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Privacy: A challenge in autonomous systems

o Decision-makers often collect sensitive data from the network members.
o Examples:

- Autonomous driving

- Smart power grids

- Smart homes Escryot com

getvera.com


https://www.escrypt.com/en/news-events/immune-system-next-generation-connected-vehicles
https://www.subpng.com/png-4xg3uj/
https://getvera.com/pages/home-automation
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Environment dynamics as the sensitive data

e The environment dynamics reflect our model of the environment.

Grid world 4—.

« Information regarding the environment dynamics may have $S$S values!

o Example: Business firms must keep their market research data private from their
competitors.

Startup A, 10% Startup A, 90%

Failure Success

Startup B, 30% Startup B, 70%
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Privacy attacks on environment dynamics

« Various privacy attacks have been studied in reinforcement learning, for example:
- On experience data for MC methods
- On the underlying reward system

« A recent privacy attack infers the floor plans by observing the agent’s actions with
95% precision (1],

[1] X. Pan et al., “How you act tells a lot: privacy-leakage attack on deep reinforcement learning,” arXiv, 2019. 3


https://arxiv.org/abs/1904.11082
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Challenge 1.
We need privacy in decision-making problem:s.

Challenge 2.
Sensitive data is the environment dynamics.

Challenge 3.
The actions must preserve the privacy of the environment dynamics.
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Markov Decision Processes (MDPSs)

Model as an
Startup A, 10% Startup A, 90% Investin A, 0.1 Invest in A, 0.9

r=-—1
Success *
Failure Success

Invest in B, 0.3 Invest in B, 0.7

Failure

Startup B, 30% Startup B, 70%

« Find a reward-maximizing policy based on the transition probabilities (policy synthesis).

. The policy Invest in A at s, reveals P[success | invest in A] > P[success | invest in B]
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Differential privacy as the underlying privacy definition

e The intuition:

o Why differential privacy?
- A well-defined quantitative definition
- Immunity to post-processing

- Robustness to side information

Differentially
private
mechanism

DjorDy?
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Differential privacy as the underlying privacy definition

e The intuition:

o Why differential privacy?
- A well-defined quantitative definition
- Immunity to post-processing

- Robustness to side information

Differentially

private — %

mechanism

Differentially
private
mechanism

Side information ==

Post-processing
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Problem Statement

Find a policy synthesis algorithm that preserves
the privacy of the transition probabilities, in the
sense of differential privacy.

Question 1. How do we enforce differential privacy?
Question 2. How does privacy affect the optimality of the policy?

Question 3. Can we bound the suboptimality of the private policy?
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What is our approach?

o Privatize the transition probabilities first.
« Synthesize a policy using the privatized transition probabilities.

« Compute the cost of privacy. mmUnity to postprocessing

% . Prlvacy . %8 . PollcY . 7:8
— mechanism @\4 synthesizer
P P
The original Privatized
transition probabilities transition probabilities

10
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The Dirichlet mechanism

A probabilistic mapping from A(n) to A(n) using the Dirichlet distribution.

1 n
Dir,(p) = x  with probability —— xikp"_l.
’ B(kp) i1 e |
= e multivariate beta function
n
B(kp) := =l is the normalizing coefficient

(5

The Dirichlet mechanism satisfies (e, 6 )-differential privacy I.

16

[2] P. Gohari et al., “The Dirichlet Mechanism for Differential Privacy on The Unit Simplex,” The American Control Conference, 2020.
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Question 1. How do we enforce differential privacy?

> . i
— Diry %@//B Prcl)Dgy rr;?nmrrlmcing ﬂa
— —
P Answer 1 P
The original Privatized
transition probabilities transition probabilities
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How do we enforce differential privacy?

S
L))

: Dynamic
— D1rk — — _ —
Programming

Question 2. How does privacy affect the optimality of the policy?

17
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Dynamic programmin
y Prog J = ||
e Let M = (8, A, P, r,y, T) be the MDP representation of the environment.
o Apolicy 7z : & — A(n) determines the decision rule at each state.
T
. Thevalue of a policy r at state s is V/(s) = E [Z v s, = s] :
i=t
« The optimal value and policy satisfy the Bellman condition of optimality:
Vi(s) = max )" n(al s)<r(s, a)+y ) Ps.a, S’)Vt’il(s’)),
T aed sS'eS
7' € arg max Z n(al s)(r(s, a)+vy Z P(s,a, s’)V;il(s’)> .
d seY sS'ES 13
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Cost of Privacy

o Captures the difference between the value function with and without privacy.

Without privacy With privacy
@ Dynamic — 7 m 4'8— Dynamic 8:9
wﬂ e Programming , .............................................. s Programming 4— &:Mﬂ
— _> Vﬂ' VS. V,[ 4-8_ —
!9‘) e e ; @

« Is not based on the sensitive data. 8
_ _ = | |- =
« Cost of privacy = E [V7Z -V | £, k] 7 .

Original ' transition probabilities
transition probabilities H 1 8
'
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Main lemma: A concentration bound on Dir,

 Itis the first step in bounding the cost of privacy.

