Guaranteeing Safety in Control Systems with Intermittent Information

Ricardo Sanfelice

Department Electrical and Computer Engineering University of California

Duke

CoE Review @ Zoom - October 30, 2020

Outline of Recent Results

1. Estimation

- ► Finite-time Parameter Estimation via Hybrid Methods ACC 21a, ACC 21b, ACC 21c (all submitted), + CoE collab
- Observers for Hybrid Systems ACC 20, CDC 19, CDC 20, Automatica (submitted)
- 2. Safety
 - Reachable maps for hybrid systems and regularity HSCC 20, TAC 19, NAHS 20, HSCC 20, CDC 20 (submitted)
 - (Necessary and Sufficient) Safety Certificates, with Events ACC 21a, ACC 21d (submitted), TAC 20 + CoE collab

3. Optimization

- High Performance Optimization via Uniting Control ACC 19, MTNS 20, ACC 20e (submitted) + AFRL/RV collab.
- ► Model Predictive Control for Hybrid Systems ACC 20, CDC 20, IFAC WC 20 Workshop

Basic Setting

Consider the system

$$\dot{x} = f(x) \qquad x \in X \subset \mathbb{R}^n$$

and the sets

 $X_o \subset X$ the initial set, $X_u \subset X \backslash X_o$ the unsafe set.

Basic Setting

Consider the system

$$\dot{x} = f(x) \qquad x \in X \subset \mathbb{R}^n$$

and the sets

$$\begin{split} X_o \subset X \text{ the initial set}, \\ X_u \subset X \backslash X_o \text{ the unsafe set}. \end{split}$$

Safety with respect to $(X_o, X_u) \quad \Leftrightarrow \quad \operatorname{reach}(X_o) \cap X_u = \emptyset$

$$\operatorname{reach}(X_o) := \{ x \in \mathbb{R}^n : x = \phi(t; x_o), \text{ with } \phi \text{ a solution from } x_o \in X_o \\ \text{and } t \in \operatorname{dom} \phi \} \quad \leftarrow \quad \text{the infinite reach set} \end{cases}$$

A solution to $\dot{x} = f(x)$ is denoted $t \mapsto \phi(t)$, and when starts at x_o as $t \mapsto \phi(t; x_o)$

Guaranteeing Safety in Control Systems with Intermittent Information

David Kooi, Mohamed Maghenem, and Ricardo G. Sanfelice

Hybrid Systems Laboratory Department of Electrical & Computer Engineering University of California, Santa Cruz Email: dkooi,mmaghene,ricardo@ucsc.edu

Assured Autonomy in Contest Environments

Fall 2020 Review

October 30, 2020

Context

Consider a constrained control system $\mathcal{H}_f := (C, F)$ given by

 $\dot{x} \in F(x, u)$ $x \in C \subset \mathbb{R}^n, \quad u \in \mathbb{R}^m.$

- Assume that C is closed and F : C × ℝ^m ⇒ ℝⁿ is outer semicontinuous, locally bounded, and with convex images.
- Consider a continuous feedback law κ : C → ℝ^m that enforces a control objective, e.g. stability, convergence, safety.
- ► Assume that the control input is updated only at a sequence to times {t_i}[∞]_{i=0} and the measurements are available only at that sequence. Hence,

$$u(t) = \kappa(x(t_i)) \qquad \forall t \in [t_i, t_{i+1}].$$

How does this implementation affects the control objective?

- \rightarrow How to design $\{t_i\}_{i=0}^{\infty}$ such that $(t_{i+1} t_i)$ is large?
 - \rightarrow What conditions guarantee $(t_{i+1} t_i) \ge T_s^* > 0$?

Classical Digital Implementation [Franklin et al., 1997]

 $t_{i+1} = t_i + T_s$

Constant inter-event times, analysis using heuristics (20 x the system bandwidth), or viewing the digital implementation as a delayed input.

