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Motivation: Work together but keep secrets

• Allow agents to collaborate while 
protecting their sensitive information.

• Examples:
• Coalitions collaborating but 

maintaining secrecy
• Autonomous vehicles sharing location 

data
• Social Networks sharing personal 

information
• Data-driven control sharing sensitive 

state information



Differential Privacy Can Help Us

• Statistical notion of privacy from computer science

• Immune to post-processing and robust to side information.
• Used by Apple, Google, Uber, and the 2020 Census.
• In multi-agent control, agents can share state trajectory data 

while protecting itself from other agents and eavesdroppers.
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Differential Privacy Definitions

• Goal of Differential Privacy: Make “similar” pieces of data appear 
“approximately indistinguishable”

• Adjacency defines when pieces of data are “similar:”

Adj!! x", x
#
" = '1 x" − x′" ℓ" % !!

0 else

Privacy Mechanism tuned by 𝜖!, 𝛿!Sensitive Data Private Data

Definition of Differential Privacy (Approximate indistinguishability)

Let 𝜖" > 0 and 𝛿" ∈ 0, &
'

. A randomized mechanism 𝑀 is 
𝜖", 𝛿" −differentially private for agent 𝑖 if, for all adjacent 𝑥", 𝑥"#, we have

𝑃 𝑀 𝑥" ∈ 𝑆 ≤ 𝑒(!𝑃 𝑀 𝑥"# ∈ 𝑆 + 𝛿"



We will privatize formation control

• Consider a network of N agents 
where agent 𝑖 has state 𝑥! 𝑘 ∈ ℝ" at 
time 𝑘

• The network communication 
topology is modeled by a weighted, 
undirected graph 𝒢

• If agents 𝑖 and 𝑗 communicate, they 
maintain a distance of Δ!# ∈ ℝ"

•Without privacy, this is achieved by the formation control protocol
𝑥! 𝑘 + 1 = 𝑥! 𝑘 + 𝛾 '

"∈$ !

𝑤!"(𝑥" 𝑘 − 𝑥! 𝑘 − Δ!")



Problem Statement: Private Formation Control
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Problem Statement: 
(i) Implement the formation control protocol

𝑥" 𝑘 + 1 = 𝑥" 𝑘 + 𝛾 =
)∈+ "

𝑤")(𝑥) 𝑘 − 𝑥" 𝑘 − Δ"))

in a differentially private manner 
(ii) Quantify tradeoffs between network performance, privacy, and 
graph topology



Privacy is enforced when communicating
7

•Agent 𝑖 must send its state to its neighbors in 𝑁 𝑖 at every timestep 𝑘

•Agent 𝑖 will send a private version of its state, denoted /𝑥!(𝑘)

•Differential privacy is achieved at the trajectory level with the Gaussian Mechanism:

/𝑥! 𝑘 = 𝑥! 𝑘 + 𝑣!(𝑘)
𝑣! 𝑘 ∼ 𝒩(0, 𝜎!"𝐼#)
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⋮ }Agent 𝑖’s Privacy Mechanism

Lemma: The Gaussian mechanism is 𝜖% , 𝛿% −differentially private for agent 𝑖 if 𝜎% ≥ 𝜅 𝜖% , 𝛿% 𝑏%, where 

𝜅 𝛿% , 𝜖% = "
!&!

𝐾'! + 𝐾'!
! +2𝜖% , and 𝐾'! = 𝑄("(𝛿%).



• With privacy, the formation control protocol is 
𝑥# 𝑘 + 1 = 𝑥# 𝑘 + 𝛾 '

$∈& #

𝑤#$(𝑥$ 𝑘 + 𝑣$(𝑘) − 𝑥# 𝑘 − Δ#$)

• Privacy induces uncertainty ⇒ formations are imperfect

• Let 𝑒#(𝑘) = 𝑥# 𝑘 − 𝛽#(𝑘), where 𝛽(𝑘) is the state the non-private protocol converges to 
with initial condition 𝑥 𝑘 .

• To quantify performance at the network level, let

𝑒'' = lim sup
(→*

'
#+,

&

𝐸[𝑒# 𝑘 -]

We have private formation control



Formation Error Bounds

Theorem 1: Bounds on Steady-State Error
A network running the formation control protocol 
𝑥! 𝑘 + 1 = 𝑥! 𝑘 + 𝛾 '

"∈$ !

𝑤!"( -𝑥" 𝑘 − 𝑥! 𝑘 − Δ!")

over a connected, undirected, weighted graph 𝒢, is 
differentially private and has 𝑒%% upper bounded by

𝑒%% ≤
𝛾𝑛 𝑁 − 1 &max

!
𝜅 𝛿! , 𝜖! &𝑏!&

𝑁 𝜆& 𝒢 (2 − 𝛾𝜆& 𝒢 )
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Example: The effect of 𝜖 on performance

• Fix 𝛿" = 0.05 for all 𝑖. Fix the communication topology 𝒢.
• Recall: Smaller 𝜖" ⟹ stronger privacy for agent 𝑖.

1

23

4
𝒢:

5

Case 1:
𝜖% = 0.8 for all 𝑖.

𝑒)) ≤ 6.25

Case 2:
𝜖% = 0.1 for all 𝑖.

𝑒)) ≤ 303.79



There are fundamental limits to privacy

• Suppose we must design a private formation control network: we are 
given that the steady state error of the system must not exceed 𝑒H

• Given a graph 𝐺 and homogeneous privacy parameter ε, will it work?
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Theorem 3: Impossibility Result
It is impossible to construct a differentially private formation controller 

that meets the performance requirement 𝑒* if

𝜖 <
2𝑏𝑧

𝑁𝑒*𝜆! 𝒢
𝑏 +

𝑒*𝐾'𝜆! 𝐺 𝑁
𝑒*𝑧𝜆! 𝒢 𝑁

,

where 𝑧 = + ,(" "

!(+-"(𝒢)
.



• Agents want to be as private possible but also want to maximize performance
• Seen impact of changing ε. What about changing the topology of 𝐺?

• What is the optimal network design? Who communicates with whom?
• Constraints: Formation error, edge budget, user preferences

• Preliminary results: problem is quasiconvex, numerically difficult

Next steps: Privacy & Network Codesign

Total cost: $50
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𝑒)) ≤
𝛾𝑛 𝑁− 1 !max

%
𝜅 𝛿% , 𝜖% !𝑏%!

𝑁 𝜆! 𝒢 (2 − 𝛾𝜆! 𝒢 )
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