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Consider the system
T = f(x) re X CR"
and the sets

X, C X the initial set,

X, C X\ X, the unsafe set.
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T = f(x) re X CR"
and the sets
X, C X the initial set,
X, C X\X, the unsafe set. \ )

Safety with respect to (X,, X,) < reach(X,)NX, =10

reach(X,) :={x € R" : x = ¢(t; x,), with ¢ a solution from z, € X,
and t € dom¢} <« the infinite reach set

A solution to & = f(z) is denoted t — ¢(t), and when starts at z, as ¢t — ¢(t; zo)
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Consider a constrained control system # ¢ := (C, F') given by
i€ F(z,u) reCCR" weR™

> Assume that C is closed and F': C' x R™ == R" is outer
semicontinuous, locally bounded, and with convex images.

» Consider a continuous feedback law k : C' — R™ that enforces a
control objective, e.g. stability, convergence, safety.

» Assume that the control input is updated only at a sequence to
times {¢;}2°, and the measurements are available only at that

sequence. Hence,
u(t) = K,(.’L‘(tz)) Vt € [ti,ti+1].

How does this implementation affects the control objective?

— How to design {¢;}°, such that (¢;;; — ;) is large?
— What conditions guarantee (t;11 —t;) > 1. > 0?
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» Classical Digital Implementation [Frankiin et al., 1997]
tig1 =1t +Ts

> Constant inter-event times, analysis using heuristics (20 x the system
bandwidth), or viewing the digital implementation as a delayed input.

> Event-Triggered Control [Tabuada, 2007], given I" : C' — R,
tiv1 = t; + max{t > 0: [(x(s+ ;) > 0 Vs € [0,]}.

> Measurements always available.

> Self-Triggered Control [Anta and Tabuada, 2010]. Let T : C'+— R>( be
a sampling function; hence,

ti+1 = ti + TS(.’ﬂ(tz))

> Measurements available only at the sampling times.



Definition (Forward pre-Invariance)

A set X C C is forward pre-invariant for Hy if, for each z, € X and for
each solution z to Hy starting at z,, 2(t) € X for all t € domx.

Definition (Barrier Function Candidate)

A a scalar function p : C' — R is a barrier function candidate defining the
set X CCif X ={zeclC):p(x)>0}.

Definition (Reachability Map)
Given x, € C' and T > 0, the reachability map R is given by
R(T,x,) :=={¢(t) : ¢ € Sy, (,), t € domz N[0, T]}

where Sy, (z,) be the set of solutions to H; from z,.
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Theorem

Consider a system Hy := (C, F), a closed set X C C, a continuously
differentiable barrier function candidate p : C — R, and a continuous
feedback k : C'— R™. Assume that, for each x € C,

(Vp(a), f) =2 alz)  Vf e (F(x,r(z)) NTo(r)).

» When a(x) >0 for all z € U(X.)\X NC. Then, X is forward
pre-invariant for the closed-loop of H; using k.

» When a(x) > 0 for all x € 0X. N C. Then, X is pre-contractive
for the closed-loop of H ¢ using k.

Definition: A set X C C is pre-contractive for H; if, for each z, € X
and for each nontrivial solution = to H starting at x,, x(t) € int(X)
for all ¢ € int(dom ).

e X, :={z € R" : p(x) > 0} @ U(X) is an open neighborhood around X
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Theorem

Consider a system Hy := (C, F), a closed set X C C, a locally Lipschitz
barrier function candidate p : C — R, and a continuous feedback
k1 C — R™. Assume that, for each z € C,

(€, ) za(x)  V(C[)€dp(x) x (F(z,r(x) NTo(z)).

» When a(x) >0 for all z € U(X.)\X NC. Then, X is forward
pre-invariant for the closed-loop of H; using k.

» When a(x) > 0 for all x € 0X. N C. Then, X is pre-contractive
for the closed-loop of H ¢ using k.

Definition: A set X C C is pre-contractive for H; if, for each z, € X
and for each nontrivial solution = to H starting at x,, x(t) € int(X)
for all ¢ € int(dom ).

e X, :={z € R" : p(x) > 0} @ U(X) is an open neighborhood around X



Consider a constrained control system 7 ; = (C, F') and a feedback law
Kk : C'— R™ that renders X forward pre-invariant for

H?: z € F(x,k(x)) zxeC CR"™.

