"Scalable" Synthesis of Robust Strategies for **Uncertain POMDPs**

Murat Cubuktepe, Ufuk Topcu

The University of Texas at Austin

autonomous SYSTEMS GROUP

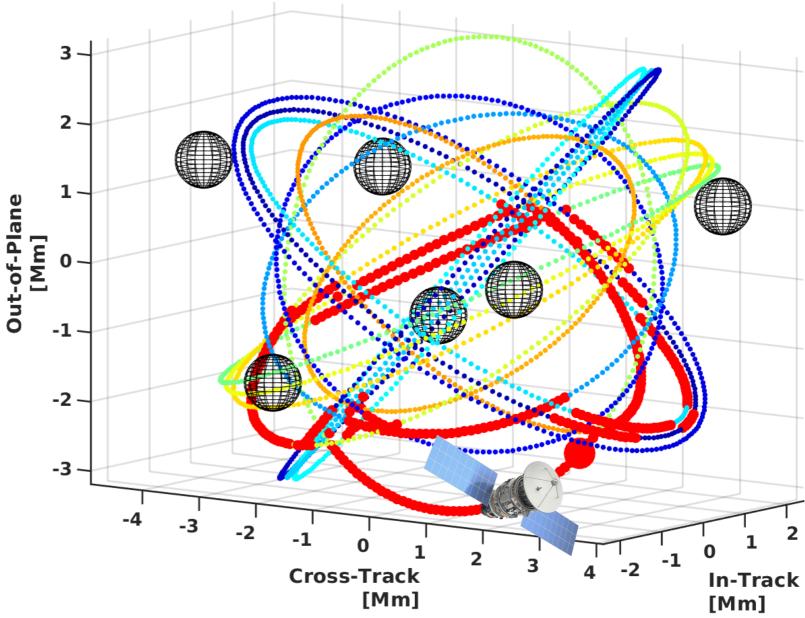
What is in this talk?

From POMDPs to uncertain POMDPs.

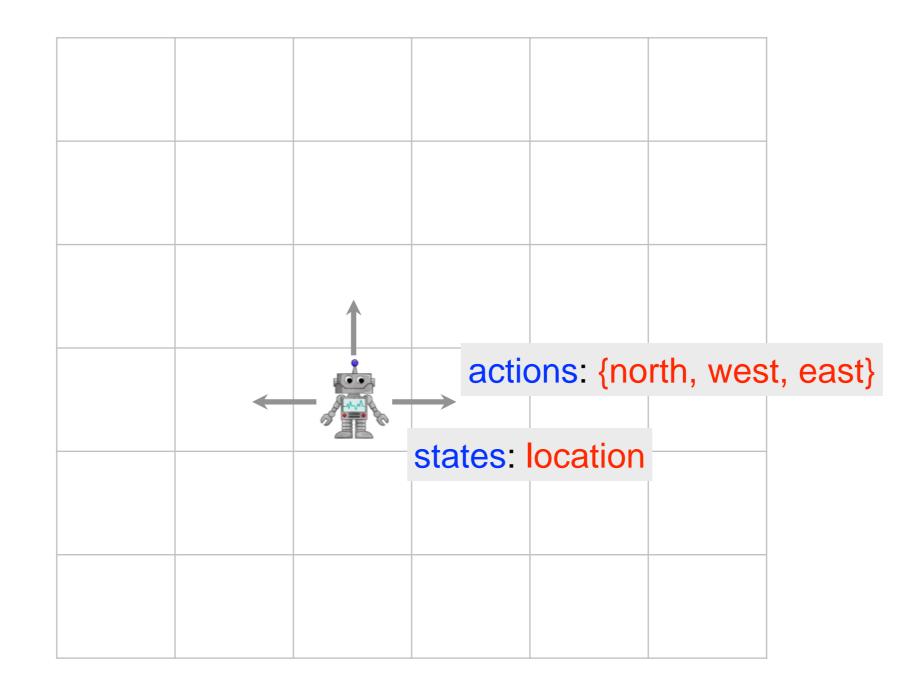
POMDPs are hard. Uncertain POMDPs are harder.

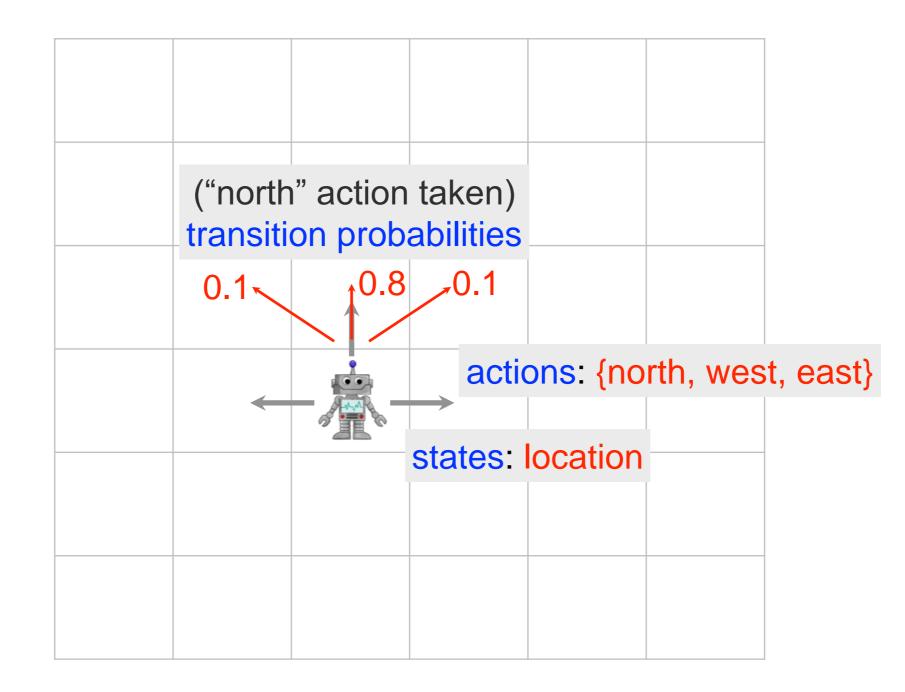
We seem to have developed an approach that scales.

