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Distributed Learning for Control
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. state transitions
and rewards Shared Vehicle Allocation

Find the optimal policy for each agent to maximize the network-wide accumulated rewards.
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Learning for Control

Problem maxg J(0) A Efeg.an]~p0 [1(50, @0) + 30— 1 V(50,70 (5¢))]

Estimate the accumulated reward given the current policy:
V.Q l 1 S, T

Improve the current policy by policy gradient: 8(t + 1) = 6(t) + «

a l 1 S, T
Environment

}

Q" (st, ar)

Policy evaluation
algorithms to find w,
e.g., TD learning

Veﬂe(st) ay Q" (St7 at)

Compute policy gradient using,
e.g., backpropagation, if NN
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Distributed Learning for Control

Consensus Critics Local Actors
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Partial Observations

Partial Observations

Local value/policy
Oit = h([Sl, 52,44, SN]) wi,t)

functions are based on
local observations that

have different meanings,
so the parameters of

these local functions do
not need to be equal.

Full Observations

Consensus Critics
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Can not enforce
consensus and,
therefore, do not have
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Zeroth-Order (Derivative-Free) Optimization

_ Complex or unknown models:
Optimization problem: min f(z) = E¢[F(,{)] Gradient is unavailable,

z€eR .
uncomputable, private

Zeroth-order gradient estimators:

The one-point estimator Vf(z) = %F(az + du, &) requires that the function £'(x, £) is bounded,
it is subject to large variance and, therefore, slow convergence rate.

The two-point estimator  V.f () = %(F(w + 6u, &) — F(x,€)) requires that the function

evaluations at = and x + du are subject to the same noise vector & . It is impossible to use if the
objective function is time varying.

Reduce the variance
New residual-feedback zeroth-order gradient estimator: of one-point gradient

estimator using the
~ Uy previous iterate
V() := ?(F(«/L’t + dug, &) — Fwp—1 + 0up—1,6¢-1))




Optimization with Complex or Unknown Models
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Computation management in loT systems

Avoid critic v ™\
function “Stop Sign" : “Yield Sign”
approximation —
which 0 . °—+1
|n.troduces ,blas | Adversary Authentic Adversarial Adversarial
in the policy Input Perturbation Input
gradient ‘ W,
a

Human-in-the-loop robot planning

ACTION

estimate <

STATE, REWARD ~— . .
Environment Victim

Policy searchinRL 6 + 6 + leg J(6 Adversarial attacks and defense in DRL




Zeroth-Order Distributed Policy Gradient
Optimization -

Centralized zeroth-order residual-feedback policy gradient optimization AItOgether
J(Or + dug, Ex)|H J(Ok—1 + dup—1,8k—1)

Oi k1 =01 + / 5 \ Li

J (O + Sun, &) = Soivy Ji(O + duk, &) is the global return of — The return in the past iteration reduces the variance of
implementing policy #fx+dur at the end of episode k, which can the zeroth-order policy gradient estimate, similar to the
be computed in a decentralized way using consensus. baseline effect used in the Actor Critic method.

Distributed zeroth-order policy gradient optimization

Step 1: Perturb local policy parameters, collect local rewards,\
and compute local retun .J; = 77 44 1ry .

M1 Step 2: Let 15 (0) = J;, then run N, local averaging
Actor1 E m 3 Actor 2 BN steps 5 (m + 1) = 37 n, Wijp (m).
2

Step 3: Update local policy parameter
{are}im {or.}ic {azehi {oaibims 6 IO p H);E)Nc)—u’v“_l(l\’c)
, {Tl,t}tT:1 {7‘2,t}tT:1 k ik+1 =0+« 5 Uik )
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Convergence Analysis

Assumption 1: For all agents, the local policy evaluation is unbiased and subject to bounded variance. That
s, E¢[J;(0,€)] = Ji(0) and E[(J;(6,€) — J;(6))?] < o2 for i =1,2,..., N,