Background

Event-Triggered Control [Tabuada, 2007], given $\Gamma : C \mapsto \mathbb{R}$,

$$t_{i+1} = t_i + \max\{t \ge 0 : \Gamma(x(s+t_i)) > 0 \ \forall s \in [0,t]\}.$$

- Measurements always available.
- ▶ Self-Triggered Control [Anta and Tabuada, 2010]. Let $T_s : C \mapsto \mathbb{R}_{\geq 0}$ be a sampling function; hence,

$$t_{i+1} = t_i + T_s(x(t_i)).$$

Measurements available only at the sampling times.

Notions

Definition (Forward pre-Invariance)

A set $X \subset C$ is forward pre-invariant for \mathcal{H}_f if, for each $x_o \in X$ and for each solution x to \mathcal{H}_f starting at x_o , $x(t) \in X$ for all $t \in \operatorname{dom} x$.

Definition (Barrier Function Candidate)

A a scalar function $\rho: C \to \mathbb{R}$ is a barrier function candidate defining the set $X \subset C$ if $X = \{x \in cl(C) : \rho(x) \ge 0\}.$

Definition (Reachability Map)

Given $x_o \in C$ and T > 0, the reachability map R is given by

 $R(T, x_o) := \{ \phi(t) : \phi \in \mathcal{S}_{\mathcal{H}_f}(x_o), \ t \in \operatorname{dom} x \cap [0, T] \}$

where $S_{\mathcal{H}_f}(x_o)$ be the set of solutions to \mathcal{H}_f from x_o .

Theorem

Consider a system $\mathcal{H}_f := (C, F)$, a closed set $X \subset C$, a continuously differentiable barrier function candidate $\rho : C \to \mathbb{R}$, and a continuous feedback $\kappa : C \mapsto \mathbb{R}^m$. Assume that, for each $x \in C$,

 $\langle \nabla \rho(x), f \rangle \ge \alpha(x) \qquad \forall f \in (F(x, \kappa(x)) \cap T_C(x)).$

- ▶ When $\alpha(x) \ge 0$ for all $x \in U(X_e) \setminus X \cap C$. Then, X is forward pre-invariant for the closed-loop of \mathcal{H}_f using κ .
- ▶ When $\alpha(x) > 0$ for all $x \in \partial X_e \cap C$. Then, X is pre-contractive for the closed-loop of \mathcal{H}_f using κ .

Definition: A set $X \subset C$ is **pre-contractive** for \mathcal{H}_f if, for each $x_o \in X$ and for each **nontrivial** solution x to \mathcal{H}_f starting at x_o , $x(t) \in int(X)$ for all $t \in int(dom x)$.

• $X_e := \{x \in \mathbb{R}^n : \rho(x) \geq 0\}$ • U(X) is an open neighborhood around X

Theorem

Consider a system $\mathcal{H}_f := (C, F)$, a closed set $X \subset C$, a locally Lipschitz barrier function candidate $\rho : C \to \mathbb{R}$, and a continuous feedback $\kappa : C \mapsto \mathbb{R}^m$. Assume that, for each $x \in C$,

 $\langle \zeta, f \rangle \geq \alpha(x) \qquad \forall (\zeta, f) \in \partial \rho(x) \times (F(x, \kappa(x)) \cap T_C(x)).$

- ▶ When $\alpha(x) \ge 0$ for all $x \in U(X_e) \setminus X \cap C$. Then, X is forward pre-invariant for the closed-loop of \mathcal{H}_f using κ .
- ▶ When $\alpha(x) > 0$ for all $x \in \partial X_e \cap C$. Then, X is pre-contractive for the closed-loop of \mathcal{H}_f using κ .

Definition: A set $X \subset C$ is **pre-contractive** for \mathcal{H}_f if, for each $x_o \in X$ and for each **nontrivial** solution x to \mathcal{H}_f starting at x_o , $x(t) \in int(X)$ for all $t \in int(dom x)$.