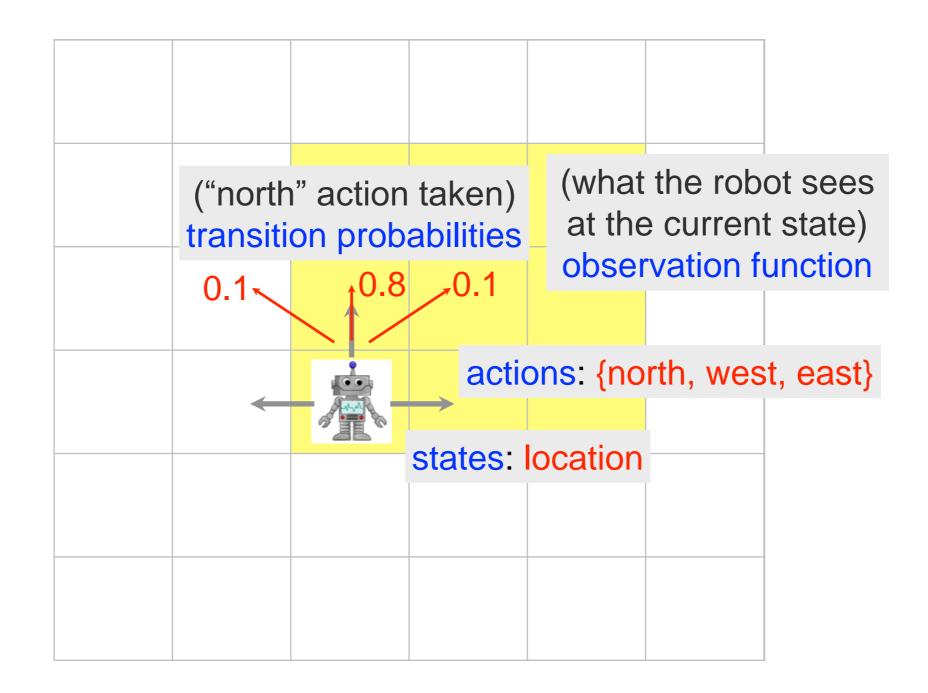
Demonstrated on spacecraft motion planning.

