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Motivation and Approach

Common features in AFOSR applications:

I Variables changing continuously (e.g., physical quantities) and
discretely (e.g., logic variables, resetting timers).

I Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems featuring
switching and intermittency of information with provable

robustness to uncertainties arising in real-world environments?

Approach:
I Model continuous and discrete behavior using dynamical

models that are hybrid.

I Develop systematic control theoretical tools for stability,
invariance, safety, and temporal logic, with robustness.
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Modeling Hybrid Systems: Closed Loop

Hybrid closed-loop systems are given by hybrid inclusions

H
{

ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

where x is the state

I C is the flow set

I F is the flow map

I D is the jump set

I G is the jump map

Solutions are functions parameterized by hybrid time (t, j):

I Flows parameterized by t ∈ R≥0 := [0,+∞)

I Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}
Then, solutions to H are given by hybrid arcs x defined on

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ([tj , tj+1]× {j}) ∪ . . .

The state x can have logic, memory, and timer components.
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ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

where x is the state

I C is the flow set

I F is the flow map

I D is the jump set

I G is the jump map

Solutions are functions parameterized by hybrid time (t, j):

I Flows parameterized by t ∈ R≥0 := [0,+∞)

I Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}
Then, solutions to H are given by hybrid arcs x defined on

([0, t1]× {0})

∪ ([t1, t2]× {1}) ∪ . . . ([tj , tj+1]× {j}) ∪ . . .

The state x can have logic, memory, and timer components.



Modeling Hybrid Systems: Closed Loop

Hybrid closed-loop systems are given by hybrid inclusions

H
{
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ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

where x is the state

I C is the flow set

I F is the flow map

I D is the jump set

I G is the jump map

Solutions are functions parameterized by hybrid time (t, j):

I Flows parameterized by t ∈ R≥0 := [0,+∞)

I Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}
Then, solutions to H are given by hybrid arcs x defined on

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ([tj , tj+1]× {j}) ∪ . . .

The state x can have logic, memory, and timer components.



Modeling Hybrid Systems: Closed Loop

Hybrid closed-loop systems are given by hybrid inclusions

H
{
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Parameter Estimation via Hybrid Methods

I Linear regression models of the form

y(t) = θ>φ(t)

where θ is an unknown parameter vector, and the signals
t 7→ φ(t) and t 7→ y(t) are measured

I Dynamic models with unknown parameter of the form

ẋ = f(x) + g(x)θ, y = α(x)

Hybrid methods enable the following:

I Finite-time estimation of θ using a hybrid algorithm that
triggers jumps in the estimates

I Asymptotic estimation of θ using a hybrid algorithm for
the case when the regressor model or the dynamic model is
hybrid

with robustness and safety, under appropriate PE conditions.
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Preliminaries

Parameter estimation algorithms seek to determine the values
of unknown parameters in a dynamical system whose data is
partially known.

For example, consider the nonlinear system of the form

ẋ = f(x) + g(x)θ (1)

where t 7→ x(t) ∈ Rn is the known state vector, f(x) ∈ Rn

and g(x) ∈ Rn×p are known continuous functions of the state,
and θ ∈ Rp is an unknown vector of parameters.
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Preliminaries

Assumptions [1-4]

I The unknown parameter vector θ is constant or piecewise constant.

I The function g is persistently exciting, that is, there exist σ1, σ2 > 0
such that for any t0 ≥ 0 and any solution t 7→ φx(t) to (1),∫ t0+σ1

t0

g>(φx(s))g(φx(s))ds ≥ σ2I. (2)



Problem Statement

Problem

Given a nonlinear system of the form

ẋ = f(x) + g(x)θ (3)

where t 7→ x(t) ∈ Rn is the known state vector, f(x) ∈ Rn and
g(x) ∈ Rn×p are known continuous functions of the state, and θ ∈ Rp is
an unknown vector of parameters.

Design a hybrid algorithm to estimate θ in finite-time.



Hybrid Modeling

As in [2], we define a state estimate given by

˙̂x = f(x) + g(x)θ̂ + k(x− x̂) + wh(x)

then the state prediction error e = x− x̂ has dynamics

ė = g(x)θ̃ − k(x− x̂)− wh(x)

where θ̃ = θ − θ̂ and θ̂ is generated the parameter update law
given by

˙̂
θ = γ(w> + g(x)>)(x− x̂) =: h(x).

where γ = γ> > 0.