• $X_e := \{x \in \mathbb{R}^n : \rho(x) \geq 0\}$ • U(X) is an open neighborhood around X

Problem Formulation

Consider a constrained control system $\mathcal{H}_f = (C, F)$ and a feedback law $\kappa : C \mapsto \mathbb{R}^m$ that renders X forward pre-invariant for

$$\mathcal{H}_f^{cl}: \quad \dot{x} \in F(x, \kappa(x)) \qquad x \in C \subset \mathbb{R}^n.$$

(P1) Find a function $T_s: C \mapsto \mathbb{R}_{\geq 0} \cup \{\infty\}$ such that the sequence

 $t_{i+1} = t_i + T_s(x(t_i)).$

guarantees forward pre-invariance of the self-triggered closed-loop system.

(P2) Find conditions under which there exists $T_s^* > 0$ such that

$$t_{i+1} - t_i \ge T_s^* \qquad \forall i \in \mathbb{N}.$$

- Event-Triggered Stability [Tabuada, 2007], of the origin, F globally Lipschitz. [Chai et al., 2017], of a compact set.
- Self-Triggered Stability [Anta and Tabuada, 2010], of the origin, F homogeneous. [Tiberi and Johansson, 2012], of the origin, F globally Lipschitz.
- Event-Triggered Forward Invariance [Taylor et al., 2020], a general closed set X, F globally bounded, ρ continuously differentiable.
- Self-Triggered Forward-Invariance [Di Benedetto et al., 2013], X compact, F smooth. [Kogel and Findeisen, 2014], X convex and compact, linear systems.

Contributions: - We assume mild regularities on F, - we allow X to be unbounded, - we allow ρ to be nonsmooth, - we avoid using a global bounds on F.

Consider a control system $\mathcal{H}_f = (\mathbb{R}^2, F)$ with and

$$F(x,u) := (0,u)^{\top}.$$

Assume that for some V > 0, $|F(x, u)| \le V$ for all $(x, u) \in \operatorname{dom} F$.

Let $X := \{x \in C : x_1 < \delta\}$ and the corresponding barrier function candidate $\rho(x) := \delta - x_1.$

Example

Then, the sampling function $T_s(x_o) := \rho(x_o)/V$ [Fainekos et al., 2009] guarantees forward invariance of X for the self-triggered closed loop system.

• The sampling function $T_s(x_o)$ is too conservative.

Indeed, solutions never approach ∂X , but $T_s(x_o)$ is calculated as if they are.

Consider a control system $\mathcal{H}_f = (\mathbb{R}^n, F)$ with F single valued. Let a set X be defined by a smooth barrier candidate ρ . Assume a continuous feedback law κ renders X forward invariant for \mathcal{H}_f^{cl} .

The speed of the solutions, starting from $x_o \in X$, towards ∂X on the interval $[0, \overline{T}]$ is upper bounded by

$$M(\bar{T}, x_o) := \sup\{\langle -\nabla \rho(y), F(y, \kappa(x_o))\rangle, \\ y \in \hat{R}(\bar{T}, x_o))\}.$$

Hence, a sampling function guaranteeing forward invariance of \boldsymbol{X} for the self-triggered closed loop system is given by

$$T_s(x_o) := \begin{cases} \bar{T} & \text{if } M(\bar{T}, x_o) \leq 0\\ \min\left\{\bar{T}, \frac{\rho(x_o)}{M(\bar{T}, x_o)}\right\} & \text{otherwise.} \end{cases}$$

- $\hat{R}(\bar{T}, x_o)$ overestimates $R(\bar{T}, x_o)$ along the solutions to $\dot{x} = F(x, \kappa(x_o))$.
- $\bullet\ \bar{T}$ is the forward propagation interval of the reachable set.

Consider a control system $\mathcal{H}_f = (\mathbb{R}^n, F)$ with F single valued. Let a set X be defined by a smooth barrier candidate ρ . Assume a continuous feedback law κ renders X forward invariant for \mathcal{H}_f^{cl} .