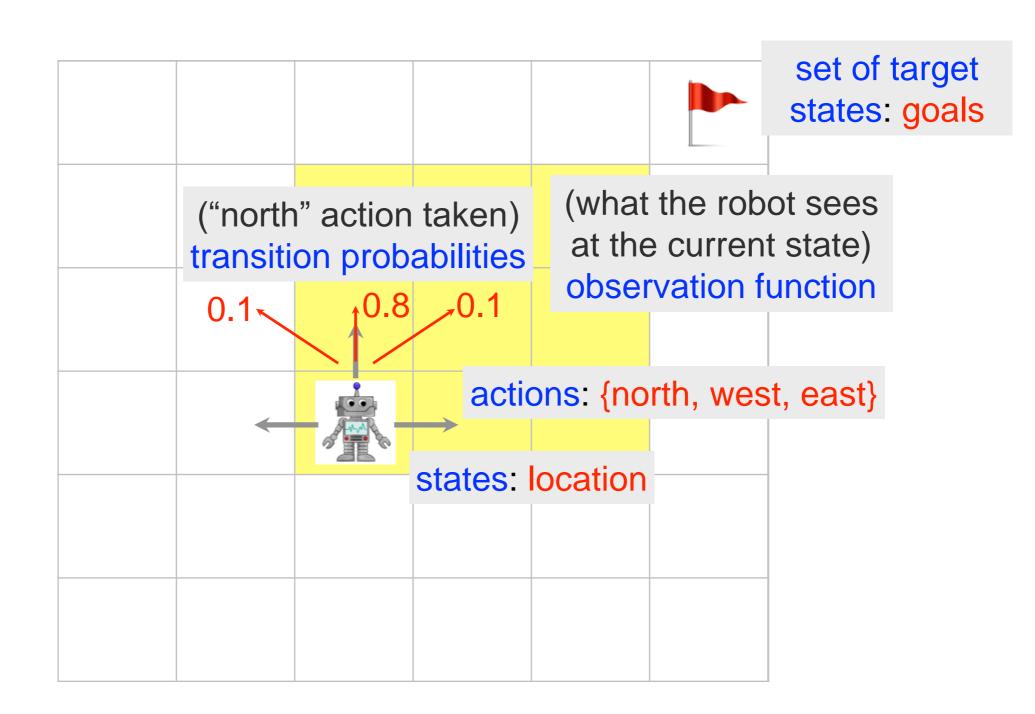


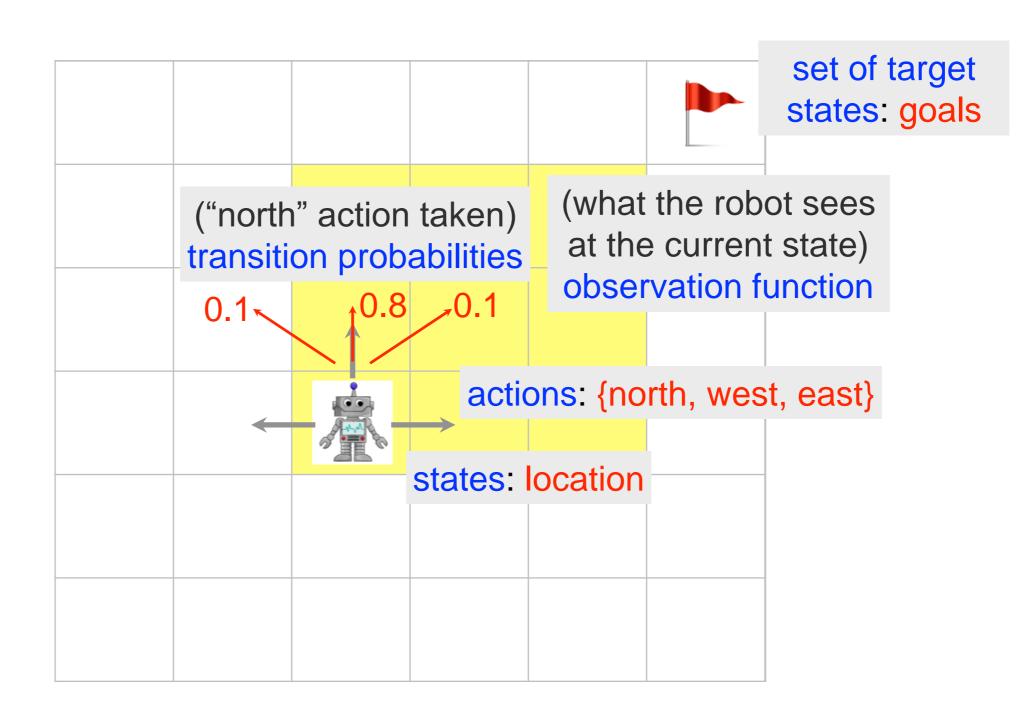
	 states: location		



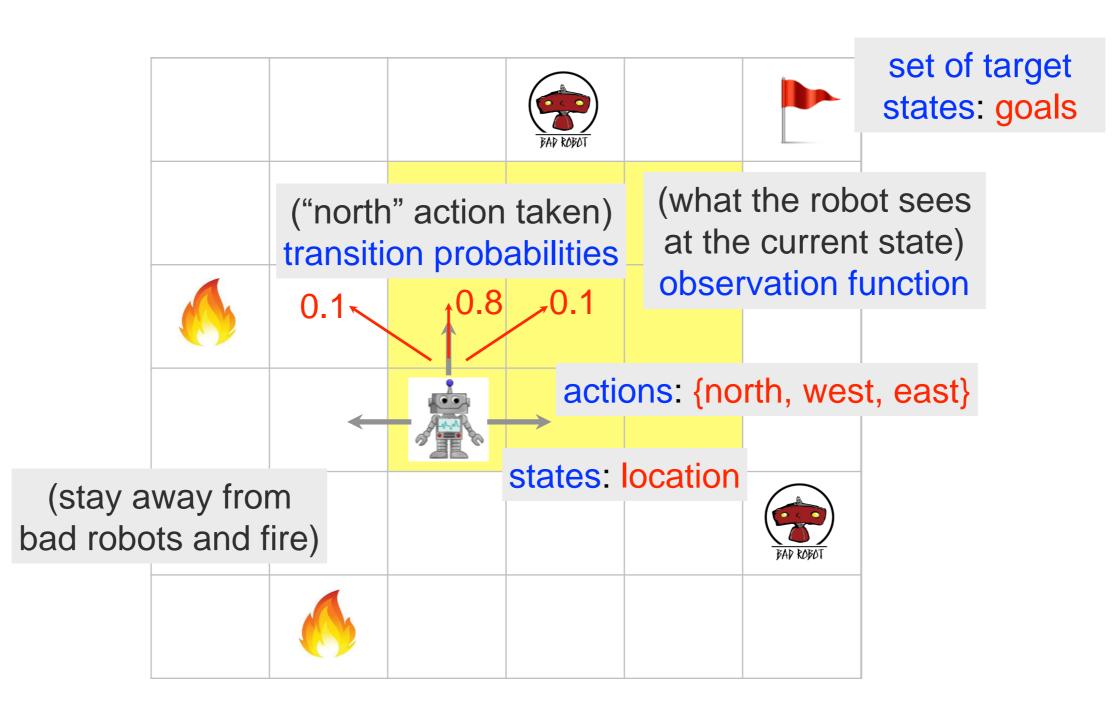






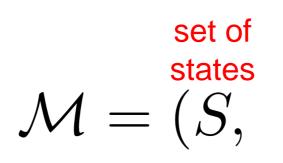


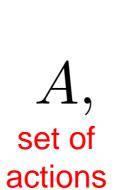
cost: use of resources

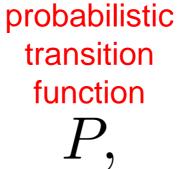


cost: use of resources

Partially Observable Markov Decision Processes

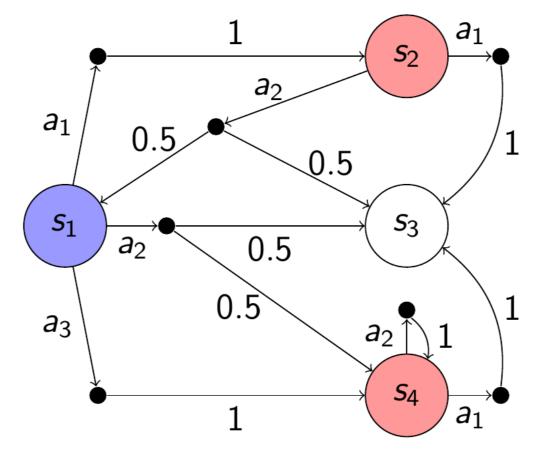






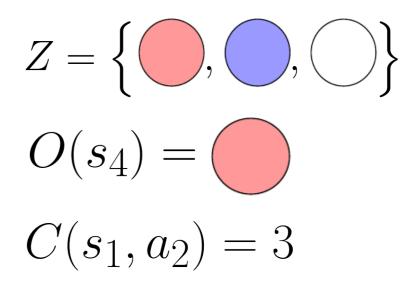
set of observations

$$S = \{s_1, s_2, s_3, s_4\}$$
$$A = \{a_1, a_2, a_3\}$$
$$P(s_2, a_2, s_1) = 0.5$$



Murat Cubuktepe

observation function

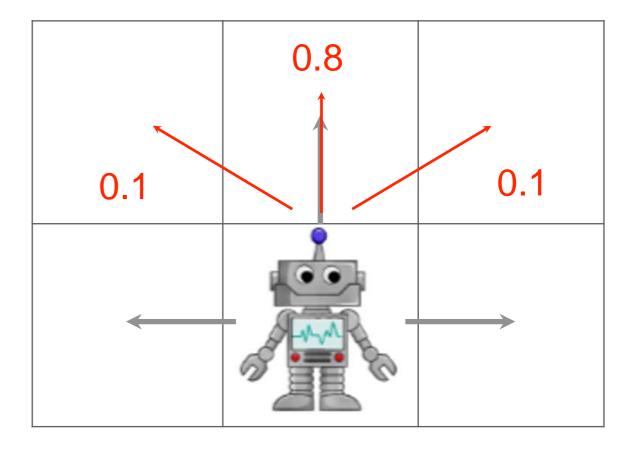


Uncertain POMDPs (uPOMDPs)

In a POMDP \mathcal{M} , transition function is assumed to be known

A uPOMDP $\mathcal{M}^{\mathcal{P}}$ extends a POMDP by allowing for probability intervals

> transition $P \in \mathcal{P}$ uncertainty function set

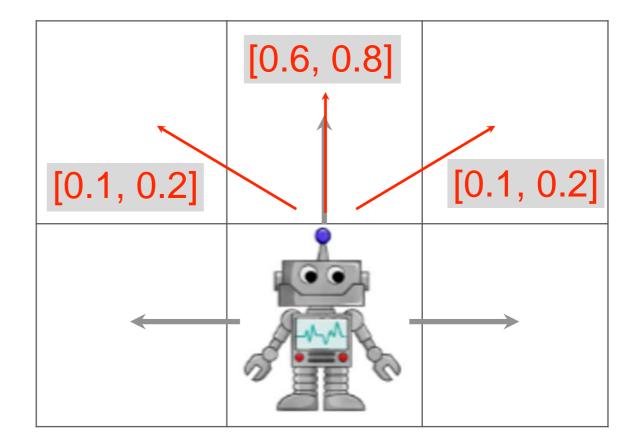


Uncertain POMDPs (uPOMDPs)

In a POMDP \mathcal{M} , transition function is assumed to be known

A uPOMDP $\mathcal{M}^{\mathcal{P}}$ extends a POMDP by allowing for probability intervals

