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What is in this talk?
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From POMDPs to

uncertain POMDPs.

POMDPs are hard.

Uncertain POMDPs are harder.

We seem to have developed an 

approach that scales.

Demonstrated on spacecraft 

motion planning.



POMDPs through an example
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(what the robot sees 

at the current state)

observation function

(stay away from 

bad robots and fire)

set of target 
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(“north” action taken)

transition probabilities
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Partially Observable Markov Decision Processes
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Uncertain POMDPs (uPOMDPs)

Murat Cubuktepe

In a POMDP , transition function is 

assumed to be known

A uPOMDP extends a POMDP by 

allowing for probability intervals

uncertainty 

set
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Uncertain POMDPs (uPOMDPs)
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In a POMDP , transition function is 

assumed to be known

A uPOMDP extends a POMDP by 

allowing for probability intervals

uncertainty 

set
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Specifications
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Reachability specification

the probability of reaching a state 

in the target set is greater than

reach the flag

while avoiding fire 

and bad robots
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Specifications
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the expected accumulated reward 

before reaching a state in is 

less than

Performance specification

minimize use of 

resources before 

reaching the flag
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Policies
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A policy      for a uPOMDP maps 

sequences of observations and 

actions, to a distribution over actions

observations actions

current

observation
memory

distribution

over actions
move right if the robot sees no 

bad robot and was not near a 

fire in the last 3 seconds
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Synthesis of Robust Policies in uPOMDPs
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Given a uPOMDP , compute a policy such that

for all

satisfies the 

specification

induced uncertain

Markov chain (uMC)
uncertainty 

set

transition

function
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Policy synthesis in uPOMDPs is hard(er)
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Partial observability over the state of the agent makes 

policy synthesis in uPOMDPs computationally hard

• Exponential in the number of states, actions, and observations
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Policy synthesis in uPOMDPs is hard(er)
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Partial observability over the state of the agent makes 

policy synthesis in uPOMDPs computationally hard

• Exponential in the number of states, actions, and observations

Undecidable (policy requires infinite memory of observations)

Undecidable even when the transition function is known
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The Main Ideas
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Restriction to finite-memory policies

yields a decidable problem, NP-hard though

Dualization (of a semi-infinite optimization problem)

yields a finite (yet still nonconvex) problem

Linearization + verification

yields a finite, convex problem
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policy 
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semi-infinite
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nonconvex function
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finite nonconvex
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(intractable)

cost
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Overview of the Algorithm

policy 

variables

finite nonconvex

constraints

(intractable)

nonconvex function

over the variables

finite affine

constraints

(tractable)
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affine approximation of 

the nonconvex function

10

Overview of the Algorithm

finite affine

constraints

(tractable)
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Overview of the Algorithm
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Spacecraft Motion Planning (with operator in the loop)

Problem:
Switching between orbits is possible if the orbits 

are close to each other​

Partial observability over the current position of 

spacecraft​, uncertainty on the location of other 

objects and operator
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trajectory of

the spacecraft

(shown in red)

dotted curves: possible orbits

other 

objects

(spheres)

spacecraft

(controlled)

operator
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Results on Spacecraft Motion Planning
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36,048 states,

65,263 transitions

108,000 states,

195,573 transitions

349,480 states,

698,960 transitions

342,750 states,

665,073 transitions

nominal

model
finite-memory

on S1

finite-memory

on S3

S1 with

higher resolution 

S1

S3
S2

S4

S1

S2

Can solve uPOMDPs with hundreds of thousands states in minutes

Models with memory take a longer time to solve but yield better performance
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Results with Finite-Memory Policies

The memoryless policy (S1) makes more orbit 

changes than the policy with 5 memory nodes (S2)

memoryless policy (S1) finite-memory policy (S2)
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Robust Policies are Indeed More Robust

compute a policy apply to the

on the nominal POMDP uPOMDP

(solid lines) (dashed lines)
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AND

The performance of the nominal policies can reduce 

up to 60 percentage points under uncertainty

S1 S3

S2

S4
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Conclusions and Future Work
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Developed algorithms that scale to uPOMDPs that are 3 orders 

of magnitude larger than previous approaches

Future work:

Uncertainty sets with correlations between different states

Incorporate these algorithms for safety in reinforcement learning


