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Common features in AFOSR applications:
» Variables changing continuously (e.g., physical quantities) and
discretely (e.g., logic variables, resetting timers).

» Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).
Driving Question:

How can we systematically design such systems featuring
switching and intermittency of information with provable
robustness to uncertainties arising in real-world environments?

Approach:
» Model continuous and discrete behavior using dynamical

models that are hybrid.
» Develop systematic control theoretical tools for stability,
invariance, safety, and temporal logic, with robustness.
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1. Estimation
Finite-time Parameter Estimation via Hybrid Methods
ACC 21a, ACC 21b, ACC 21c (all submitted), + CoE collab

Observers for Hybrid Systems ACC 20, CDC 19, CDC 20,
Automatica (submitted)
2. Safety
Reachable maps for hybrid systems and regularity/SCC 20,
TAC 19, NAHS 20, HSCC 20, CDC 20 (submitted)
(Necessary and Sufficient) Safety Certificates, with
Events ACC 21a, ACC 21d (submitted), TAC 20 + CoE collab
3. Optimization
High Performance Optimization via Uniting Control
ACC 19, MTNS 20, ACC 20e (submitted) + AFRL/RV collab.

Model Predictive Control for Hybrid Systems ACC 20,
CDC 20, IFAC WC 20 Workshop
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The state = can have logic, memory, and timer components.



Hybrid closed-loop systems are given by hybrid inclusions

2y & € F(x) zel
e G(z) zeD
where z is the state
> (' is the flow set > D is the jump set
» F'is the flow map » (G is the jump map

Solutions are functions parameterized by hybrid time (¢, 7):
» Flows parameterized by t € R>¢ := [0, +00)
» Jumps parameterized by j € N> :={0,1,2,...}
Then, solutions to H are given by hybrid arcs « defined on

([0, 6] x {0}) W ([trs to] x {1}) U ([t tja] x {7H U+

The hybrid system 7 satisfies the hybrid basic conditions if
C, D are closed and F', (G are “continuous”
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> Linear regression models of the form

y(t) =07 o(1)

where 0 is an unknown parameter vector, and the signals
t— ¢(t) and t — y(t) are measured

» Dynamic models with unknown parameter of the form
&= f(z)+g@)0, y=a()

Hybrid methods enable the following:
» Finite-time estimation of 0 using a hybrid algorithm that
triggers jumps in the estimates

» Asymptotic estimation of § using a hybrid algorithm for
the case when the regressor model or the dynamic model is
hybrid

with robustness and safety, under appropriate PE conditions.



Robust Finite-Time Parameter
Estimation Using Hybrid
Dynamical Systems

University of California, Santa Cruz

UFHioRIDA €9



N 4 -

1. Context and Motivation
> Preliminaries
> Problem statement
2. A Hybrid Algorithm for Finite-Time Parameter Estimation

> Hybrid model
> Main results
» Numerical examples

3. References



A 2 e .
N7 Preliminaries
Y .)

Parameter estimation algorithms seek to determine the values
of unknown parameters in a dynamical system whose data is
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Parameter estimation algorithms seek to determine the values
of unknown parameters in a dynamical system whose data is
partially known.

For example, consider the nonlinear system of the form

&= [f(z) + g(x)0 (1)

where t — z(t) € R" is the known state vector, f(z) € R
and g(x) € R™*? are known continuous functions of the state,
and 6 € R? is an unknown vector of parameters.
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Assumptions [1-4]

» The unknown parameter vector 6 is constant or piecewise constant.

> The function g is persistently exciting, that is, there exist 01,09 > 0
such that for any to > 0 and any solution ¢ — ¢,(t) to (1),

to+o1
/ 97 (ba())g($e(s))ds > o], )

to



g\"/} Problem Statement

Problem
Given a nonlinear system of the form

&= f(z) + g(x)0 (3)

where t — x(t) € R™ is the known state vector, f(x) € R™ and
g(x) € R™P are known continuous functions of the state, and 6 € R? is
an unknown vector of parameters.