> transition $P \in \mathcal{P}$ uncertainty function set



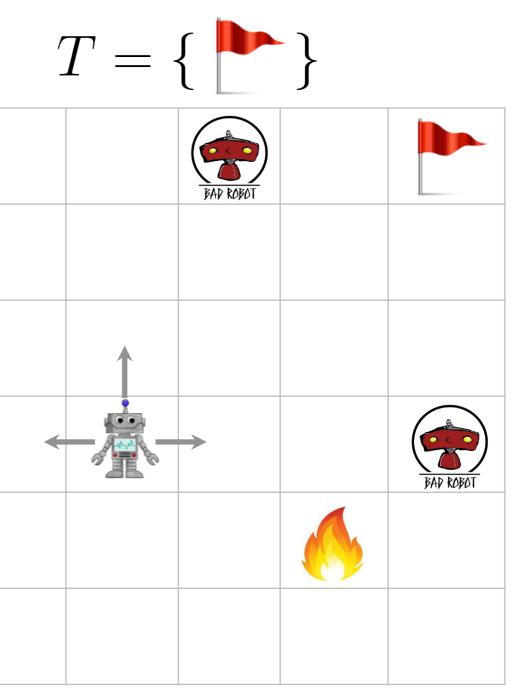
Specifications

Reachability specification

$$\varphi_{\mathbf{r}} = \mathbb{P}_{\geq \lambda}(\Diamond T)$$

the probability of reaching a state in the target set T is greater than λ

reach the flag while avoiding fire and bad robots



Specifications

Reachability specification

$$\varphi_{\mathbf{r}} = \mathbb{P}_{\geq \lambda}(\Diamond T)$$

the probability of reaching a state in the target set T is greater than λ

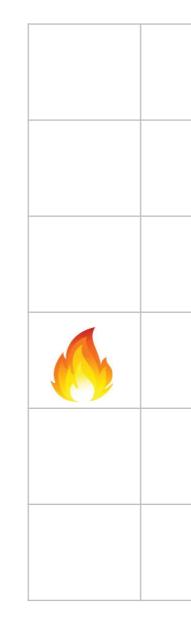
reach the flag while avoiding fire and bad robots

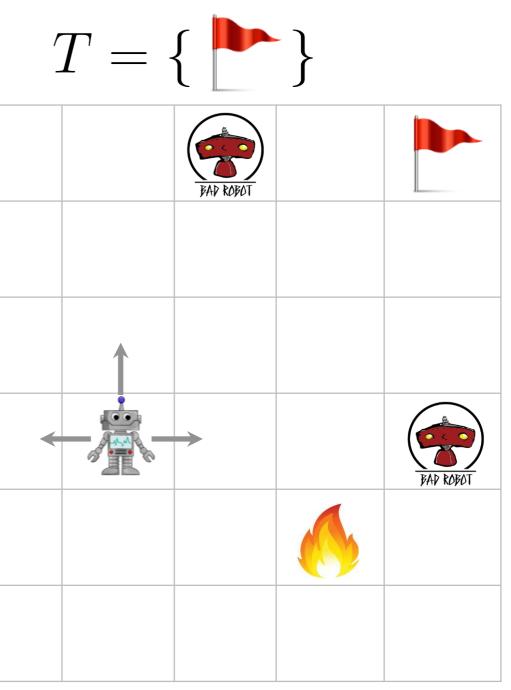
Performance specification

$$\varphi_p = \mathbb{E}_{\leq \kappa}(\Diamond T)$$

the expected accumulated reward before reaching a state in T is less than ${\cal K}$

minimize use of resources before reaching the flag





Policies

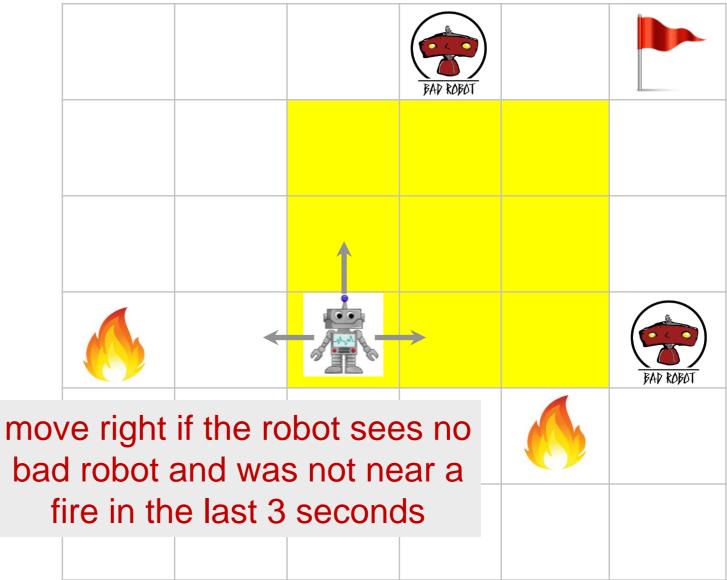
A policy σ for a uPOMDP maps sequences of observations and actions, to a distribution over actions

observations actions $\sigma: (Z \times A)^* \times Z \to Distr(A)$

memory

current observation

distribution over actions



Synthesis of Robust Policies in uPOMDPs

Given a uPOMDP $\mathcal{M}^{\mathcal{P}}$, compute a policy σ such that

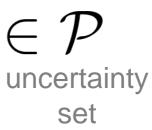
transition function

induced uncertain $\mathcal{M}_{\sigma}^{\mathcal{P}}\models \varphi$

for all $P \in \mathcal{P}$

satisfies the specification

Murat Cubuktepe



7

Policy synthesis in uPOMDPs is hard(er)

Partial observability over the state of the agent makes policy synthesis in uPOMDPs computationally hard

• **Exponential** in the number of states, actions, and observations

Policy synthesis in uPOMDPs is hard(er)

Partial observability over the state of the agent makes policy synthesis in uPOMDPs computationally hard

• **Exponential** in the number of states, actions, and observations

Undecidable (policy requires infinite memory of observations)