The speed of the solutions, starting from $x_o \in X$, towards ∂X on the interval $[0, \overline{T}]$ is upper bounded by

$$M(\bar{T}, x_o) := \sup\{ \langle -\nabla \rho(y), F(y, \kappa(x_o)) \rangle, \\ y \in \hat{R}(\bar{T}, x_o)) \}.$$

Hence, a sampling function guaranteeing forward invariance of \boldsymbol{X} for the self-triggered closed loop system is given by

$$T_s(x_o) := \begin{cases} \bar{T} & \text{if } M(\bar{T}, x_o) \leq 0\\ \min\left\{\bar{T}, \frac{\rho(x_o)}{M(\bar{T}, x_o)}\right\} & \text{otherwise.} \end{cases}$$

- $\hat{R}(\bar{T}, x_o)$ overestimates $R(\bar{T}, x_o)$ along the solutions to $\dot{x} = F(x, \kappa(x_o))$.
- $\bullet\ \bar{T}$ is the forward propagation interval of the reachable set.

Proposed Self-Triggered Control Strategy

Consider a system $\mathcal{H}_{f}^{cl} := (C, F)$, a closed set $X \subset C$ defined by a continuously differentiable barrier function candidate ρ , and a feedback law $\kappa : C \mapsto \mathbb{R}^{m}$ such that, for each $(x, \eta) \in C \times C$,

$$\begin{aligned} \langle \nabla \rho(x), f \rangle &\geq \alpha(x) - \gamma(x, \eta) \\ \forall f \in (F(x, \kappa(\eta)) \cap T_C(x)), \end{aligned}$$

where $\alpha : \mathbb{R}^n \mapsto \mathbb{R}$ and $\gamma : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ are continuously differentiable functions with $\alpha(x) > 0$ for all $x \in \partial X$, and $\gamma(x, x) = 0$.

Then, the sampling sequence given by

 $t_{i+1} = t_i + T_s(x(t_i))$ $T_s(x(t_i)) := \max\{T_1(x(t_i)), T_2(x(t_i))\},\$

where T_1 , T_2 are defined next, solves (P1).

(P1) Find a function $T_s: C \mapsto \mathbb{R}_{\geq 0} \cup \{\infty\}$ such that the sequence $t_{i+1} = t_i + T_s(x(t_i))$. guarantees forward pre-invariance of the self-triggered closed-loop system.

$$T_1(x_o) := \begin{cases} \bar{T} & \text{if } M_\alpha(\bar{T}, x_o) - M_\gamma(\bar{T}, x_o) \geq 0 \\ \min\left\{\bar{T}, \frac{2\alpha(x_o)}{M_\alpha(\bar{T}, x_o) - M_\gamma(\bar{T}, x_o)}\right\} & \text{otherwise}, \end{cases}$$

$$T_2(x_o) := \begin{cases} \bar{T} & \text{if } M_2(\bar{T}, x_o) \leq 0\\ \min\left\{\bar{T}, \rho(x_o)/M_2(x_o, \bar{T})\right\} & \text{otherwise}, \end{cases}$$

$$\begin{split} M_{\gamma}(\bar{T},x) &:= \sup\{\langle \nabla\gamma(y),\eta\rangle: \eta \in F(y,\kappa(x)) \cap T_{C}(y), y \in \hat{R}(\bar{T},x)\},\\ M_{\alpha}(\bar{T},x) &:= \sup\{\langle -\nabla\alpha(y),\eta\rangle: \eta \in F(y,\kappa(x)) \cap T_{C}(y), \ y \in \hat{R}(\bar{T},x)\},\\ M_{2}(\bar{T},x) &:= \sup\{\langle -\nabla\rho(y),\eta\rangle: \eta \in F(y,\kappa(x_{o})) \cap T_{C}(y), y \in \hat{R}(\bar{T},x)\} \end{split}$$

• $\hat{R}(\bar{T}, x_o)$ overestimates $R(\bar{T}, x_o)$ along the solutions to $\dot{x} = F(x, \kappa(x_o))$.

