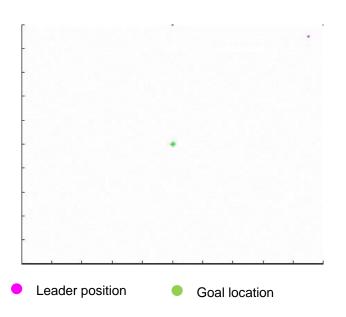
Lyapunov-based MTL Methods for Network Control

Daniel Le, Ufuk Topcu, Michael Zavlanos, Warren Dixon

AFOSR Center of Excellence Review October 30th , 2020

Collaborative efforts between UF + Duke + UTA

- Z. Xu, F. Zegers, B. Wu, A. Phillips, W. Dixon, U. Topcu, "Controller Synthesis for Multi-Agent Systems with Intermittent Communication and Metric Temporal Logic Specifications" (Submitted)
- D. Le, X. Luo, L. Bridgeman, M. Zavlanos, W. E. Dixon, "Single-Agent Indirect Herding of Multiple Targets using Metric Temporal Logic Switching," (Journal in preparation)
- D. Le, X. Luo, L. Bridgeman, M. Zavlanos, W. E. Dixon, "Single-Agent Indirect Herding of Multiple Targets using Metric Temporal Logic Switching," In Proc. IEEE Conf. Decis. Control, 2020.
- Z. Xu, F. M. Zegers, B. Wu, W. E. Dixon, U. Topcu, "Controller Synthesis For Multi-Agent Systems with Intermittent Communication: A Metric Temporal Logic Approach," In *Proc. Allerton Conf. on Commun., Control, and Compu.*, 2019.


Problem Formulation

- Consensus in multi-agent systems
 - In adversarial/contested environments
 - Intermittencies in communication
 - Noncooperative agents
- Switched System approach

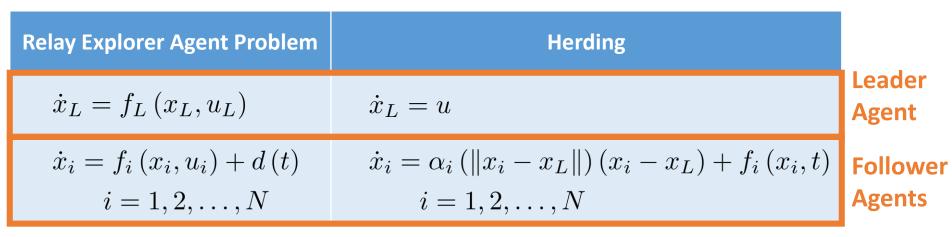
Follower position

UF FLORID

Predicted Follower position

F. Zegers, et. al, "A Switched Systems Approach to Consensus of a Distributed Multi-agent System with Intermittent Communication," American Control Conference

R. Licitra, et. al, "Single Agent Indirect Herding of Multiple Targets with Unknown Dynamics," *IEEE Transactions on Robotics.*



Dynamics

• Dynamic Model

REAP

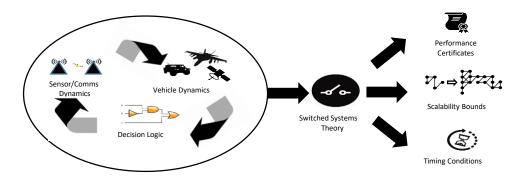
• Leader agent

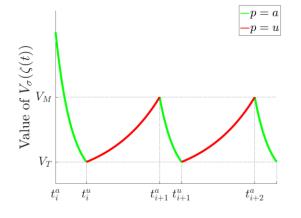
NIVERSITY of

- has state information
- Follower agents
 - No state sensing capabilities
 - Dead reckon (open-loop)