(P1) Find a function T : C'+— Rx>o U {oo} such that the sequence
ti+1 = ti + Ts(x(ti)).

guarantees forward pre-invariance of the self-triggered closed-loop
system.

(P2) Find conditions under which there exists T} > 0 such that

tin—t:>TF VieN.




> Event-Triggered Stability [Tabuada, 2007], of the origin, F' globally
Lipschitz. [Chai et al., 2017], of a compact set.

> Self-Triggered Stability [Anta and Tabuada, 2010], of the origin, F’
homogeneous. [Tiberi and Johansson, 2012], of the origin, F globally
Lipschitz.

» Event-Triggered Forward Invariance [Taylor et al., 2020], a general
closed set X, F globally bounded, p continuously differentiable.

> Self-Triggered Forward-Invariance [Di Benedetto et al., 2013], X
compact, F' smooth. [Kogel and Findeisen, 2014], X convex and compact,
linear systems.

Contributions: - We assume mild regularities on F', - we allow X to be
unbounded, - we allow p to be nonsmooth, - we avoid using a global
bounds on F.
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Consider a control system H; = (R?, F) with and
F(z,u) = (0,u)".

Assume that for some V' > 0, |F(z,u)| <V for all (z,u) € dom F.

Let X := {z € C: 21 < 6} and the C\X
corresponding barrier function candidate *V

?
p(x) =9 — 1.
z, Flz, k(z,)) x

Then, the sampling function Ts(z,) := p(2,)/V [Fainekos et al., 2009]
guarantees forward invariance of X for the self-triggered closed loop
system.

» The sampling function Ts(z,) is too conservative.

Indeed, solutions never approach 90X, but Ts(z,) is calculated as if they
are.



Consider a control system H; = (R™, F') with F single valued. Let a set
X be defined by a smooth barrier candidate p. Assume a continuous
feedback law k renders X forward invariant for ’H;l.

The speed of the solutions, starting from TN X
z, € X, towards X on the interval \
[0,T] is upper bounded by —V(y)

M(T, ) := sup{{=Vp(y), F(y, x(,)),
Yy e R(T, 7))}

Hence, a sampling function guaranteeing forward invariance of X for the
self-triggered closed loop system is given by

T if M(T,z,) <0

Ts(,) == {min {i Mp((jft;? )} otherwise.

. E(T,mo) overestimates R(T, x,,) along the solutions to & = F(x, k(x,)).
e T is the forward propagation interval of the reachable set.
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Consider a system ’H?f :=(C, F), a closed set X C C defined by a
continuously differentiable barrier function candidate p, and a feedback
law  : C'+— R™ such that, for each (z,n) € C x C,

<V,O(1‘), f> > Oé(il?) - ’Y(xﬂ?)
Vf e (F(z,r(n) NTo(x)),

where a : R" — R and v : R™ x R™ — R are continuously differentiable
functions with a(z) > 0 for all x € 90X, and v(x,z) = 0.

Then, the sampling sequence given by
tiy1 =t + Ts(a(t)) Ts(x(ti)) = max{T1(x(t)), Ta(x(t:))},
where T, Ty are defined next, solves (P1).

(P1) Find a function T : C'+— R U {oo} such that the sequence t;41 = t; + Ts(x(t:)).
guarantees forward pre-invariance of the self-triggered closed-loop system.



T if Mo(T,20) — My (T, 2,) >0

T (z,) == {min {T, MQ(T,;:)KS&J(\Z(TJO)} otherwise,

T (1’ ) L B T B if MQ(T,JJO) S 0
2T \min { T, p(x,) /Ma(z0,T) } otherwise,

M(T,x) := sup{(Vy(y),n) : n € F(y,s(x)) N Tc(y),y € R(T,x)},
Mo (T, z) := sup{(=Va(y),n) : n € F(y,x(x)) N Tc(y), y € R(T, )},
My(T, ) := sup{(=Vp(y),n) : n € F(y, (x,)) N Te(y),y € R(T,x)}

o R(T,z,) overestimates R(T, x,) along the solutions to & = F(z, r(z,)).