Proposed Self-Triggered Control Strategy

Consider a system $\mathcal{H}_f^{cl} := (C, F)$, a closed set $X \subset C$ defined by a locally Lipschitz barrier function candidate ρ , and a feedback law $\kappa : C \mapsto \mathbb{R}^m$ such that, for each $(x, \eta) \in C \times C$,

$$\begin{aligned} \langle \zeta, f \rangle &\geq \alpha(x) - \gamma(x, \eta) \\ \forall (\zeta, f) \in \partial_C \rho(x) \times (F(x, \kappa(\eta)) \cap T_C(x)), \end{aligned}$$

where $\alpha : \mathbb{R}^n \mapsto \mathbb{R}$ and $\gamma : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ are locally Lipschitz functions with $\alpha(x) > 0$ for all $x \in \partial X$, and $\gamma(x, x) = 0$.

Then, the sampling sequence given by

 $t_{i+1} = t_i + T_s(x(t_i))$ $T_s(x(t_i)) := \max\{T_1(x(t_i)), T_2(x(t_i))\},\$

where T_1 , T_2 are defined next, solves (P1).

(P1) Find a function $T_s: C \mapsto \mathbb{R}_{\geq 0} \cup \{\infty\}$ such that the sequence $t_{i+1} = t_i + T_s(x(t_i))$. guarantees forward pre-invariance of the self-triggered closed-loop system.

Proposed Self-Triggered Control Strategy

$$T_1(x_o) := \begin{cases} \bar{T} & \text{if } M_\alpha(\bar{T}, x_o) - M_\gamma(\bar{T}, x_o) \ge 0\\ \min\left\{\bar{T}, \frac{2\alpha(x_o)}{M_\alpha(\bar{T}, x_o) - M_\gamma(\bar{T}, x_o)}\right\} & \text{otherwise,} \end{cases}$$

$$T_2(x_o) := \begin{cases} \bar{T} & \text{if } M_2(\bar{T}, x_o) \leq 0\\ \min\left\{\bar{T}, \rho(x_o)/M_2(x_o, \bar{T})\right\} & \text{otherwise}, \end{cases}$$

$$\begin{split} M_{\gamma}(\bar{T},x) &:= \sup\{\langle \gamma_1,\eta\rangle: \gamma_1 \in \partial_C \gamma(y,x), \\ \eta \in F(y,\kappa(x)) \cap T_C(y), y \in \hat{R}(\bar{T},x)\}, \\ M_{\alpha}(\bar{T},x) &:= \sup\{\langle -\gamma_2,\eta\rangle: \gamma_2 \in \partial_C \alpha(y), \\ \eta \in F(y,\kappa(x)) \cap T_C(y), \ y \in \hat{R}(\bar{T},x)\}, \\ M_2(x_o,\bar{T}) &:= \sup\{\langle -\gamma,\eta\rangle: \gamma \in \partial_C \rho(y), \\ \eta \in F(y,\kappa(x_o)) \cap T_C(y), y \in \hat{R}(\bar{T},x_o)\} \end{split}$$

• $\hat{R}(\bar{T}, x_o)$ overestimates $R(\bar{T}, x_o)$ along the solutions to $\dot{x} = F(x, \kappa(x_o))$.

Assume that, given $\bar{T} > 0$ and $\beta > 0$, the following hold:

(A1) There exists $T_1^* > 0$ such that $\min \{T_1(x) : x \in G\} \ge T_1^*,$ $G := \{x \in X, |x|_{\partial X_e} \le \beta\}.$

(A2) There exists $T_2^* > 0$ such that, for each solution x to $\dot{x} \in F(x, \kappa(x_o)) \ x \in C$ from $x_o \in K := \{x \in X : |x|_{\partial X_e} \ge \beta\}$, we have $x(t) \in X$ for all $t \in [0, T_2^*]$.

Then, (P1) and (P2) are solved with

$$t_{i+1} = t_i + T_s(x(t_i))$$

$$T_s(x(t_i)) := \max\{T_2^*, T_1(x(t_i)), T_2(x(t_i))\}$$

Particular Scenarios

Assume, that, given $\bar{T} > 0$ and $\beta > 0$, the following hold:

(A4) The set-valued map $_{o} \mapsto \hat{R}(\bar{T}, x_{o})$ is outer semicontinuous and locally bounded on K.

