On the Feasibility and Continuity
of Feedback Controllers Defined
by Multiple Control Barrier
Functions
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* Defined a notion of control barrier function (CBF)
amenable to problems involving multiple CBFs

« CBFs guarantee the existence of safety-ensuring
controllers

» Developed a constructive method for synthesizing
safety-ensuring controllers using optimization

« Sufficient conditions for continuity of the optimal
controller

» Used sum of squares programming to certify the
feasibility of the optimal control law

 Corresponds to verifying that a function is a CBF
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\/’, Control Objective

 Design a controller so that
S&{xcIl(C,):B(zx) <0}
is forward invariant, where

B(z) 2 [By (z),Bs(2),...,Bs(z)]"

 Safe set described by multiple continuously differentiable
functions

T e F(x,u) (x,u) € Cy

U(z)2{ucR™: (z,u) € Cy} (C,) £ {z €R": JuecR™ s.t. (x,u) € Cy}
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g\\*}, Flow Constraints

t e F(x,u)

U(z) = {ucR™: (z,u) € C,}

Flow Set

B;(x) =0
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u) € Cy

L2lrcR": JucR™ st (z,u) € Cy}

Safe Set |
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-‘%"\w/, Control Barrier Functions

+ A CBF candidate B : R"” — R“ defining the set S ¢ II (C,,)

is a CBF for (F,C,)and Sonaset O C 11 (C,) with
respect to a function ~ : IT (C,,) — R? if

1. There exists a neighborhood of the boundary of S such
that U (0S)N11(C,) C O

2. Foreach i€ [d], vi(z) >0forall z € (U (M;)\S;) N1 (Cy)
3. K. (x)isnonempty forall x € O

K.(z) 2 {uec ¥ (z):T;(z,u) < —v; (x), Vi € [d]}

Ui (z,u) 2 sup (VBi(z),[) M; = {xcdS:B,;(x)=0}

fEF (x,u)
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-»%"\wj, Forward (pre-)Invariance

» Forward pre-invariance is attained using continuous
selections

k(x) e K.(x) VreO
i€ F(x,k(x)) 2 Fy(2)
* Under mild conditions, such selections render
S2{zecll(C,): B(z) <0}

forward pre-invariant
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..g\.; '}, nal Safety-Ensuring Selections

U(x)={ueR" ¢ (z,u) <0}

k* () £ arg min Q (x, u)
ueR™

_ mmm  arg min Q (z,u
sit. ['(z,u) < —v(7) o ke (@, u)
Y (z,u) <0

Assumption 5. For every i € [d] and j € [k],

A) For all x € O, the functions u ~— I'; (x,u) and u +— 1; (z,u) are convex on V (z).

B) The functions (z,u) — T'; (z,u) 4+ 7; () and (x,u) — ; (z,u) are continuous on C, N (O x R™) and O x R™,
respectively.
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\/’, al Safety-Ensuring Selections

* Given the previous assumptions, assume additionally
that
1. The cost function () is continuous and, for each = € O,
u — @ (z,u) is strictly convex.
2. The following set is nonempty for every z € O

Koy & { MERT Do) <o)

3. Either @ islevel-bounded in u, locally uniformly in x,
or Vis locally bounded.

e Then £* 1s continuous
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-‘%"\wj , ity Verification with Sum of Squares

 Everything looks good provided the feasible set K.(x)
1s nonempty...

* Verifying feasibility is the same as asking if we have a
CBF

e Consider

K@) 2{ucR™: A(x)u+b(z) <0}

where A and b are polynomials.
 Can verify nonemptiness using sum of squares
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g\"j , lity Verification with Sum of Squares

K@) 2{ucR™: A(x)u+b(z) <0}

Problem 1. (Global Feasibility) Given polynomials A € P"<*™ [z| and b € P [z], find a constant ¢ > 0 and a polynomial
u € P™ |z| such that, for all i € [n.],

—Ap ()u(x) —b; (z) —e € Xlz],

where A;. (x) denotes that i-th row of A (x). The parameter ¢ could either be a fixed value or a decision variable. If € > 0,
then K°(z) & {u € R™: A(z)u+b(z) < 0} is nonempty.

 We have found
u(r) € K(z), VxeR"

« However, global feasibility will often not be possible.