Undecidable even when the transition function is known

The Main Ideas

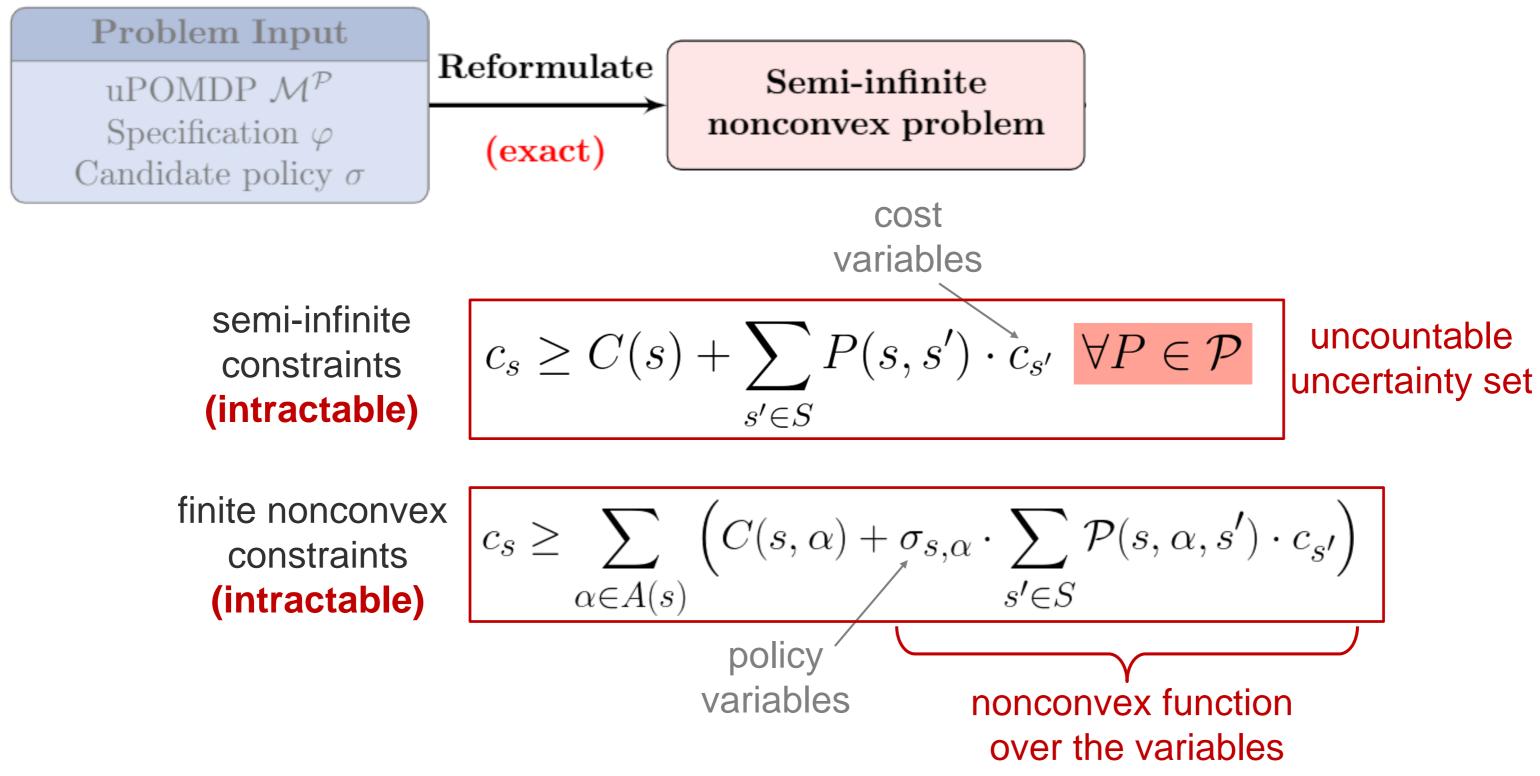
Restriction to finite-memory policies yields a decidable problem, **NP-hard** though

Dualization (of a **semi-infinite** optimization problem) yields a **finite** (yet still **nonconvex**) problem

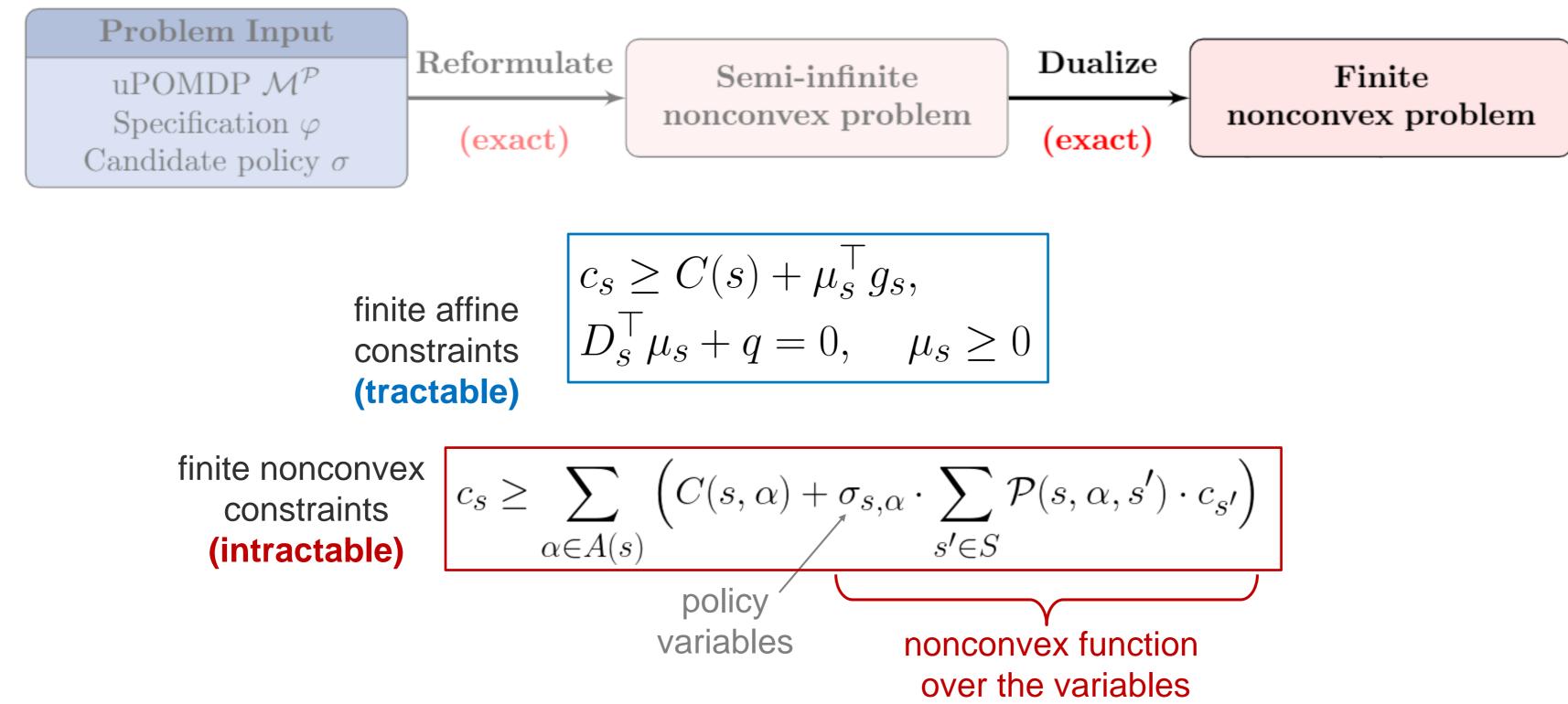
Linearization + verification yields a finite, convex problem