Herding

- Leader agent
 - Direct control
- Follower agents
 - Do not have direct control

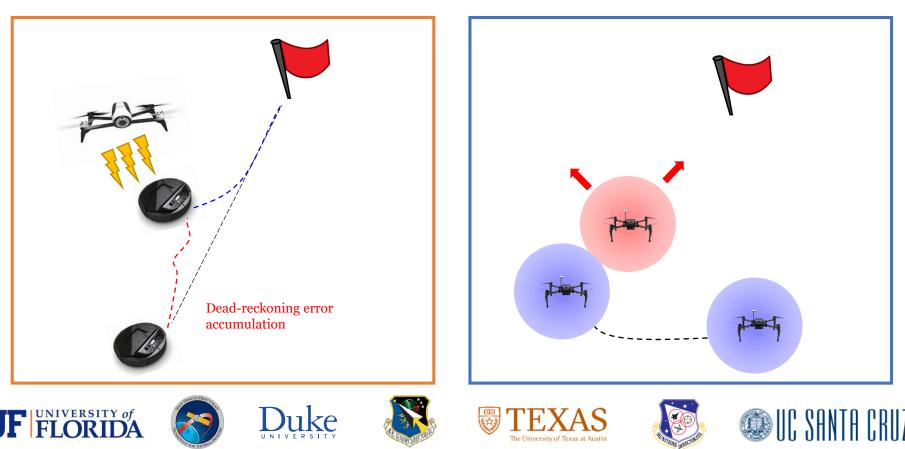




Switched Systems

- Switched Systems
 - Operational modes
 - "closed-loop/open-loop"
 - "chased/unchased"

- Dwell-time analysis
 - Maximum dwell-time
 - Minimum dwell-time
 - Average dwell-time
 - Only provide sufficient Conditions!
- How/When to switch between modes?



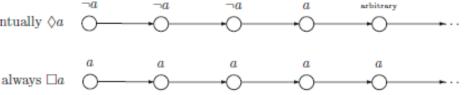
Low-Level Control Design

- Trajectory tracking
 - Analyze trajectory of each agent
 - Switched system: sufficient conditions for stability guarantees in solutions of the switched system
- Challenges
 - Which agent to service/chase? When to switch modes?
 - Other specified tasks?

- Goal: specify a behavior
- Linear Temporal Logic
- ♦ eventually (satisfied at some point) eventually ◊a
 □ always (satisfied now and forever)

 $\Diamond_{\mathcal{I}}$ eventually in the time interval \mathcal{I} $\Box_{\mathcal{I}}$ always in the time interval \mathcal{I}

$\Box \Diamond_{\mathcal{I}} p \text{ always eventually p in the interval } \mathcal{I}$ $\Box_{\mathcal{I}} p \implies \Box_{\mathcal{I}} q \text{ always p implies always q}$



C. Baier and J. Katoen, "Principles of Model Checking," MIT Press

Temporal Logic

Metric Temporal Logic

- Encoding maximum dwell-time
 - The leader agent should be in the communication radius of each follower agents estimated position at least once in a specified time period

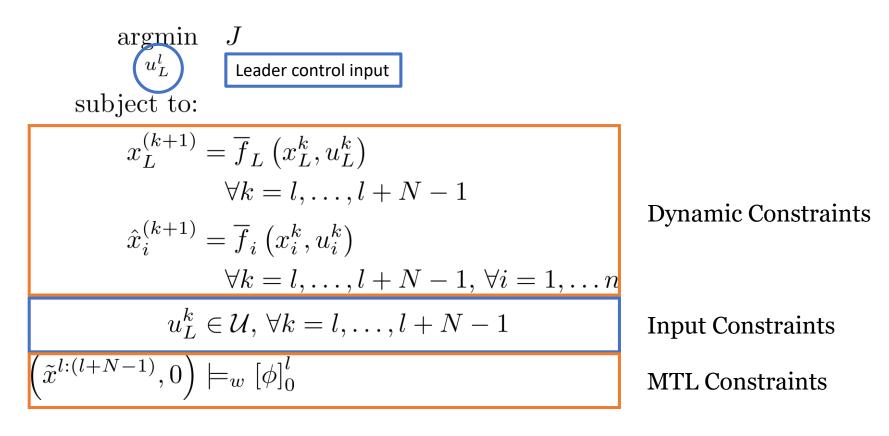
$$\phi_1 = \bigwedge_{1 \le i \le N} \left(\Box \Diamond_{[0,n_i]} \| x_L - \hat{x}_i \| \le r_{com} \right)$$