Then, the sampling sequence given by

 $t_{i+1} = t_i + T_s(x(t_i))$ $T_s(x(t_i)) := \max\{T_1(x(t_i)), T_2(x(t_i))\}$

solves (P1) and (P2). In Fact, under (A3) and (A4), we prove that, there exists $T_2^* > 0$ such that $\min \{T_2(x) : x \in K\} \ge T_2^*$.

Particular Scenarios

Assume, that, given $\overline{T} > 0$ and $\beta > 0$,

(A4) The set-valued map $_{o} \mapsto \hat{R}(\bar{T}, x_{o})$ is outer semicontinuous and locally bounded on $G := \{x \in X : |x|_{\partial X_{e}} \leq \beta\}.$

Furthermore, one of the following holds:

(A5) The set G is compact.

(A5') The maps $x_o \mapsto \partial_C \gamma(\hat{R}(\bar{T}, x_o), x_o), x_o \mapsto \partial_C \alpha(\hat{R}(\bar{T}, x_o)), x_o \mapsto F(\hat{R}(\bar{T}, x_o), \kappa(x_o))$, and $x_o \mapsto \alpha(x_o)$ are uniformly upper semicontinuous on G and bounded on $\partial X_e \cap X$, and $\inf \{\alpha(z) : z \in \partial X_e \cap X\} > 0$.

Then, we can replace (A1) by (A1') $\min \{T_1(x) : x \in \partial X_e \cap C\} > 0.$

Ex: Forward Invariance of a Sub-Level Set

Consider the control system $\mathcal{H}^u_f = (\mathbb{R}^2, F)$, where

$$F(x,u) := \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u,$$

 $x:=(x_1,x_2)\in \mathbb{R}^2$, and $u\in \mathbb{R}$. Furthermore, consider the feedback law

$$\kappa(x) := Kx := [1 - 4]x.$$

The origin of the closed-loop of \mathcal{H}_f^u using $u = \kappa(x)$, denoted \mathcal{H}_f^{cl} , is asymptotically stable. Indeed, using the Lyanpunov function

$$V(x) := x^{\top} P x, \ P := \begin{bmatrix} 1 & 0.25 \\ 0.25 & 1 \end{bmatrix}$$

we conclude that

$$\langle \nabla V(x), Ax + BKx \rangle = -x^{\top}Qx, \quad Q := \begin{bmatrix} 0.5 & 0.25\\ 0.25 & 1.5 \end{bmatrix}$$

Ex: Forward Invariance of a Sub-Level Set

Consider the set X given by

$$X := \{ x \in \mathbb{R}^2 : V(x) \le 0.1 \}.$$

() 0.1 $T_{()}$

For

$$\rho(x) := 0.1 - V(x),$$

we obtain $\alpha(x) := x^{\top}Qx$ and $\gamma(x, \eta) := \frac{1}{2}x^{\top}PBK(x - \eta).$
We also take

$$\hat{R}(\bar{T}, x_o) := R(\bar{T}, x_o) + 0.025\mathbb{B}_{2}$$

$$R(\bar{T}, x_a) = \{ y \in \mathbb{R}^2 : \exists t \in [0, \bar{T}] : y = x(t) \}.$$

Robustness conditions: For each $(x, \eta) \in C \times C$,

$$\begin{aligned} \langle \zeta, f \rangle &\geq \alpha(x) - \gamma(x, \eta) \\ \forall (\zeta, f) \in \partial_C \rho(x) \times (F(x, \kappa(\eta)) \cap T_C(x)), \end{aligned}$$

The effect of $ar{T}$ on the Sampling Strategy

- A large value of \overline{T} seems to allow for a large $T_s(x(t_i))$.
- By increasing \bar{T} , we increase the size of $\hat{R}(\bar{T}, x(t_i))$.
- An adequate scaling of \overline{T} as a function of $x(t_i)$ can encourage a large \overline{T} when F is slow and vise versa.

