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Outline

• Defined a notion of control barrier function (CBF) 
amenable to problems involving multiple CBFs
• CBFs guarantee the existence of safety-ensuring 

controllers

• Developed a constructive method for synthesizing 
safety-ensuring controllers using optimization
• Sufficient conditions for continuity of the optimal 

controller

• Used sum of squares programming to certify the 
feasibility of the optimal control law
• Corresponds to verifying that a function is a CBF



Control Objective

• Design a controller so that 

is forward invariant, where

• Safe set described by multiple continuously differentiable 

functions
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Control Barrier Functions

• A CBF candidate                          defining the set            
is a CBF for              and     on a set                       with 
respect to a function                                if  

1. There exists a neighborhood of the boundary of     such 
that

2. For each                              for all 

3. is nonempty for all  



• Forward pre-invariance is attained using continuous 
selections

• Under mild conditions, such selections render 

forward pre-invariant

Forward (pre-)Invariance



Optimal Safety-Ensuring Selections



• Given the previous assumptions, assume additionally 
that

1. The cost function     is continuous and, for each

is strictly convex.

2. The following set is nonempty for every

3. Either      is level-bounded in 𝑢, locally uniformly in 𝑥,     
or     is locally bounded.

• Then      is continuous

Optimal Safety-Ensuring Selections



• Everything looks good provided the feasible set             
is nonempty… 

• Verifying feasibility is the same as asking if we have a 
CBF

• Consider

where 𝐴 and 𝑏 are polynomials.

• Can verify nonemptiness using sum of squares

Feasibility Verification with Sum of Squares



Feasibility Verification with Sum of Squares

• We have found

• However, global feasibility will often not be possible.

• We also develop a program for verifying feasibility on sublevel sets



Verification of CBF

• Recall, a CBF candidate                          defining the 
set                       is a CBF for              and     on a set 
with respect to a function                                if  

1. There exists a neighborhood of the boundary of     such 
that

2. For each                              for all

3.             

is nonempty for all  



• Assume there exists polynomials 𝐴, 𝑏 such that

• If Problem 2 has a solution, then       is nonempty on  

and 𝐵 is a CBF

• And if                   is nonempty on 

Verification of CBF
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Outline of Recent Results

1. Estimation
◮ Finite-time Parameter Estimation via Hybrid Methods

ACC 21a, ACC 21b, ACC 21c + CoE collab

◮ Observers for Hybrid Systems
CDC 21a, CDC 21b, Automatica

2. Safety

◮ Safety Certificates, with Optimality
ACC 22a, ACC 22b (submitted), TAC 20 + CoE collab

◮ Applications of Safety
ACC 22c (submitted), Frontiers in AI + CoE collab

3. Optimization
◮ High Performance and Distributed Optimization

ACC 21d, CDC 21c + CoE collab + AFRL/RV collab.

◮ Model Predictive Control for Hybrid Systems
CDC 21d, CPSWeek 21 Workshop, CPSWeek 21 + AFRL collab
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ẋ = f(x) x ∈ X ⊂ R
n

and the sets

Xo ⊂ X the initial set,
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Basic Setting

Consider the system

ẋ = f(x) x ∈ X ⊂ R
n

and the sets

Xo ⊂ X the initial set,

Xu ⊂ X\Xo the unsafe set.

Safety with respect to (Xo,Xu) ⇔ reach(Xo) ∩Xu = ∅

reach(Xo) := {x ∈ R
n : x = φ(t;xo),with φ a solution from xo ∈ Xo

and t ∈ domφ} ← the infinite reach set

A solution to ẋ = f(x) is denoted t 7→ φ(t), and when starts at xo as t 7→ φ(t; xo)
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function B satisfy

B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo



Sufficient Conditions for Safety when X = R
n

Consider X = R
n and let the

function B satisfy

B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo

and
the set Ke is “forward invariant” for ẋ = f(x)
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Sufficient Conditions for Safety when X = R
n

Consider X = R
n and let the

function B satisfy

B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo

and
the set Ke is “forward invariant” for ẋ = f(x)

where
Ke := {x ∈ R

n : B(x) ≤ 0} ← the zero-sublevel set of B

It follows that the system ẋ = f(x) is safe w.r.t. (Xo,Xu)



Questions Driving Research Agenda

These observations motivate the following questions:

◮ How to guarantee the monotonicity condition

t 7→ B(φ(t;xo)) is nonincreasing
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Questions Driving Research Agenda

These observations motivate the following questions:

◮ How to guarantee the monotonicity condition

t 7→ B(φ(t;xo)) is nonincreasing

and

the set Ke is “forward invariant” for ẋ = f(x)

without checking/computing every solution?
◮ How to deal with nonuniqueness, finite escape time, and

solutions ending prematurely?

◮ What are necessary conditions for safety (and invariance)?
◮ How regular should one expect a barrier function to be?... for dynamical systems given by

H

{

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
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Basic Definitions

◮ When B is continuously differentiable, our sufficient
conditions take the form

〈∇B(x), F (x)〉 ≤ 0

Note that since invariance should just guarantee trajectories
do not leave a set, we should only be asking that this condi-
tion holds on the boundary or a neighborhood of the set.

Hence, we require

〈∇B(x), f(x)〉 ≤ 0 ∀x ∈ (U(∂Ke)\Ke)

where U(∂Ke) is a neighborhood of Ke, so (U(∂Ke)\Ke) are
points outside right outside Ke!
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Basic Definitions

◮ When B is nonsmooth, then we use the generalized derivative
of a function:
◮ When B is locally Lipschitz, we replace the gradient

∇B

by the generalized gradient in the sense of Clarke

∂CB

◮ When B is lower semicontinuous, we replace the gradient

∇B

by the proximal subdifferential

∂pB

Nonsmooth barrier certificates naturally emerge in applications,
in particular, in obstacle avoidance problems where the unsafe
set is typically given by the intersection of half spaces.