Problem Input

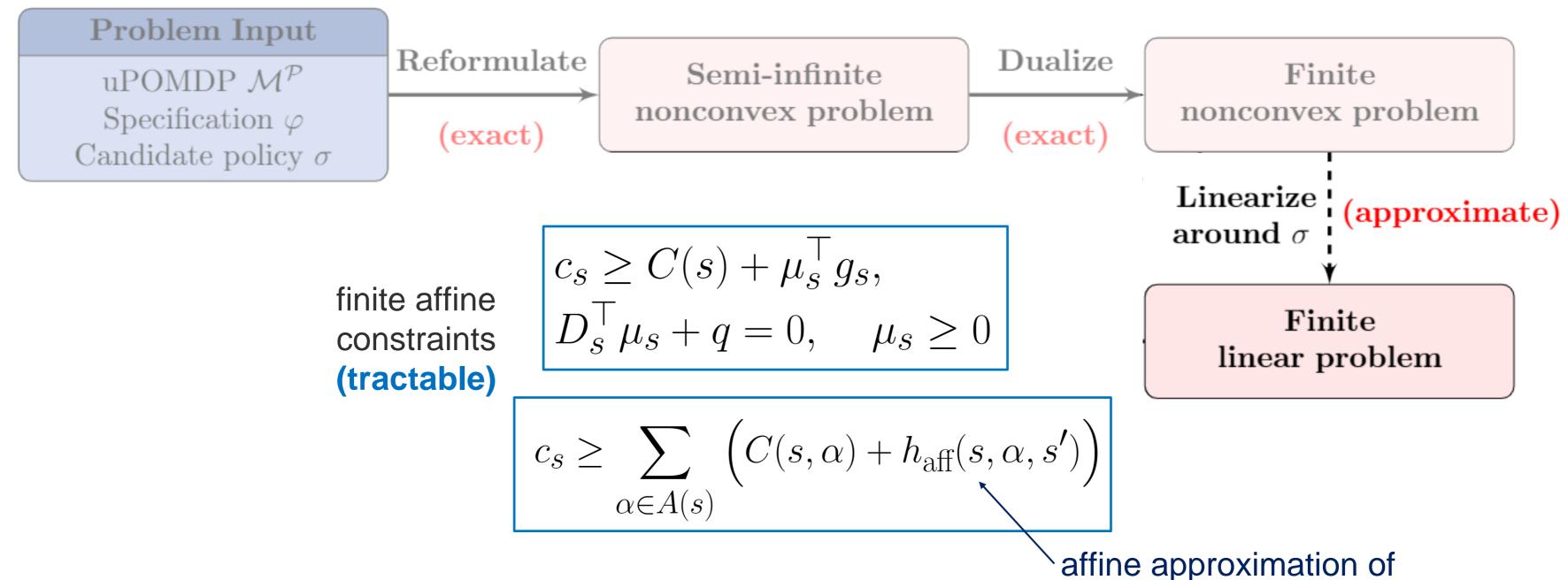
uPOMDP $\mathcal{M}^{\mathcal{P}}$ Specification φ Candidate policy σ