Assumption 2: The local values J; (¢, &) are upper and lower bounded by .J,, and J; forall 2 =1,2,..., N

and all policy parameters 4. Bounded bias in the local

policy gradients due to
consensus errors

Theorem: (Learning Rate) Let Assumptions 1 and 2 hold and define 6 =

vees
N, > log 1 :
> (\/_dl TREA Jz)))/ og(pw) | . Then, we have that

K-
Z |VJ5 ek: H < O(d1.56;1.5K—0.5) i

Given the desired solution accuracy €, €¢ ,

4 we can select the smoothing parameter §,
The number of consensus steps run per episode depends on the step size « and the number of
the upper and lower bounds of the value functions. consensus steps N per episode, so that the

€ — € solution is found after K eplsodes Ke

UNIVERSITY




Distributed Resource Allocation

16 agents on a4 x 4 grid

Local demand at agent i

Local reward

- 0 if m,(t) > 0,
I"i(Sl'(t)) - —(—mi(t))3 if mi(t) < 0.

-
-
=

~H
)

Dynamics of local resources

mi(t+1) = m(t) = Y ag(Omi(t) + D azi(t)m;(t) — d;(t)

JEN; JEN;

Local observation o;(t) = [m;(t), d;(t)]
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Distributed Resource Allocation

Performance improvement of distributed zeroth-order policy optimization algorithms
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Zeroth-Order Online Learning for Control
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Online Optimization

T—-1
Time-varying non-convex optimization ?HI}} > felwe)
"t =0

Performance measure
T—1
Gradient Size Regret: RT .— Z E[|Vfi(x;)|[2] = rackingthe time-varying
= stationary points

Online zeroth-order gradient estimators

Impractical to use because

Two-point estimator: % ( fe(z + o6u) — fi( x)) f# can only be evaluated once.

Traditional one-point estimator: v fi(z + du) Does not track the non-
0 stationary points well

because of large variance. Duke
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Residual-Feedback Online Optimization

Tip1 = Xy — 1) Ft (fe(ze + 0ug) — fro1(ze—1 + dug—1))

Assumption: (Bounded Regularity) There exist constants W, Wy > 0 such that the sequence of
functions { f: }+=o,... . 7—1 satisfies the following two conditions.

LY Elfi(@) = fia(@)] < Wry 2. B[ fo(x) — fiea(2)]*] < Wy for all ¢ and .

Wr, W measure the total variation
of the objective value at any fixed policy.

Theorem: (Regret for Smooth Nonconvex Problems) Assume that f;(z) € C%Y n C*+! with Lipschitz
constant Lo and smoothness constant L; and that ft IS bounded below by ft for all t. Run ZO with

residual feedback for T iterations with 7 = (2v/2Lod3T2) and & = (dsT%)~" Then,

RT = O(d% LoWrT? +d3 Ly Lo ' Wr).
The algorithm tracks the path of the non-stationary points

within a neighborhood, the size of which is given by the D k
bound on the variation of the objective function. u e
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Dynamical system:

Policy function:

Objective function:

i1 = JArxr + Brug|+ wy,

Non-Stationary LQR

Dynamical matrices change
over each episode t

Uk —

K : '
tflk - Policy parameter applied

during episode t

H—

—

Vi(K)|-=E[ ) +*(af Qui + uf Ruy)]

e

Obijective function at episode t
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Non-Stationary LQR
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Applying the one-point residual feedback estimator
achieves the same level of accumulated suboptimality as
the impractical two-point feedback, both much lower than

that of the conventional one-point feedback scheme.
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Non-Stationary Resource Allocation

Dynamical system:

mi(k+1) =mi(k) = > ai;(k)ymi(k)
JEN;
+ Y agi(k)ym; (k) — di(k)

JEN;

Reward function:

-
-
=

(k) = 0, when m; (k) > 0,
TR = Cini(k)?,  when m;(k) < 0.

y

Sensitivity to the shortage of resources
change over each episode t.

~H
)

Policy function:  m;..(0s;0:) : O — [0, 1]V

N H
Objective function:  Je(6:) = > Y +Fris(k)
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Non-Stationary Resource Allocation
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, | ) dback - Two-point Feedback (Impractical)
Conventional One-point Feedbac - Conventional One-point Feedback
10°
0 2000 4000 ' 6000 8000 10000 0 2000 4000 6000 8000 10000
Episode

Episode

Applying the one-point residual feedback estimator can
maintain low costs in non-stationary environments as well
as the impractical two-point feedback, both much lower
than that of the conventional one-point feedback scheme.
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Distributed Zeroth-Order Learning for Control
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