Two Strategies for Selecting \bar{T}

- 1. Adapting \overline{T} to the norm of $F(x(t_i), \kappa(x(t_i)))$.
- 2. Evaluating multiple values of \overline{T} over a receding horizon.

$$\begin{split} T_s(x_o) &:= \max \left\{ T_1(x_o), T_2(x_o) \right\} \\ T_2(x_o) &:= \begin{cases} \bar{T} & \text{if } M_2(\bar{T}, x_o) \leq 0 \\ \min \left\{ \bar{T}, \rho(x_o) / M_2(x_o, \bar{T}) \right\} & \text{otherwise,} \end{cases} \\ M_2(x_o, \bar{T}) &:= \sup\{ \langle -\gamma, \eta \rangle : \gamma \in \partial_C \rho(y), \eta \in F(y, \kappa(x_o)) \cap T_C(y), y \in \hat{R}(\bar{T}, x_o) \}. \end{split}$$

Adapting \overline{T} to the norm of $F(x_o,\kappa(x_o))$

Nonlinear relationship between \overline{T} and $|F(x_o, \kappa(x_o))|$. Indeed, consider the map $\overline{T} : \mathbb{R}^n \mapsto [T_{min}, T_{max}]$ given by

$$\bar{T}(x_o) := (T_{max} - T_{min})(1 - F_N(x_o))^{c_s} + T_{min},$$

where $c_s \in (0,\infty)$, $T_{max} > T_{min} > 0$ and

$$F_N(x_o) := |F(x_o, \kappa(x_o))| / \sup\{|F(y, \kappa(y))| : y \in X\}.$$

For example, for $T_{max} = 2$, $T_{min} = 0.25$, the figure below illustrates the nonlinear scaling when $c_s = 150$.

Adapting \overline{T} to the norm of $F(x_o, \kappa(x_o))$

Simulation for linear $(c_s = 1)$ and nonlinear $(c_s = 150)$ scaling.

Average Sampling Period: 0.19 ($c_s = 1$), 0.53 ($c_s = 150$). Minimum Sampling Period: 0.04 ($c_s = 1$), 0.25 ($c_s = 150$).

Evaluating $ar{T}$ over a receeding horizon

• We can select $\overline{T} \in [T_{min}, T_{max}]$ by maximizing the trade off between current and future sampling periods.

Given $T_{max}>T_{min}>0,~N\in\mathbb{N},~\Delta:=(T_{max}-T_{min})/N$, and $c_h\in[0,1]$ compute

$$n^* := \operatorname*{argmax}_{n \in \{0, 1, \dots, N\}} \left\{ c_h T(n\Delta, x_o) + (1 - c_h) T^1(n\Delta, x_o) \right\},$$

$$T(n\Delta, x_o) := T_s(T_{min} + n\Delta, x_o),$$

$$T_1(n\Delta, x_o) := \max\{T(m\Delta, x_1) : m \in \{0, \dots N\}, \ x_1 \in \hat{R}^b(T_{min} + n\Delta, x_o)\}.$$

Evaluating \bar{T} over a receding horizon

Simulation results for $c_h = 1$ and $c_h = 0.5$ scaling.

Average Sampling Period: 0.58 ($c_h = 1$), 0.92 ($c_h = 0.5$). Minimum Sampling Period: 0.425 ($c_h = 1$), 0.425 ($c_h = 0.5$).

Comparison to other Methods

Simulation results using various methods

	Average Period	Minimum Period
Scaled \bar{T}	C C	
$c_{s} = 1$	0.19	0.04
$c_{s} = 150$	0.53	0.25
Receding horizon		
$c_h = 1$	0.58	0.425
$c_{h} = 0.5$	0.92	0.425
[Di Benedetto et al., 2013]	0.26	0.06
Event Triggered	0.59	0.56

Inter-event properties

Ongoing Work

- Experimenting with off the shelf reachability libraries
- Applications involving more complex systems and tasks

Double Integrator Within Bounds

[CORA 2020, M. Althoff]

- We proposed a self-triggered control strategy that preserves forward invariance.
- We considered general closed sets for a constrained control differential inclusions.
- Future work: Connection to MPC. Connection to non-Zeno behaviors in hybrid systems.