Design a hybrid algorithm to estimate 6 in finite-time.
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As in [2], we define a state estimate given by
&= f(x)+ g(x)0 + k(x — &) + wh(z)

then the state prediction error e = x — & has dynamics

é¢=g(z)0 — k(x — ) — wh(x)

where § = 6 — 0 and 0 is generated the parameter update law
given by _
0 =y(w' +g(x)")(z - &) = h(z).

where v =T > 0.
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Next, define t — n(t) and ¢t — w(t) with dynamics

n=—k(r—1), w = g(x).
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{‘\‘/” Hybrid Modeling

Next, define t — n(t) and ¢t — w(t) with dynamics
ﬁ:_k(x_j)? w:g<x)‘

It can be shown that integration of 7 over an interval [to, 1]
from an initial condition with 2y = x, wy = 0, and 7y =0

yields R
n=e—wb.

Premultiplying each side of the above by w' yields

w'n=w'"e—wwl. (4)
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Then, (4) may be rearranged to solve for § as
0= (w'w) w(e—n) =17

Thus, whenever the inverse of w ' w is well defined, we may
solve for 8 as
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The hybrid system is denoted H = (C, F, D, G) with state
z= (x,:%,é,n,w) € X where

» x: plant state vector

» 2: plant state vector estimate

> 0 parameter vector estimate

» 7, w: auxiliary state variables

and data
z € F(z) zeC

2t e G(z) z€D (5)
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—kx—:v

f(x) +
f(x) + ()c9+k::£—ac )+ wh(z

G(z) = (xx9+¢00

= (w'w)" le(x—x—n)

Ci={zeX : det(w'w)<e}
D:i={z€eXx : det(w'w)>¢}

@

and h(z) =v(w' + g(z) ")z — &), k = ki + 1979,
ki =k >0, v>0,and e > 0.
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—kx—:v

f(x) +
f(z) + ()9+k‘x—x ) + wh(z }

G(z) = ($x0+¢00
di=(ww) ol (@ -2 - )
C:={zeX : det(w'w)<e}
D:={zeXx : det(w'w)>¢}

and h(z) =v(w' + g(z) ")z — &), k = ki + 1979,
ki =k >0, v>0,and e > 0.



Theorem

Suppose g in (3) is persistently exciting as in (2). Consider the hybrid
system H in (5) with

h(z) =y(w" +g(z)")(z — &),

1
k=k1+19797 k1=k >0,

and € > 0. Then, the set
A:{zeX:ﬁ::x,éza,nzo} (6)

is globally finite time stable for H.
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Proof sketch
To prove this result, we show:

> Since g is persistently exciting, the set
Ag={z€X : =0, w=0}

is globally finite-time attractive for .
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\\"/J Main Result

Proof sketch
To prove this result, we show:
> Since g is persistently exciting, the set
Ag={z€X : =0, w=0}
is globally finite-time attractive for .
» The set
Az{zeX cd=gx, 6=0, 7]:0}.
is finite-time attractive from Ag for H. Therefore, the set A is globally
finite-time attractive for H.
> It can be shown that for any ¢ € Sy there exist € > 0 and ¢ > 0 such that
[6(0,0)]4a <6 = [#(t,)|a<e
Thus, the set A is globally finite time stable for H.
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A parameter estimation algorithm is proposed in [1-2] which provides
finite-time estimation of the parameter vector 6 in (1). However, this
scheme suffers from the following issues:

Issues with current implementation

» The algorithm in [1-2] may require a large amount of memory
implement.

» The algorithm in [1-2] may take a long time to converge for some
functions g(-).
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Example 1.1

Consider the frequency estimation problem for a signal
t — y(t) = ysin(vt) where v € Ry is the magnitude and v € Ryg is
the frequency. Globally estimate v from measurements of y.

This problem may be rewritten as the problem of estimating 6 for a
system with state = (z1,x3) such that 1 = y and @, = 25 and
dynamics

&= Az + g(x)0

where

and 0 =2 — 1.



S
=
£
S
X

L

®
S

g~
0
=
S
2

2.5

15

0.5

t time



N 4 o
\ V4 Numerical Example
- Qg»)'

Example 1.2

Next, consider the problem of estimating 6 for the following perturbed
model

T =Ar+g(x)0+d

Y el

and d is an unknown perturbation on the state x given by

- =)

where
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Summary:

» We proposed a finite-time estimation algorithm for a class
of nonlinear systems.

» The proposed algorithm may provide faster convergence
compared to the schemes available in the literature.

» The proposed algorithm utilizes a state vector with > 30%
fewer elements compared to schemes in the literature,
thereby requiring less memory.

Future work:

» Extend the proposed estimation scheme to switched
systems and hybrid systems.
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