On the Feasibility and Continuity of Feedback Controllers Defined by Multiple Control Barrier Functions

Axton Isaly, Masoumeh Ghanbarpour, Ricardo G. Sanfelice, Warren E. Dixon

- Defined a notion of control barrier function (CBF) amenable to problems involving multiple CBFs
 - CBFs guarantee the existence of safety-ensuring controllers
- Developed a constructive method for synthesizing safety-ensuring controllers using optimization
 - Sufficient conditions for continuity of the optimal controller
- Used sum of squares programming to certify the feasibility of the optimal control law
 - Corresponds to verifying that a function is a CBF

• Design a controller so that

$$\mathcal{S} \triangleq \{ x \in \Pi \left(C_u \right) : B \left(x \right) \le 0 \}$$

is forward invariant, where

$$B(x) \triangleq \left[B_1(x), B_2(x), \dots, B_d(x)\right]^T$$

• Safe set described by multiple continuously differentiable functions

$$\dot{x} \in F(x,u)$$
 $(x,u) \in C_u$

 $\Psi(x) \triangleq \{ u \in \mathbb{R}^m : (x, u) \in C_u \} \qquad \Pi(C_u) \triangleq \{ x \in \mathbb{R}^n : \exists u \in \mathbb{R}^m \ s.t. \ (x, u) \in C_u \}$

Flow Constraints

$$\dot{x} \in F(x, u)$$
 $(x, u) \in C_u$

 $\Psi\left(x\right) \triangleq \left\{u \in \mathbb{R}^{m} : (x, u) \in C_{u}\right\} \qquad \Pi\left(C_{u}\right) \triangleq \left\{x \in \mathbb{R}^{n} : \exists u \in \mathbb{R}^{m} \ s.t. \ (x, u) \in C_{u}\right\}$

- A CBF candidate $B : \mathbb{R}^n \to \mathbb{R}^d$ defining the set $S \subset \Pi(C_u)$ is a CBF for (F, C_u) and S on a set $\mathcal{O} \subset \Pi(C_u)$ with respect to a function $\gamma : \Pi(C_u) \to \mathbb{R}^d$ if
 - 1. There exists a neighborhood of the boundary of S such that $U(\partial S) \cap \Pi(C_u) \subset O$
 - **2.** For each $i \in [d]$, $\gamma_i(x) \ge 0$ for all $x \in (U(M_i) \setminus S_i) \cap \Pi(C_u)$
 - 3. $K_{c}(x)$ is nonempty for all $x \in \mathcal{O}$

$$K_{c}(x) \triangleq \{ u \in \Psi(x) : \Gamma_{i}(x, u) \leq -\gamma_{i}(x), \forall i \in [d] \}$$

$$\Gamma_{i}(x,u) \triangleq \sup_{f \in F(x,u)} \langle \nabla B_{i}(x), f \rangle$$

$$M_{i} \triangleq \{ x \in \partial \mathcal{S} : B_{i}(x) = 0 \}$$

• Forward pre-invariance is attained using continuous selections

$$\kappa(x) \in K_c(x) \quad \forall x \in \mathcal{O}$$

 $\dot{x} \in F(x,\kappa(x)) \triangleq F_{cl}(x)$

• Under mild conditions, such selections render

$$\mathcal{S} \triangleq \{ x \in \Pi \left(C_u \right) : B \left(x \right) \le 0 \}$$

forward pre-invariant

Optimal Safety-Ensuring Selections

$$\Psi\left(x\right) = \left\{u \in \mathbb{R}^{m} : \psi\left(x, u\right) \le 0\right\}$$

$$\kappa^{*}(x) \triangleq \underset{u \in \mathbb{R}^{m}}{\arg \min} Q(x, u)$$

$$s.t. \ \Gamma(x, u) \leq -\gamma(x) \qquad \underset{u \in K_{c}(x)}{\arg \min} Q(x, u)$$

$$\psi(x, u) \leq 0$$

Assumption 5. For every $i \in [d]$ and $j \in [k]$, A) For all $x \in \mathcal{O}$, the functions $u \mapsto \Gamma_i(x, u)$ and $u \mapsto \psi_j(x, u)$ are convex on $\Psi(x)$. B) The functions $(x, u) \mapsto \Gamma_i(x, u) + \gamma_i(x)$ and $(x, u) \mapsto \psi_j(x, u)$ are continuous on $C_u \cap (\mathcal{O} \times \mathbb{R}^m)$ and $\mathcal{O} \times \mathbb{R}^m$, respectively.