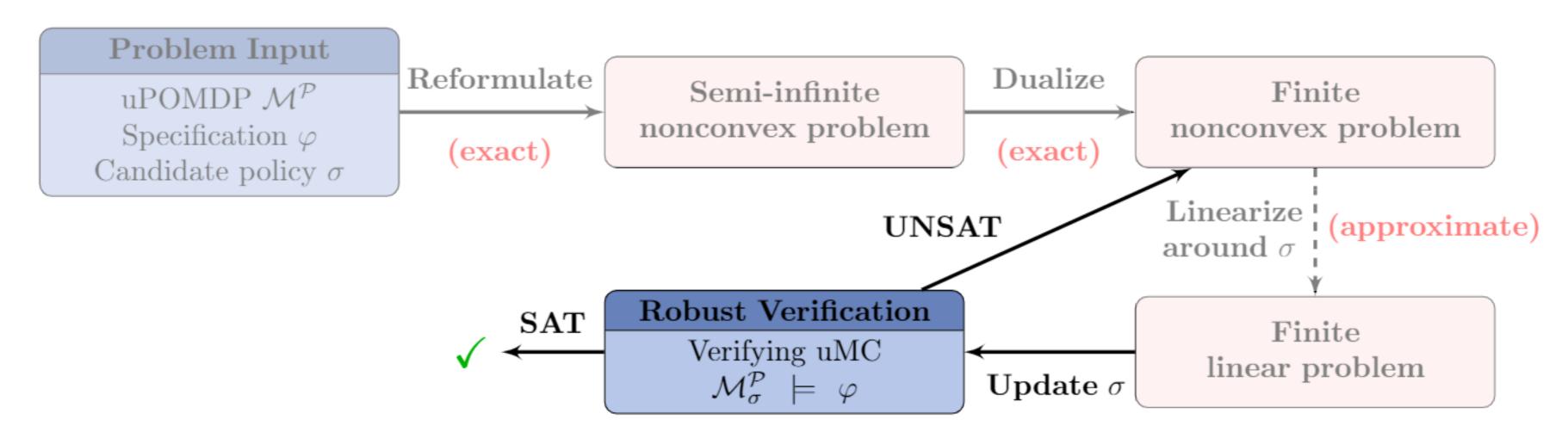
$$\alpha, s') \cdot c_{s'} \Big)$$

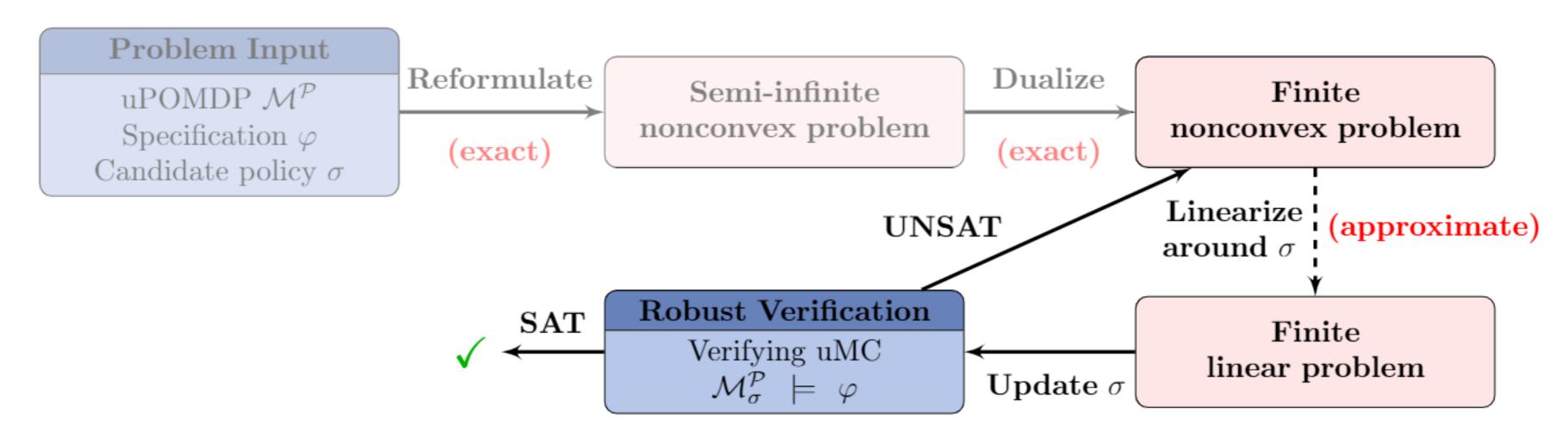


$$\alpha, s') \cdot c_{s'} \Big)$$



the nonconvex function



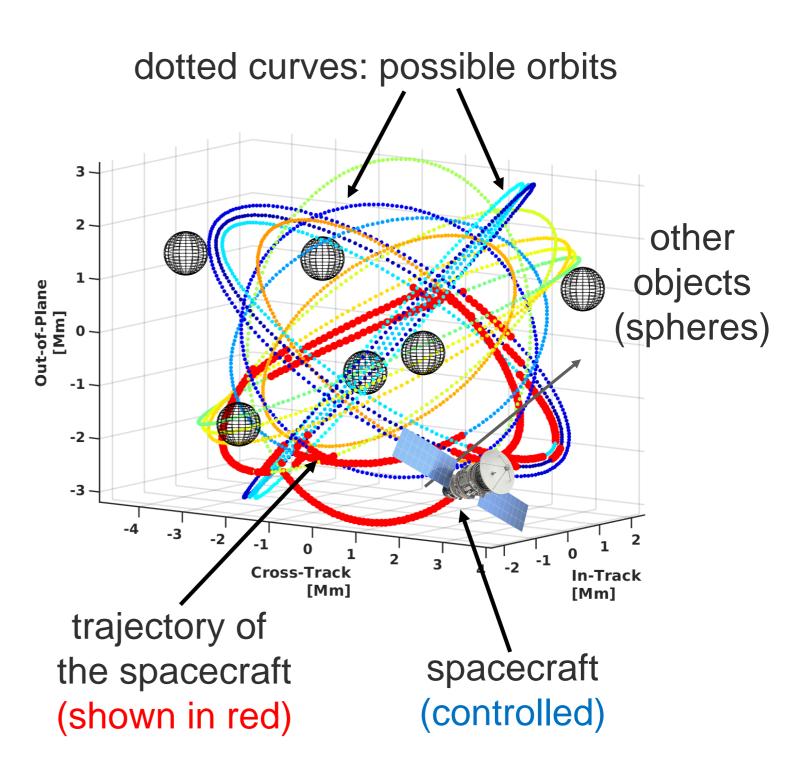


Spacecraft Motion Planning (with operator in the loop)

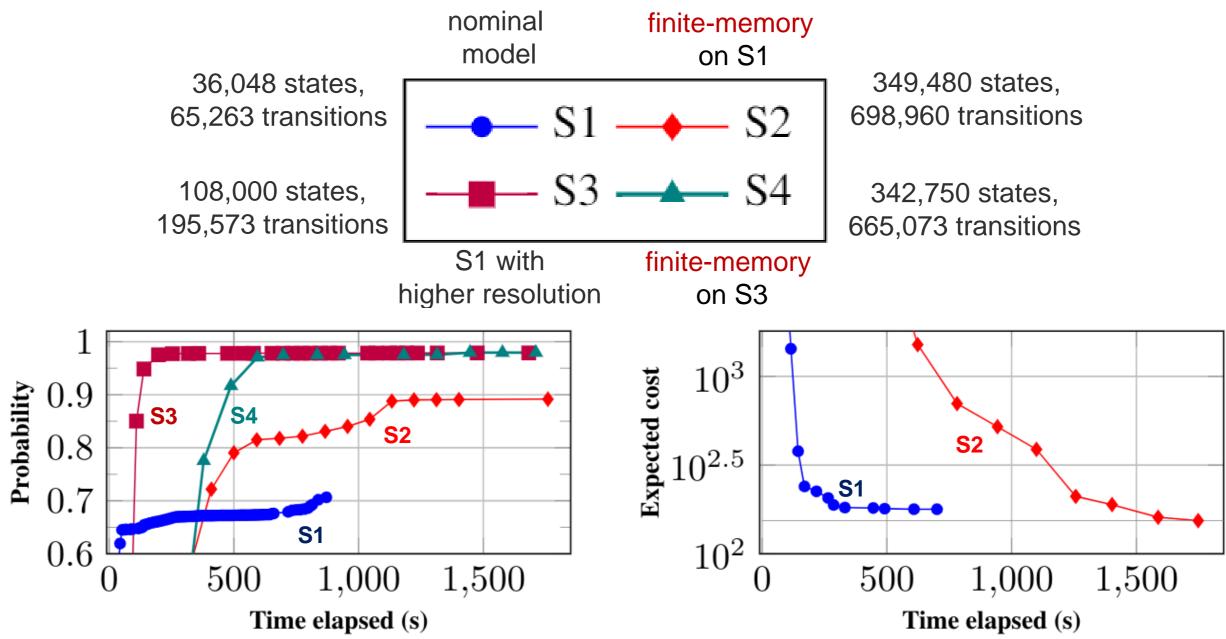
Problem:

Switching between orbits is possible if the orbits are close to each other

Partial observability over the current position of spacecraft, uncertainty on the location of other objects and operator