Lemma 1. (CONCENTRATION BOUND) [3]

Forall # > 0 and p € A(n), with probability at least 1 — f,

. log(1/p)
| Dirp —p || _ < V 2k+ 1)

a

« The concentration is explicitly affected by k.

« Large k — higher accuracy, however, weaker privacy protections.

19

[3] P. Gohari et al., “Privacy-Preserving Policy Synthesis in Markov Decision Processes,” To appear in CDC, 2020.
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The set @a,ﬁ

. @a,ﬁ(s, a) determines an estimation of P(s, a) given P(s, a).

P ={pe A |lp-P@s,a)ll, <a} P(s,a) = Dir (P(s, a))

P, = An)

. @a’ﬁ(s, a) — the set of all g-convex combinations of %, and %, (P, + (1 — )P,).

« Weshowthat: E[P(s,a) | P(s,a),k] € g"a’ﬂ(s, a) and P(s,a) € g’a’ﬂ(s, a) 20
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Main result 1:

Theorem 1. (COST OF PRIVACY IN FINITE-HORIZON MDPS) 3]

Let 7 denote the policy with privacy protections. Define

yf(s) = Z 7(a | s)(r(s, a)+y min Z p(s,a,s’)yfﬂ(s’)) ,

acdd PESq.p(5,0) S'ES
VE(s) := Z 7(a | s)(r(s, a)+y max Z p(s,a,s’)\')f+1(s’)> .
aed PELaf(5:D) ye g

Then,
|cost of privacy| < V7(s) — vE(s)

21



%) TEXA WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Finite horizon vs. infinite horizon

. Thevalue of a policy 7 at state s is VZ(s) =E [2 v | s, = s] .
=t

o The optimal value and policy satisfy the Bellman condition of optimality:

‘;;"(s) = m;lx Z r(al s)<r(s, a)+y Z P(s,a,s)V* 1(S’)),

o0 acy sS'eS )

n* € arg mfx Z n(a| s)(r(s, a)+y Z P(s,a,s")V* 1(s’)) .

sesf sSeS )

22
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Main result 2:

Theorem 1. (COST OF PRIVACY IN  FINITE-HORIZON MDPS) 3]

Let v and V7 satisfy

vi(s) = Z z(a | S)(r(s, a)+y min Zp(s,a,S’)_V’;(S’)>,

(Jeles peg’a,ﬂ(&a) SES

V7 (s) = Z 7(a | s)(r(s, a)+y max Z p(s,a,s’)\‘/’zo(s’)> .

aedl PEP g 4(5:a) s'eES

Then,
|cost of privacy| < VZ(s) — v (s)

23
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Numerical Results

) i Optimistic o7 (so) Pessimistic v (so)
« We consider a 30-state 10-action  ___ pjvate V(sy) - - - Non-private Vi(so)
MDP with random transition 6
probabilities and rewards. Z l\l\b_*
e Observe that an increase in k results E v R
in a lower cost of privacy. % » I
> :
0 E 0 20 30 40
: k
Atk =5:

(2,0.02)-differentially privacy

30



@ TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Numerical Results: Computational complexity

Computational
complexity
ofrisitsin)

Infinite horizon |4 ( |§143| o | log (1/11))

S| = 20, T = 10 Ay =5,T =10 S| = 10, |4y = 5
100 — 100 15 -
80 —
g 60 50 - a
ISl _
40 5
20
| | | | 0 N | | | | | | | | |
20 40 60 80 100 20 40 60 80 100 20 40 60 &0 10
| As| S| T
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What’s next?

o o o

Privacy mechanism _ _
Privacy-preserving

for simplex-valued — _ _ — | Privacy-preserving RL
data policy-synthesis

32
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Key takeaway

Using the Dirichlet mechanism, we found a
differentially private policy-synthesis
algorithm and we bounded the cost of privacy.

33
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Thank you for your attention.

My email: pgohari@utexas.edu

34
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Adjacency relationship

o The output of similar datasets must be approximately indistinguishable.

« Formally, similar datasets are defined by an adjacency relationship.

p — Privacy et p.q € A(n) := {xER”Iixizl, x,.zoforallie[n]}
R mechanism - T -
:

The unit simplex
: b . e
« Two vectors p,g € A(n) are b-adjacent, denoted p ~ g, if there exist indices i, j
such that

- A constant € (0,1]

P_ijp=9-a, and |lp—gqll, <0b. 1
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Definition of differential privacy

e A mechanism M is (e, 0)-differentially private if
PIM(p) € S] < exp(e) - P[M(g) € S]+ 0.
l Forall S C A(n)
For all p L2 q
e ¢ — Level of privacy protections (typically € € [0,log(3)]).
e 0 — The probability of protection failure (typically 6 € [0,0.1]).

12
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Why Dirichlet mechanism?

« Traditional methods add infinite-support noise to the entries of the dataset.

« Infinite-support noise breaks the special structure of the transition probabilities.

Gaussian
Mechanism

v

« Dynamic programming does not converge with transition probabilities outside the
unit simplex.

14
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Why projection is not a good idea?

« Projection back onto the simplex preserves differential privacy. However:

A AN

Projection back
onto the simplex

« Projection hurts the accuracy of the privacy mechanism.

o There is a need for a new privacy mechanism for simplex-valued data.
15