- Encoding minimum dwell-time
 - The leader agent should service each follower agent for a specified time period

$$\phi_2 = \bigwedge_{1 \le i \le N} \left(\Box \left(\| x_L - \hat{x}_i \| \le r_{com} \implies \Box_{[1,m_i]} \| x_L - \hat{x}_i \| > r_{com} \right) \right)$$

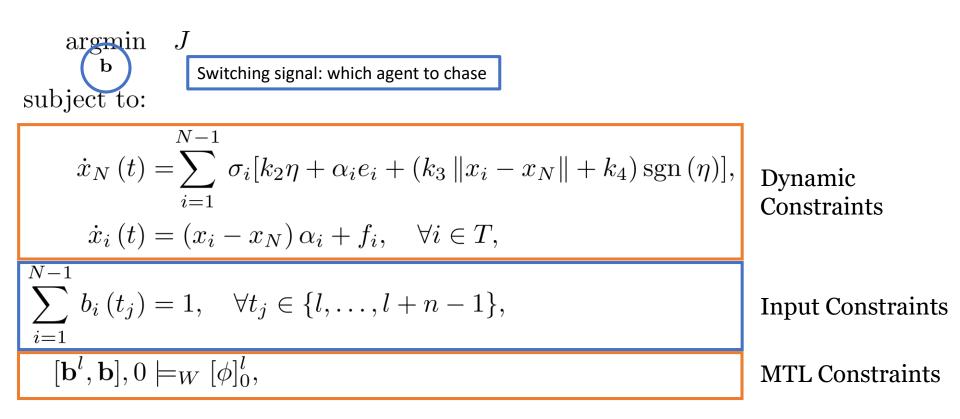
- Encoding complex constraints
 - Reach the charging station G1 or G2 every 6 time units and always stay in the specified region D

$$\phi_3 = \Box \Diamond_{[0,6]} ((x_L \in G_1) \lor (x_L \in G_2)) \land \Box (x_L \in D)$$



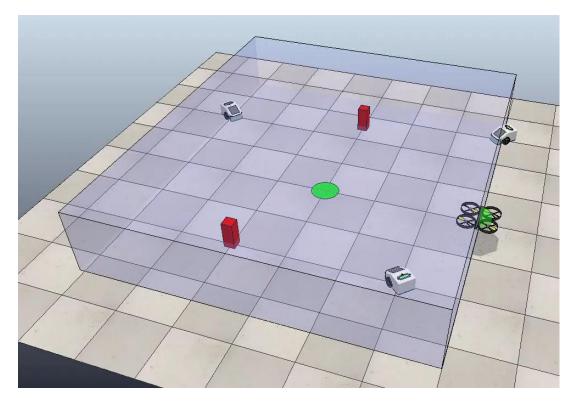
Control Synthesis

• Optimal Control Formulation (REAP)



Control Synthesis

• Optimal Control Formulation (Herding)



Simulation

- Specifications
 - Maximum dwell-time constraints: "do not leave an agent unattended for too long"
 - Minimum dwell-time constraints: "service the agent for a specified amount of time"
 - Practical constraint: "return to charging station every so often"

Z. Xu, F. M. Zegers, B. Wu, W. E. Dixon, U. Topcu, "Controller Synthesis For Multi-Agent Systems with Intermittent Communication: A Metric Temporal Logic Approach," In *Proc. Allerton Conf. on Commun., Control, and Compu.*, 2019.

<u>Contact</u> Daniel Le email: ledan50@ufl.edu

NCR Links

Website: https://ncr.mae.ufl.edu/ YouTube: https://www.youtube.com/user/NCRatUF/videos