- Given the previous assumptions, assume additionally that
 - 1. The cost function Q is continuous and, for each $x \in \mathcal{O}$, $u \mapsto Q(x, u)$ is strictly convex.
 - 2. The following set is nonempty for every $x \in \mathcal{O}$

$$K_{c}^{\circ}\left(x\right) \triangleq \left\{ \begin{array}{c} u \in \mathbb{R}^{m} : \Gamma\left(x, u\right) < -\gamma\left(x\right) \\ \psi\left(x, u\right) < 0 \end{array} \right\}$$

- 3. Either Q is level-bounded in u, locally uniformly in x, or Ψ is locally bounded.
- Then κ^* is continuous

- Everything looks good provided the feasible set $K_c(x)$ is nonempty...
- Verifying feasibility is the same as asking if we have a CBF
- Consider

$$K(x) \triangleq \{ u \in \mathbb{R}^m : A(x) \, u + b(x) \le 0 \}$$

where *A* and *b* are polynomials.

• Can verify nonemptiness using sum of squares

$$K(x) \triangleq \{ u \in \mathbb{R}^m : A(x) \, u + b(x) \le 0 \}$$

Problem 1. (Global Feasibility) Given polynomials $A \in \mathcal{P}^{n_c \times m}[x]$ and $b \in \mathcal{P}^{n_c}[x]$, find a constant $\epsilon \ge 0$ and a polynomial $u \in \mathcal{P}^m[x]$ such that, for all $i \in [n_c]$,

$$-A_{i*}(x) u(x) - b_i(x) - \epsilon \in \Sigma[x],$$

where $A_{i*}(x)$ denotes that *i*-th row of A(x). The parameter ϵ could either be a fixed value or a decision variable. If $\epsilon > 0$, then $K^{\circ}(x) \triangleq \{u \in \mathbb{R}^m : A(x)u + b(x) < 0\}$ is nonempty.

• We have found

$$u(x) \in K(x), \quad \forall x \in \mathbb{R}^n$$

- However, global feasibility will often not be possible.
- We also develop a program for verifying feasibility on sublevel sets

$$\mathcal{L}_{\tilde{B}}\left(\beta\right) \triangleq \left\{ x \in \mathbb{R}^{n} : \tilde{B}\left(x\right) \le \beta \right\}$$

- Recall, a CBF candidate $B : \mathbb{R}^n \to \mathbb{R}^d$ defining the set $S \subset \Pi(C_u)$ is a CBF for (F, C_u) and S on a set $\mathcal{L}_{\tilde{B}}(\beta)$ with respect to a function $\gamma : \Pi(C_u) \to \mathbb{R}^d$ if
 - 1. There exists a neighborhood of the boundary of S such that $U(\partial S) \cap \Pi(C_u) \subset \mathcal{L}_{\tilde{B}}(\beta)$
 - **2.** For each $i \in [d]$, $\gamma_i(x) \ge 0$ for all $x \in (U(M_i) \setminus S_i) \cap \Pi(C_u)$

3.
$$K_{c}(x) \triangleq \left\{ \begin{array}{c} u \in \mathbb{R}^{m} : \Gamma(x, u) \leq -\gamma(x) \\ \psi(x, u) \leq 0 \end{array} \right\}$$

is nonempty for all $x \in \mathcal{L}_{\tilde{B}}(\beta)$

Verification of CBF

Problem 2. (Feasibility on Level Sets) Given $A \in \mathcal{P}^{n_c \times m}[x]$, $b \in \mathcal{P}^{n_c}[x]$, $\tilde{B} \in \mathcal{P}^{n_b}[x]$, and $\beta \in \mathbb{R}$, find polynomials $u \in \mathcal{P}^m[x]$, $s_0, s_1, \ldots, s_{n_b} \in \Sigma[x]$, and a constant $\epsilon \ge 0$ such that, for all $i \in [n_c]$,

$$-A_{i*}(x) u(x) - b_i(x) - \epsilon$$

$$-s_0(x) - \sum_{j=1}^{n_b} s_j(x) \left(\beta - \tilde{B}_j(x)\right) \in \Sigma[x].$$
(11)

