Model-Free RL for Control Synthesis for MDPs and Stochastic Games

Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos and Miroslav Pajic

Department of Electrical and Computer Engineering Department of Computer Science Pratt School of Engineering

Duke University

PRATT SCHOOL of ENGINEERING

Preliminaries and Problem Statement

Model: (Labeled) Turn-Based Zero-Sum Stochastic Games $G = (S, (S_{\mu}, S_{\nu}), A, P, s_0, AP, L)$

• $S = S_{\mu} \cup S_{\nu}$ is a finite set of states; s_0 is an initial state

- S_{μ} , S_{ν} are the controller and the environment states
- *A* is a finite set of actions
- *P* is the transition probability function (unknown)
- *AP* is a set of labels/atomic propositions
- $L: S \rightarrow AP$ is a labeling function

Specification: Linear Temporal Logic (LTL)

 $\varphi \coloneqq \text{true} \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathsf{U} \varphi_2, \ a \in AP$

- $\varphi_1 \lor \varphi_2 \coloneqq \neg(\neg \varphi_1 \land \neg \varphi_2) \mid \varphi_1 \to \varphi_2 \coloneqq \neg \varphi_1 \lor \varphi_2$
- $\diamond \varphi \coloneqq \text{true U } \varphi \mid \Box \varphi \coloneqq \neg(\diamond \neg \varphi)$

Output: Finite-Memory Strategy

 $\pi = (M, \Delta, \alpha, m_0)$

- M is a finite set of modes; m_0 is an initial state
- $\Delta: M \times S \to M$ is the transition function
- $\alpha: M \times S \rightarrow A$ maps the mode state pairs to actions

Problem Statement

Given a stochastic game G where the transition probabilities and the topology is unknown and an LTL specification φ , design a model-free RL algorithm that finds a finite-memory controller strategy μ_* that satisfies

 $\mu_* = \operatorname{argmax}_{\mu} \operatorname{min}_{\nu} \operatorname{Pr}_{\mu,\nu}(\mathcal{G} \vDash \varphi)$

where μ and ν are controller and environment strategies

Problem Statement for MDPs

Given an MDP \mathcal{M} where the transition probabilities and the topology are unknown and an LTL specification ϕ , design a model-free RL algorithm that finds a finite-memory objective policy π_* that satisfies

 $\pi_* = argmax_{\pi}Pr_{\pi}(\mathcal{M} \models \varphi)$

tions, and numbers transition probabilities

(c) The obtained product MDP

PRATT SCHOOL of ENGINEERING

Product Game Construction

Rabin(1) Acceptance Condition as Sum of Discounted Rewards

nke

PRATT SCHOOL of

Main Theoretical Results

PRATT SCHOOL of ENGINEERING

Grid World:

- The agent can take four actions:
 North, South, East, West
- The transition model :
 - The probability that the robot moves in the <u>intended</u> direction: 0.8
 - The probability that the robot moves in a direction <u>orthogonal</u> to the intended direction: 0.2
- Action: *North*

Objective:

- (1) Repeatedly visit a **b** and a **c** cell
- (2) Eventually reach a safe region labeled with d or e and do not leave
- (3) Avoid the adversary at all costs.

 $\varphi = \Box \diamond b \land \Box \diamond c \land (\diamond \Box d \lor \diamond \Box e) \land \Box \neg a$

(a) Adversary is at (0,0) and i=1

(b) Adversary is at (3, 1) and i=2

The darker blue, the higher estimated satisfaction probability

Secure Planning Against Stealthy Attacks

Controller:

- aims to perform a given **task**
- does not have a model of the environment
- has a perfect knowledge of the current state
- has an intrusion-detection system (IDS) that monitors anomalies
- can **detect** attacks only when the IDS raises an **alarm**

Attacker:

- aims to prevent the controller from performing the given task
- has a perfect knowledge of the current state, the controller strategy and the IDS mechanism
- can attack on actuators unless detected
- tends to stay **stealthy**

LTL Formulation of Controller Objective $oldsymbol{arphi}$

- captures the controller task and the IDS mechanism
- reflects the behavior of stealthy attackers
- translates into a small DRA

 $\varphi = \varphi_{IDS} \lor \varphi_{TASK}$, where φ_{IDS} is a **reachability objective**

Example: Counting-Based IDS $\varphi_{IDS} = \diamond \left(\text{anomaly} \land \bigcirc \left(\text{anomaly} \land \bigcirc \diamond^{\leq 1}(\text{attack} \land \bigcirc \diamond \text{attack}) \right) \right)$

Secure Planning Case Studies

(a) The controller strategy from *b* to *c* and the labels of the cells

(b) The controller and the attacker strategies from *b* to *c* before any anomaly (c) The controller and the attacker strategies from *b* to *c* after one anomaly

Sequence of Tasks:

- (1) Visit *b*, *c*, *d*, *e* in order
- (2) Avoid the danger zone *a* at all costs

$$\varphi_{TASK} = \diamond \left(\boldsymbol{b} \land \diamond (\boldsymbol{c} \land \diamond (\boldsymbol{d} \land \diamond \boldsymbol{e}) \right) \land \Box \neg \boldsymbol{a}$$

	0	1	2	3	4	5	6	7	8
0-	0.79	0.78 b	0.70	0.53	0.32	0.32	0.31	0.31 C	0.31
1	0.80	0.76	0.60	0.27	0.16	0.22	0.31	0.31	0.31
2-	0.81	0.69	0.27	0.14	0.04	0.09	0.21	0.31	0.31
3-	0.84	0.43	0.24	0.04	0.00	0.04	0.11	0.24	0.31
4 -	0.88	0.77	0.29	0.14	0.04	0.09	0.22	0.31	0.32
5.	0.94	0.89	0.71	0.28	0.18	0.22	0.32	0.32	0.32
6-	0.97	e	0.84	0.62	0.35	0.34	0.33	0.32 d	0.32

(a) The controller strategy from *d* to *e* and the labels of the cells

(b) The controller and the attacker strategies from *d* to *e* right after an anomaly happens

(c) The controller and the attacker strategies from d to e right after an alarm is raised

Summary:

- We convert a control synthesis problem in stochastic games to a reinforcement learning problem
- A controller strategy maximizing the return maximizes the satisfaction probability
- Our method does not require (or learn) the transition probabilities or the topology
- Convergence of reinforcement learning is ensured

Future Work:

- More practical algorithms that converge to the desired strategy faster
- The use of approximate reinforcement learning to handle large state spaces

Thank you