Consider a system ’H?f :=(C, F), a closed set X C C defined by a
locally Lipschitz barrier function candidate p, and a feedback law
K : C — R™ such that, for each (z,n) € C x C,

(¢, f) 2 a(z) = v(z,n)
Y(¢, f) € Ocp(x) x (F(z,k(n) NTc(x)),

where o : R" — R and v : R™ x R™ — R are locally Lipschitz functions
with a(z) > 0 for all x € 90X, and v(x,z) = 0.

Then, the sampling sequence given by
tiy1 =t + To(a(t)) Ts(a(ti)) = max{T1(x(t;)), Ta(x(t:))},
where T, Ty are defined next, solves (P1).

(P1) Find a function T : C'+— R U {oo} such that the sequence t;41 = t; + Ts(x(t:)).
guarantees forward pre-invariance of the self-triggered closed-loop system.



T if Mo(T,20) — My (T,2,) >0
Ty (x,) := (= _ 2a(ze) .
min 7', - Ta) Mo T otherwise,
o Lo % s Lo
T(e,) = T i My(T,2,) <0
220 \min { T, p(,0) /Ma(2,T)}  otherwise,

M, (T,z) = sup{(y1,n) : 11 € dc(y, x),
) n € F(y,r(x)) NTe(y),y € R(T,x)},
Mo (T, z) := sup{(—72,7) : 72 € dca(y),
n € Fy k(z) NTo(y), y € R(T,x)},
M>(x0,T) := sup{(—7,n) : v € dcp(y),
n € F(y k(xo) NTe(y),y € R(T, z,)}

e R(T,z,) overestimates R(T, x,) along the solutions to @ = F(z, k(x,)).



(A1) There exists T} > 0 such that
min {7} (z) : z € G} > T,
G :={zeX, |z|ox, < B}.

(A2) There exists T > 0 such that, for each solution z to

i € F(z,k(z,)) € C fromz, € K :={z € X : |z|px, > B}, we
have z(t) € X for all t € [0, T5].

Then, (P1) and (P2) are solved with

tiyr =t + Ts(z(ti))
Ts(2(t:)) == max {T3, Ty (2(t:)), T2(x(t:)) }



Sy

Assume, that, given T > 0 and 8 > 0, the following hold:

(Al) min{Ty(x): 2 € G} >0,
G:={zxeX, |zlox, <8} X
(A3) The set K
K :={reX:|zlox, > B}is

compact.

(A4) The set-valued map , — R(T, z,) is outer semicontinuous and
locally bounded on K.

Then, the sampling sequence given by
ti-{-l = ti + Ts(l‘(ti)) Ts(iﬁ(ti)) (= max {T1 (.T,(tz)), Tz(m(tz))}

solves (P1) and (P2).
In Fact, under (A3) and (A4), we prove that, there exists 75 > 0 such
that min {T3(x) : x € K} > T3



Sy

Assume, that, given 7' > 0 and 5 > 0,

Xe

(A4) The set-valued map , — R(T, z,) is outer
semicontinuous and locally bounded on
G:={reX:|zlogx, <P}

Furthermore, one of the following holds:
(A5) The set G is compact.
(A5') The maps @, — 9cY(R(T, 7,), To), To — dca(R(T, ,)),
xo — F(R(T, z,),k(x,)), and z, — a(z,) are uniformly upper
semicontinuous on G and bounded on 0X,. N X, and
inf{a(z):z € 0X. N X} > 0.

Then, we can replace (A1) by
(A1) min{Ty(z): 2 € 0X.NC} > 0.



Consider the control system H% = (R?, F'), where

F(z,u) == [_02 ;)]334- m "

x = (z1,72) € R?, and u € R. Furthermore, consider the feedback law
k(z) = Ka :=[1 —4]a.

The origin of the closed-loop of 7-[? using u = k(x), denoted He s
asymptotically stable. Indeed, using the Lyanpunov function

o 1 02
V(z):=x2' Pz, P:= [0.25 1 ],

we conclude that

o _[05 025
(VV(z),Az + BKz) = —z Qz, Q:= [0.25 1.5].