• Assume there exists polynomials *A*, *b* such that

$$A(x) u + b(x) \ge (\Gamma(x, u) + \gamma(x), \psi(x, u)) \quad \forall (x, u) \in C_u$$

- If Problem 2 has a solution, then K_c is nonempty on $\mathcal{L}_{\tilde{B}}(\beta) \cap \Pi(C_u)$ and B is a CBF
- And if $\epsilon > 0, K_c^{\circ}$ is nonempty on $\mathcal{L}_{\tilde{B}}(\beta) \cap \Pi(C_u)$

Adaptive Safety for Hybrid Systems

Ricardo Sanfelice Department Electrical and Computer Engineering University of California

Duke

CoE Review @ Zoom - November 9, 2021

Outline of Recent Results

1. Estimation

Finite-time Parameter Estimation via Hybrid Methods

ACC 21a, ACC 21b, ACC 21c + CoE collab

Observers for Hybrid Systems

CDC 21a, CDC 21b, Automatica

2. Safety

Safety Certificates, with Optimality

ACC 22a, ACC 22b (submitted), TAC 20 + CoE collab

Applications of Safety

ACC 22c (submitted), Frontiers in AI + CoE collab

3. Optimization

High Performance and Distributed Optimization

ACC 21d, CDC 21c + CoE collab + AFRL/RV collab.

Model Predictive Control for Hybrid Systems CDC 21d, CPSWeek 21 Workshop, CPSWeek 21 + AFRL collab

Basic Setting

Consider the system

 $\dot{x} = f(x) \qquad x \in X \subset \mathbb{R}^n$

and the sets

$$\label{eq:Xo} \begin{split} X_o \subset X \text{ the initial set}, \\ X_u \subset X \backslash X_o \text{ the unsafe set}. \end{split}$$

Basic Setting

Consider the system

 $\dot{x} = f(x) \qquad x \in X \subset \mathbb{R}^n$

and the sets

$$\begin{split} X_o \subset X \text{ the initial set}, \\ X_u \subset X \backslash X_o \text{ the unsafe set}. \end{split}$$

Safety with respect to
$$(X_o, X_u) \quad \Leftrightarrow \quad \operatorname{reach}(X_o) \cap X_u = \emptyset$$

 $\operatorname{reach}(X_o) := \{ x \in \mathbb{R}^n : x = \phi(t; x_o), \text{with } \phi \text{ a solution from } x_o \in X_o \\ \text{and } t \in \operatorname{dom} \phi \} \quad \leftarrow \quad \text{the infinite reach set} \end{cases}$

A solution to $\dot{x} = f(x)$ is denoted $t \mapsto \phi(t)$, and when starts at x_o as $t \mapsto \phi(t; x_o)$

Sufficient Conditions for Safety when $X = \mathbb{R}^n$

Consider $X = \mathbb{R}^n$ and let the function B satisfy

 $B(x) > 0 \qquad \forall x \in X_u \\ B(x) \le 0 \qquad \forall x \in X_o$

Sufficient Conditions for Safety when $X = \mathbb{R}^n$

Consider $X = \mathbb{R}^n$ and let the function B satisfy

 $B(x) > 0 \qquad \forall x \in X_u \\ B(x) \le 0 \qquad \forall x \in X_o$

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$

where

 $K_e := \{ x \in \mathbb{R}^n : B(x) \leq 0 \} \qquad \leftarrow \quad \text{the zero-sublevel set of } B$

Sufficient Conditions for Safety when $X = \mathbb{R}^n$

Consider $X = \mathbb{R}^n$ and let the function B satisfy

 $B(x) > 0 \qquad \forall x \in X_u$ $B(x) \le 0 \qquad \forall x \in X_o$

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$

where

 $K_e := \{ x \in \mathbb{R}^n : B(x) \leq 0 \} \qquad \leftarrow \quad \text{the zero-sublevel set of } B$

It follows that the system $\dot{x} = f(x)$ is safe w.r.t. (X_o, X_u)

How to guarantee the monotonicity condition

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$ without checking/computing every solution?

