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Model: (Labeled) Turn-Based Zero-Sum Stochastic Games
G =(5(5,5,)AP,so AP, L)

* §=35,US, isafinite set of states; s, is an initial state
. Sﬂ,Sv are the controller and the environment states

* Aisafinite set of actions

* P isthe transition probability function (unknown)

* AP is a set of labels/atomic propositions

L:S — AP is a labeling function

Specification: Linear Temporal Logic (LTL)

p:=true|lal @ |lo;Ap, | O | p,Up,, a€ AP

* Y1V = (@ An@y) | @12 @y = 1@ V@,
e Op =truelUq@ | O¢ =-=(>=9)

Output: Finite-Memory Strategy
m=(M,A amgy)
* M s afinite set of modes; mg is an initial state
e A:M XS — M is the transition function
e a:M XS — A maps the mode state pairs to actions

Problem Statement

Given a stochastic game § where the transition
probabilities and the topology is unknown and an LTL
specification ¢, design a model-free RL algorithm that
finds a finite-memory controller strategy u, that satisfies

u, = argmax, min, Pr, (G F @)

where u and v are controller and environment strategies

[Specn‘lcatlon () ] Model (G) ]

[
REISSEESIES

Reinforcement Learning |

____'

\

[ Controller Strategy (u..) ]
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Problem Statement for MDPs

Given an MDP M where the transition probabilities and the topology are unknown and an LTL specification
@, design a model-free RL algorithm that finds a finite-memory objective policy 1, that satisfies

T, = argmax, Pr,(M E @)

—_—_—__—_—_—_—_—_—_—_—_—_—_—_\

¢ * ~ — ~

Specification (@) :{{)[ LDBA (:A) Product ) Product MDP with Model-Free |! 7T*

) g : ’ MDP Discounted Reward Reinforcement| Coptlmlfl
o - ontroller

| Model (M) |5 > (]\/[X.ipB_)/ Objective (M *, I'g, Rp), Learning ], Policy

\-___' L -_—_—_—_—_‘_________,

a
[

Limit-Deterministic Biichi Automata

(LDBA) — consist of two deterministic

components the initial and accepting.

The only nondeterministic transitions are

the e-moves from the initial component (@) A derived LDBA A for the LTL
. formula ¢ = ¢Oa Vv OOb

to the accepting components.

@ 0.9 ﬂ 0.1
1.0 @ 1.0 6

[1] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, @//

"Control Synthesis from LTL Specifications using Model- _

Free Reinforcement Learning", IEEE International (b) An example MDP M; the circles
) ] denote MDP states, rectangles denote ac-

Conference on Robotics and Automation (ICRA), 2020 tions, and numbers transition probabilities (c) The obtained product MDP
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, N ! X
Specification () DRA (A) Product
) | ’ Game
Model (G) '\ (G, Prabin)
State Space ) .| Augmented State Space
S1(s) 15 =5%xQ | (s.q)
2 Rabin Acceptance Condition
LTL Specification k
[ 0 J7| oran=\/ _00BiA-DOC
1=

1d}

Rabin(1) Acceptance Condition

o = 0OBA—=00C
Pure and memoryless strategies suffice for both Player

(1)
Rabin’

(Chatterjee et al.,2012)

For pure and memoryless u™ and v™:

x Min,x Pryx,x (gx = %%)bm)

1 (Controller) and Player 2 (Environment) for ¢

X _
‘[E" = argmaxu

Optimal Finite-Memory Controller Strategy
_—> . = argmax, min, Pr,, (G F @)
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- N\
Product Game with d Product Game with y
14:7 s €EB

_ X
Rabin Objective f}> Discounted Reward Objective | | Rz(s) == {1 Y, S"€B pe(s¥)=4{Ye s*ecC

X x0r" " \ 0, s*¢B Y, otherwise
97 Prabin) )T (6T, B_,C_/‘_R_B_Z:) y
L [) Reward Function Discount Function
Product State, s Q(down) = =y Q(down) = Tve

Accepting EC

[]

Action, A(s™)

©

B State, s* € B
t+r:=1—-yp

4
O O (down) cannot be decreased

C State, sX € C during model-free learning
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Reward 1— x ve(¥), s*€EB :
Yre) — Yg, ST EB Discount
Function Re(S) = { 0, s*¢B Tgc() = v s*€C o 0,
14 otherwise
Discounted , o -1 L,
Rewards  Ugc(9) :2. 0(1_[ OFBC(U[I )RB(U[l])
i= j=
Discount lim 1-y = lim 1-ys() _ 0
Constraints =1 1—vg(¥) v>1 1—yc(¥)
R . i
Theorem ylgq?;]Eo.Ng [GB,C(O-)] = PT'#X,VX (g E OOCBA _IDOC) ,I
SIIooIIIIIEIIIIIIII :
There exists ¥y’ < 1 such that forally > y’, I
Corollary : 'Lf" = argmax,x min,x IEIUNQMXN>< [G;’C(a)] :
I | | = argmax,x min,xPr,x ,x(G* £ OOGBA -00C) )
N e e e e e e e e e e e e e = -

