{α(z) : z ∈ ∂Xe ∩X} > 0.

Then, we can replace (A1) by

(A1’) min {T1(x) : x ∈ ∂Xe ∩ C} > 0.



Ex: Forward Invariance of a Sub-Level Set

Consider the control system Huf = (R2, F ), where

F (x, u) :=

[
0 1
−2 3

]
x+

[
0
1

]
u,

x := (x1, x2) ∈ R2, and u ∈ R. Furthermore, consider the feedback law

κ(x) := Kx := [1 − 4]x.

The origin of the closed-loop of Huf using u = κ(x), denoted Hclf , is
asymptotically stable. Indeed, using the Lyanpunov function

V (x) := x>Px, P :=

[
1 0.25

0.25 1

]
,

we conclude that

〈∇V (x), Ax+BKx〉 = −x>Qx, Q :=

[
0.5 0.25
0.25 1.5

]
.



Ex: Forward Invariance of a Sub-Level Set

Consider the set X given by

X := {x ∈ R2 : V (x) ≤ 0.1}.

For
ρ(x) := 0.1− V (x),

we obtain α(x) := x>Qx and γ(x, η) := 1
2x
>PBK(x− η).

We also take

R̂(T̄ , xo) := R(T̄ , xo) + 0.025B,

R(T̄ , xa) = {y ∈ R2 : ∃t ∈ [0, T̄ ] : y = x(t)}.

Robustness conditions: For each (x, η) ∈ C × C,

〈ζ, f〉 ≥ α(x)− γ(x, η)

∀(ζ, f) ∈ ∂Cρ(x)× (F (x, κ(η)) ∩ TC(x)),



The effect of T̄ on the Sampling Strategy

I A large value of T̄ seems to allow for a large Ts(x(ti)).

I By increasing T̄ , we increase the size of R̂(T̄ , x(ti)).

I An adequate scaling of T̄ as a function of x(ti) can encourage a
large T̄ when F is slow and vise versa.

Two Strategies for Selecting T̄

1. Adapting T̄ to the norm of F (x(ti), κ(x(ti))).

2. Evaluating multiple values of T̄ over a receding horizon.

Ts(xo) := max {T1(xo), T2(xo)}

T2(xo) :=

{
T̄ if M2(T̄ , xo) ≤ 0

min
{
T̄ , ρ(xo)/M2(xo, T̄ )

}
otherwise,

M2(xo, T̄ ) := sup{〈−γ, η〉 : γ ∈ ∂Cρ(y), η ∈ F (y, κ(xo)) ∩ TC(y), y ∈ R̂(T̄ , xo)}.



Adapting T̄ to the norm of F (xo, κ(xo))

I Nonlinear relationship between T̄ and |F (xo, κ(xo))|.
Indeed, consider the map T̄ : Rn 7→ [Tmin, Tmax] given by

T̄ (xo) := (Tmax − Tmin)(1− FN (xo))
cs + Tmin,

where cs ∈ (0,∞), Tmax > Tmin > 0 and

FN (xo) := |F (xo, κ(xo))|/ sup{|F (y, κ(y))| : y ∈ X}.

For example, for Tmax = 2, Tmin = 0.25, the figure below illustrates the
nonlinear scaling when cs = 150.
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Adapting T̄ to the norm of F (xo, κ(xo))
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Simulation for linear (cs = 1) and nonlinear (cs = 150) scaling.

Average Sampling Period: 0.19 (cs = 1), 0.53 (cs = 150). Minimum
Sampling Period: 0.04 (cs = 1), 0.25 (cs = 150).



Evaluating T̄ over a receeding horizon

I We can select T̄ ∈ [Tmin, Tmax] by maximizing the trade off
between current and future sampling periods.

Given Tmax > Tmin > 0, N ∈ N, ∆ := (Tmax − Tmin)/N , and
ch ∈ [0, 1] compute

n∗ := argmax
n∈{0,1,...,N}

{
chT (n∆, xo) + (1− ch)T 1(n∆, xo)

}
,

T (n∆, xo) := Ts(Tmin + n∆, xo),

T1(n∆, xo) := max{T (m∆, x1) : m ∈ {0, ...N}, x1 ∈ R̂b(Tmin + n∆, xo)}.

I Select T̄ = n∗∆.

•Rb(T, x0) := {φ(t) : φ ∈ SHf (xo), t ∈
domx ∩ [0, T ], 6 ∃t′ ∈ [0, T ] ∩ domφ :
t′ > t}
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Evaluating T̄ over a receding horizon
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Simulation results for ch = 1 and ch = 0.5 scaling.

Average Sampling Period: 0.58 (ch = 1), 0.92 (ch = 0.5). Minimum
Sampling Period: 0.425 (ch = 1), 0.425 (ch = 0.5).



Comparison to other Methods
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Simulation results using various methods



Comparison to other methods

Average Period Minimum Period
Scaled T̄

cs = 1 0.19 0.04
cs = 150 0.53 0.25

Receding horizon
ch = 1 0.58 0.425
ch = 0.5 0.92 0.425

[Di Benedetto et al., 2013] 0.26 0.06

Event Triggered 0.59 0.56

Inter-event properties



Ongoing Work

I Experimenting with off the shelf reachability libraries

I Applications involving more complex systems and tasks
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Conclusion

I We proposed a self-triggered control strategy that preserves forward
invariance.

I We considered general closed sets for a constrained control
differential inclusions.

I Future work: Connection to MPC. Connection to non-Zeno
behaviors in hybrid systems.