Consider the set X given by
X :={zcR?*:V(z) <0.1}.
For
p(x) :=0.1-V(z),

we obtain a(z) 1= 2" Qz and ¥(z,n) := 32" PBK(z —n).
We also take

R(T,z,) = R(T,z,) + 0.025B,
R(T,z,)={ycR*:3tc[0,T]:y =z(t)}.

Robustness conditions: For each (z,n) € C x C,

(¢, ) > a(z) —~v(z,n)
V(¢ f) € dcp(z) x (F(z, k(n)) N Tco(x)),



> A large value of T seems to allow for a large T (xz(t;)).

> By increasing T, we increase the size of R(T,x(t;)).

> An adequate scaling of T as a function of z(#;) can encourage a
large T' when F' is slow and vise versa.

Two Strategies for Selecting T

1. Adapting T to the norm of F(z(t;), k(x(t;))).

2. Evaluating multiple values of T over a receding horizon.

Ts(zo) := max {T1(z,), T2(z0)}

T i My(T, @) <0
)/ Mz (o, T)} otherwise,
X

v € dcp(y),n € F(y, k(x0)) NTa(y),y € R(T, x,)}.

T2 (wo) = {min{T o(zo

Mz (zo, 7) = sup{(—



» Nonlinear relationship between T and |F(x,, k(z,))|.
Indeed, consider the map T : R™ + [Thnin, Trnaz] given by

T(xo) = (Tmaac - Tmzn)(l - F|N(:I:o))CS + Tin,
where ¢ € (0,00), Traz > Timin > 0 and
En(z0) = |F (20, k(20))|/ sup{|F(y, s(y))| : y € X}

For example, for Ty,q = 2, Tinin = 0.25, the figure below illustrates the
nonlinear scaling when ¢; = 150.

0 0.05 0.1 0.15 0.2
Fx(z,)
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Simulation for linear (¢ = 1) and nonlinear (¢, = 150) scaling.

Average Sampling Period: 0.19 (¢; = 1), 0.53 (¢s = 150). Minimum
Sampling Period: 0.04 (¢; = 1), 0.25 (¢; = 150).



» We can select T' € [Trnin, Tinaz) by maximizing the trade off
between current and future sampling periods.

Given Tz > Tinin > 0, N € N, A := (Ty00 — Trnin) /N, and
¢ € [0,1] compute

n* = argmax {cpT(nA,z,)+ (1 —cp)T"(nA,z,)},
ne{0,1,....N}

T(nA, xo) = Ts(Tiin + nA, x,),
Ti(nA, z,) == max{T(mA,z1) : m € {0,..N}, x1 € R*(Tpin + 1, x,)}.

- 04
> Select T'=n*A. 02
o R (T, x0) == {§(t) : ¢ € Sy, (o), € A0
domzN[0,T], At' € [0,T)Ndom ¢ : 02
t' >t} O 02 0 0z o4



Sample Period
N - ': (&)

'
L
[
[
4

[=}

(=]
)
I
=N

Simulation results for ¢, = 1 and ¢,

Average Sampling Period: 0.58 (¢, = 1), 0
Sampling Period: 0.425 (¢, = 1), 0.425 (cp,

.92

10

= 0.5 scaling.

(cn
0.5).

= 0.5). Minimum



V(x(®)

—m—Theorem 5, ¢, = 0.5
~pTheorem 5, ¢; = 150
4 (23, Theorem 4.3]
+Event Trlggered

Sample Period

(=3

(=]
(3]

Simulation results using various methods
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Average Period Minimum Period

Scaled T

cs =1 0.19 0.04
cs = 150 0.53 0.25
Receding horizon

cp, =1 0.58 0.425
cp, =0.5 0.92 0.425
[Di Benedetto et al., 2013] 0.26 0.06
Event Triggered 0.59 0.56

Inter-event properties
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» Experimenting with off the shelf reachability libraries

» Applications involving more complex systems and tasks

s R(T.x,)

9
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Double Integrator Within Bounds

[CORA 2020, M. Althoff]
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» We proposed a self-triggered control strategy that preserves forward
invariance.

» We considered general closed sets for a constrained control
differential inclusions.

» Future work: Connection to MPC. Connection to non-Zeno
behaviors in hybrid systems.