How to guarantee the monotonicity condition

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$ without checking/computing every solution?

What are necessary conditions for safety (and invariance)?

How to guarantee the monotonicity condition

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$

without checking/computing every solution?

How to deal with nonuniqueness, finite escape time, and solutions ending prematurely?

▶ What are necessary conditions for safety (and invariance)?

How regular should one expect a barrier function to be?

How to guarantee the monotonicity condition

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$

without checking/computing every solution?

How to deal with nonuniqueness, finite escape time, and solutions ending prematurely?

What are necessary conditions for safety (and invariance)?

... for dynamical systems given by

$$\dot{x} = F(x)$$

How to guarantee the monotonicity condition

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$

without checking/computing every solution?

- How to deal with nonuniqueness, finite escape time, and solutions ending prematurely?
- What are necessary conditions for safety (and invariance)?

... for dynamical systems given by

 $\dot{x} \in F(x)$

How to guarantee the monotonicity condition

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$

without checking/computing every solution?

- How to deal with nonuniqueness, finite escape time, and solutions ending prematurely?
- What are necessary conditions for safety (and invariance)?

... for dynamical systems given by

 $\dot{x} \in F(x)$ $x \in C$

How to guarantee the monotonicity condition

 $t \mapsto B(\phi(t; x_o))$ is nonincreasing

and

the set K_e is "forward invariant" for $\dot{x} = f(x)$

without checking/computing every solution?

- How to deal with nonuniqueness, finite escape time, and solutions ending prematurely?
- What are necessary conditions for safety (and invariance)?

 \ldots for dynamical systems given by

$$\mathcal{H} \quad \left\{ egin{array}{ccc} \dot{x} &\in& F(x) & x \in C \ x^+ &\in& G(x) & x \in D \end{array}
ight.$$

► When *B* is continuously differentiable, our sufficient conditions take the form

 $\langle \nabla B(x), F(x) \rangle \leq 0$

When B is continuously differentiable, our sufficient conditions take the form

$$\langle \nabla B(x), F(x) \rangle \leq 0$$

Note that since invariance should just guarantee trajectories do not leave a set, we should only be asking that this condition holds on the boundary or a neighborhood of the set.

When B is continuously differentiable, our sufficient conditions take the form

$$\langle \nabla B(x), F(x) \rangle \leq 0$$

Note that since invariance should just guarantee trajectories do not leave a set, we should only be asking that this condition holds on the boundary or a neighborhood of the set.

Hence, we require

$$\langle \nabla B(x), f(x) \rangle \le 0 \qquad \forall x \in (U(\partial K_e) \setminus K_e)$$

where $U(\partial K_e)$ is a neighborhood of K_e , so $(U(\partial K_e) \setminus K_e)$ are points outside right outside K_e !

When B is nonsmooth, then we use the generalized derivative of a function:

When B is nonsmooth, then we use the generalized derivative of a function:

▶ When *B* is locally Lipschitz, we replace the gradient

 ∇B

by the generalized gradient in the sense of Clarke

 $\partial_C B$

When B is nonsmooth, then we use the generalized derivative of a function:

▶ When *B* is locally Lipschitz, we replace the gradient

∇B

by the generalized gradient in the sense of Clarke

$\partial_C B$

When B is lower semicontinuous, we replace the gradient

∇B

by the proximal subdifferential

 $\partial_p B$

When B is nonsmooth, then we use the generalized derivative of a function:

▶ When *B* is locally Lipschitz, we replace the gradient

∇B

by the generalized gradient in the sense of Clarke

 $\partial_C B$

When B is lower semicontinuous, we replace the gradient

 ∇B

by the proximal subdifferential

 $\partial_p B$

Nonsmooth barrier certificates naturally emerge in applications, in particular, in **obstacle avoidance problems** where the unsafe set is typically given by the intersection of half spaces.