Hybrid Modeling

Next, define t 7→ η(t) and t 7→ w(t) with dynamics

η̇ = −k(x− x̂), ẇ = g(x).

It can be shown that integration of η̇ over an interval [t0, t1]
from an initial condition with x̂0 = x, w0 = 0, and η0 = 0
yields

η = e− wθ̃.
Premultiplying each side of the above by w> yields

w>η = w>e− w>wθ̃. (4)
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Hybrid Modeling

Then, (4) may be rearranged to solve for θ̃ as

θ̃ = (w>w)−1w>(e− η) =: ψ

Thus, whenever the inverse of w>w is well defined, we may
solve for θ as

θ̂ + θ̃ = θ̂ + ψ = θ



Closed-loop system

The hybrid system is denoted H = (C,F,D,G) with state

z = (x, x̂, θ̂, η, w) ∈ X where

I x: plant state vector

I x̂: plant state vector estimate

I θ̂: parameter vector estimate

I η, w: auxiliary state variables

and data
ż ∈ F (z) z ∈ C
z+ ∈ G(z) z ∈ D

(5)



Closed-loop system

where

F (z) :=


f(x) + g(x)θ

f(x) + g(x)θ̂ + k(x− x̂) + wh(z)
h(z)

−k(x− x̂)
g(x)

 z ∈ C

G(z) := (x, x, θ + ψ, 0, 0) z ∈ D

ψ :=
(
w>w

)−1
w> (x− x̂− η)

C :=
{
z ∈ X : det(w>w) ≤ ε

}
D :=

{
z ∈ X : det(w>w) ≥ ε

}
and h(z) = γ(w> + g(x)>)(x− x̂), k = k1 +

1
4
gγg,

k1 = k>1 > 0, γ > 0, and ε > 0.
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Main Result

Theorem

Suppose g in (3) is persistently exciting as in (2). Consider the hybrid
system H in (5) with

h(z) = γ(w> + g(x)>)(x− x̂),

k = k1 +
1

4
gγg, k1 = k>1 > 0,

and ε > 0. Then, the set

A =
{
z ∈ X : x̂ = x, θ̂ = θ, η = 0

}
(6)

is globally finite time stable for H.



Main Result

Proof sketch
To prove this result, we show:

I Since g is persistently exciting, the set

A0 = {z ∈ X : η = 0, w = 0 }

is globally finite-time attractive for H.

I The set

A =
{
z ∈ X : x̂ = x, θ̂ = θ, η = 0

}
.

is finite-time attractive from A0 for H. Therefore, the set A is globally
finite-time attractive for H.

I It can be shown that for any φ ∈ SH there exist ε > 0 and δ > 0 such that

|φ(0, 0)|A ≤ δ =⇒ |φ(t, j)|A ≤ ε

Thus, the set A is globally finite time stable for H.
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Comparison with the Literature

A parameter estimation algorithm is proposed in [1-2] which provides
finite-time estimation of the parameter vector θ in (1). However, this
scheme suffers from the following issues:

Issues with current implementation

I The algorithm in [1-2] may require a large amount of memory
implement.

I The algorithm in [1-2] may take a long time to converge for some
functions g(·).



Numerical Example

Example 1.1

Consider the frequency estimation problem for a signal
t 7→ y(t) = γ sin(νt) where γ ∈ R>0 is the magnitude and ν ∈ R>0 is
the frequency. Globally estimate ν from measurements of y.

This problem may be rewritten as the problem of estimating θ for a
system with state x = (x1, x2) such that x1 = y and ẋ1 = x2 and
dynamics

ẋ = Ax+ g(x)θ

where

A =

[
0 1
−1 0

]
g(x) =

[
0
−x1

]
and θ = ν2 − 1.



Numerical Example



Numerical Example

Example 1.2

Next, consider the problem of estimating θ for the following perturbed
model

ẋ = Ax+ g(x)θ + d

where

A =

[
0 1
−1 0

]
g(x) =

[
0
−x1

]
and d is an unknown perturbation on the state x given by

d =

[
sin(5t)
cos(5t)

]
.



Numerical Example with Noise



Conclusion

Summary:

I We proposed a finite-time estimation algorithm for a class
of nonlinear systems.

I The proposed algorithm may provide faster convergence
compared to the schemes available in the literature.

I The proposed algorithm utilizes a state vector with > 30%
fewer elements compared to schemes in the literature,
thereby requiring less memory.

Future work:

I Extend the proposed estimation scheme to switched
systems and hybrid systems.



Thank You!
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