Results on Spacecraft Motion Planning

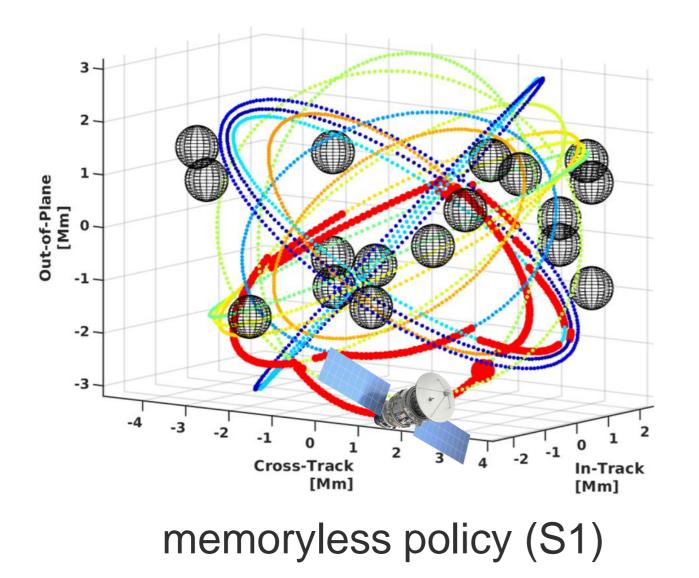


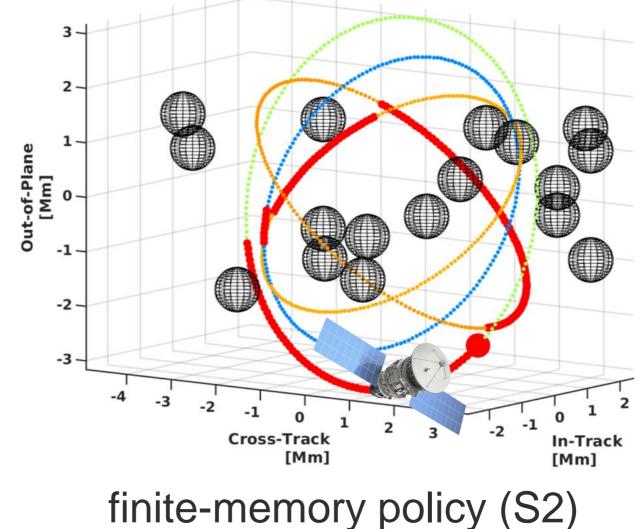
Can solve uPOMDPs with hundreds of thousands states in minutes

Models with memory take a **longer time to solve** but **yield better performance**

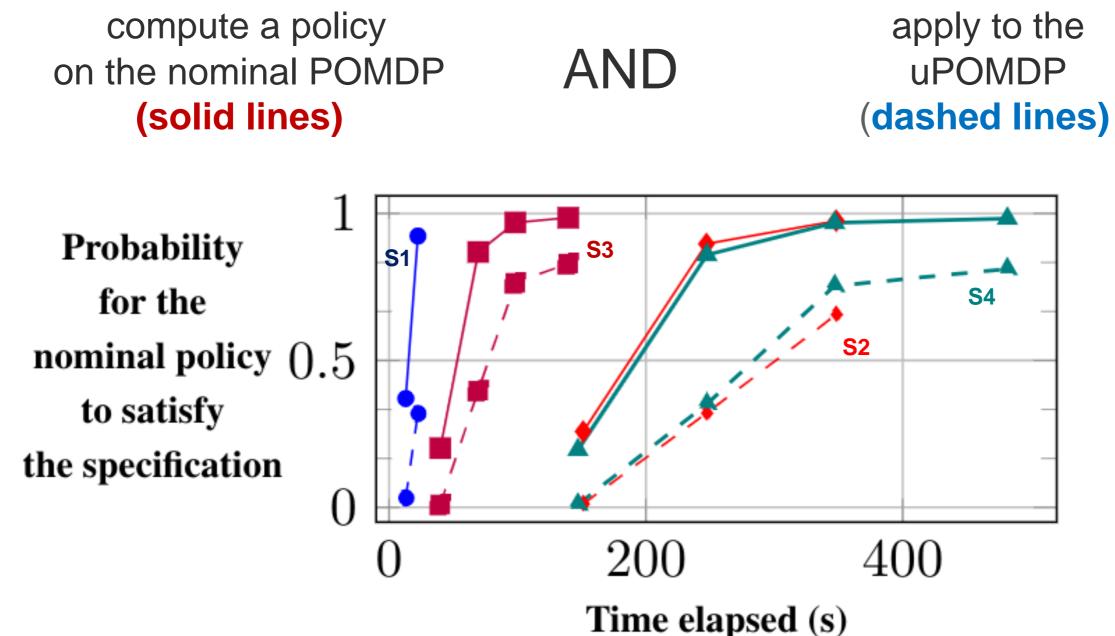
Results with Finite-Memory Policies

The memoryless policy (S1) makes more orbit changes than the policy with 5 memory nodes (S2)





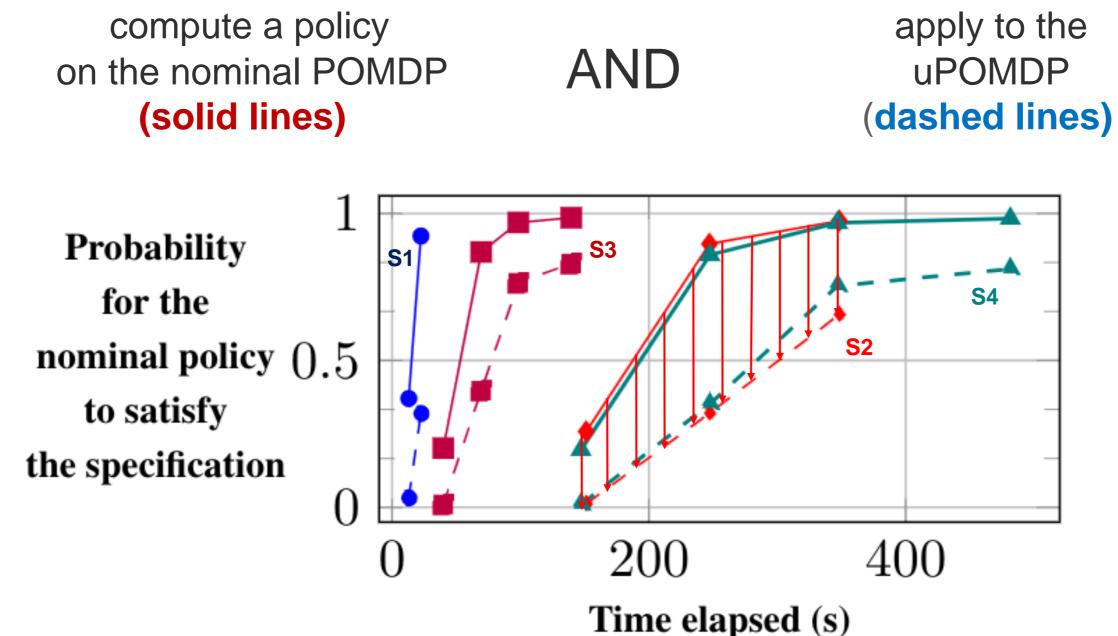
Robust Policies are Indeed More Robust



The performance of the nominal policies can reduce up to 60 percentage points under uncertainty

apply to the uPOMDP

Robust Policies are Indeed More Robust



The performance of the nominal policies can reduce up to 60 percentage points under uncertainty

apply to the uPOMDP

Conclusions and Future Work

Developed algorithms that scale to uPOMDPs that are **3 orders** of magnitude larger than previous approaches

Future work:

Uncertainty sets with correlations between different states

Incorporate these algorithms for safety in reinforcement learning