:‘> U, : Optimal Finite-Memory Controller Strategy

Multiple Rabin Pairs

[1] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic,
"Model-Free Reinforcement Learning for Stochastic
Games with Linear Temporal Logic Objectives",
arXiv:2010.01050, 2020
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Grid World:

* The agent can take four actions:
North, South, East, West

* The transition model :
* The probability that the robot moves in
the intended direction: 0.8
* The probability that the robot moves in
a direction orthogonal to the intended
direction: 0.2

e Action: North

w.p. 0.8 (intended direction)

1

w.p. 0.1 .p. 0.1

Objective:

(1) Repeatedly visita b and a c cell

(2) Eventually reach a safe region labeled with d or e and do not
leave

(3) Avoid the adversary at all costs.

@=00b ANOOc A (COd YV <>De) A O-a

0 1 2 3 4 . 3
] ¥ €9 f
“_E@d 8d 0 v,@ "ve c, 26 PX
1 + £9 * T
2 v v + 4
3_- “« « > > > . > (@ > + «
Le,e C,C @e c, e
.- « > > .- 4 > 4
COom _ Il be 0@ | | be

(a) Adversary is at (0,0) and i=1 (b) Adversary is at (3, 1) and i=2

The darker blue, the higher estimated satisfaction probability
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* does not have a model of the environment

* has a perfect knowledge of the current state
* has anintrusion-detection system (IDS) that monitors SpeC|f|cat|on Model (g)

I
anomalies |
* can detect attacks only when the IDS raises an alarm — — — — TR o \

@ntroller:
* aimsto perform a given task ( — @_ — —

Attacker:
* aimsto prevent the controller from performing the given task Relnforcement Learning
* has a perfect knowledge of the current state, the controller ‘ I
strategy and the IDS mechanism — e —lﬁ — e - -
* can attack on actuators unless detected
\ * tends to stay stealthy / [ Controller Strategy (u.) ]

LTL Formulation of Controller Objective ¢

e captures the controller task and the IDS mechanism @ =Qps V QT1ask, Where Qps is a reachability objective

» reflects the behavior of stealthy attackers

* translates into a small DRA
Example: Counting-Based IDS

Oips =< (anomaly A O(anomaly A O©=!(attack A O<>attack)))
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Secure Planning Case Studies

re T EEmEEmEEmEEmE= \
: ©=QpsV Orasg | ©Yips = < (anomaly A O(anomaly A O¢©=(attack A OOattack)))
___________ 7/
o1 0 1 2 3 4 5 6 7 8
° did d 4 d 4 "7 '
Repeated Coverage: LR e .| . - )
- ‘ d d d _d d d d d | '
(1) Repeatedly visit a b and a c cell ] _ b At e c: o N
(2) Eventually reach a safe region labeled with d S " 0 0 ;’ N 1B
and do not leave ‘ : S . B
4- 4- 4-
T d dlled dd dd|d| |
5- ; sSE 3
J O 6 6 06 ‘ _
Brpse= B0 S E0EA OHL ‘I o 6 6 6 o o o
(a) The controller strategy from b to c and  (b) The controller and the attacker strate- (c) The controller and the attacker strate-
the labels of the cells gies from b to c before any anomaly gies from b to ¢ after one anomaly

3 4 5 6 71 8 S S A 5 6 1 8

0.53'0.'32'0.52'0.'31'031'0.'31' e e \ =~ hk3ha

Sequence Of TGSkS.' 0.27 016 0.22 0.31 031 0.31 1 » > > « t o«

(1) Visit b,c,d, e in order 0.14 0.04 009 021 031 031 t t e >3 LA

(2) Avoid the danger zone a at all costs 001 o0 001 011 021 031 NES - I3 P o> 4y

0.14 0.04 0.09 022 031 0.32 t vy 3 LR 2N R

025 018 022 032 032 0.32 S A SR S R

PTASK= O(b/\O(C/\O(d/\Qe))) A O-a 4—» 4— 4—» dc? « ¢_ .._ E 4_

0.62 035 034 0.33 0.32 0.32

(b) The controller and the attacker strate- (c) The controller and the attacker strate-
gies from d to eright after an anomaly hap- gies from d to e right after an alarm is
pens raised

(a) The controller strategy from d to e and
the labels of the cells
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Summary:

 We convert a control synthesis problem in stochastic games to a reinforcement learning problem
* A controller strategy maximizing the return maximizes the satisfaction probability

* Our method does not require (or learn) the transition probabilities or the topology

e Convergence of reinforcement learning is ensured

Future Work:
 More practical algorithms that converge to the desired strategy faster

* The use of approximate reinforcement learning to handle large state spaces
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