« We also develop a program for verifying feasibility on sublevel sets

EB(ﬁ)é{xER”:B(:E)SB}
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\/’, Verification of CBF

A" 2

» Recall, a CBF candidate B : R” — R defining the
setS C I1(C,) is a CBF for (F,Cy)and S on a set L5 (5)
with respect to a function ~ : I1 (C,,) — R® if

1. There exists a neighborhood of the boundary of S such
that U (0S)NII(Cy) C L5z (B)
2. Foreachic [d], vi(z) >0forall x € (U (M;)\S;) N 11 (C,)

‘?q k).,‘b
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\/’, Verification of CBF

Problem 2. (Feasibility on Level Sets) Given A € P™*™ [z], b € P™ [z], B € P™ [z], and § € R, find polynomials
u € P™ [x], s0,81,...,8n, € 2 [z], and a constant € > 0 such that, for all i € [n.],

—Ais () u(x) —bi () — €
—s0 (@) =Y 8 (2) (8~ B; (1)) € Ba]. (11)

« Assume there exists polynomials A, b such that
A@)u+b(z) 2 ('(z,u) +7(2), ¢ (z,w) Y(z,u) €,

 If Problem 2 has a solution, then K. is nonempty on
Lz (B)NII(Cy) and B is a CBF
« And if € > 0, K_ is nonempty on L5 (8) NIL(Cy,)
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1. Estimation

> Finite-time Parameter Estimation via Hybrid Methods
ACC 21a, ACC 21b, ACC 21c + CoE collab

> Observers for Hybrid Systems
CDC 21a, CDC 21b, Automatica
2. Safety

> Safety Certificates, with Optimality
ACC 22a, ACC 22b (submitted), TAC 20 + CoE collab
> Applications of Safety
ACC 22c (submitted), Frontiers in Al + CoE collab
3. Optimization
> High Performance and Distributed Optimization
ACC 21d, CDC 21c + CoE collab + AFRL/RV collab.

> Model Predictive Control for Hybrid Systems
CDC 21d, CPSWeek 21 Workshop, CPSWeek 21 + AFRL collab



Consider the system
T = f(x) reXCR"
and the sets

X, C X the initial set,

X, C X\ X, the unsafe set.

(x

solutions
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Considér the system G solutions X, \
= f(x) reX CR"

and the sets
X, C X the initial set,
X, C X\ X, the unsafe set. \ j

Safety with respect to (X,, X,) < reach(X,)NX, =10

reach(X,) :={z € R" : x = ¢(t; z,), with ¢ a solution from z, € X,
and t € dom¢} <« the infinite reach set

A solution to & = f(x) is denoted ¢t — ¢(t), and when starts at 2, as ¢t — ¢(t; x0)



4:«\«: ;ufficient Conditi

o_
Consider X = R"™ and let the [X \

function B satisfy B(x(0)) .

B(z) >0 Vo € X,

B(x(T))
B(z) <0 Vr e X, @
g J




4:«\«: ;ufficient Conditi

o_
Consider X = R"™ and let the [X \

function B satisfy B(x(0)) .

B(xz) >0 Vo e Xy,

B(x(T)
Bz)<0 VreX, @
\Q %

and

the set K, is “forward invariant” for & = f(x)

where
K. :={x € R": B(z) <0} < the zero-sublevel set of B



4:«\«: ;ufficient Conditi

Consider X = R"™ and let the
function B satisfy

B(xz) >0 Vo e Xy,
B(z) <0 Ve € X,

and

ore o Seren
(x = \)

B(x(0))

@ B(dT))
o /

the set K, is “forward invariant” for & = f(x)

where
Ke:={zeR": B(x) <0

} < the zero-sublevel set of B

It follows that the system & = f(x) is safe w.r.t. (X,, Xy)




These observations motivate the following questions:

» How to guarantee the monotonicity condition
t — B(¢(t;z,)) is nonincreasing
and

the set K is “forward invariant” for & = f(x)

without checking/computing every solution?
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These observations motivate the following questions:

> How to guarantee the monotonicity condition
t — B(¢(t;z,)) is nonincreasing
and

the set K is “forward invariant” for & = f(x)

without checking/computing every solution?

» How to deal with nonuniqueness, finite escape time, and
solutions ending prematurely?

» What are necessary conditions for safety (and invariance)?
» How regular should one expect a barrier function to be?
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These observations motivate the following questions:

» How to guarantee the monotonicity condition
t — B(¢(t;z,)) is nonincreasing
and

the set K is “forward invariant” for & = f(x)

without checking/computing every solution?

» How to deal with nonuniqueness, finite escape time, and
solutions ending prematurely?

» What are necessary conditions for safety (and invariance)?

... for dynamical systems given by
2y &z € F(x) rxeC
zt e G(z) rzeD
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» When B is continuously differentiable, our sufficient
conditions take the form

V\\

(VB(z),F(z)) < 0



» When B is continuously differentiable, our sufficient
conditions take the form

(VB(z),F(z)) < 0

Note that since invariance should just guarantee trajectories
do not leave a set, we should only be asking that this condi-
tion holds on the boundary or a neighborhood of the set.




» When B is continuously differentiable, our sufficient
conditions take the form

(VB(z),F(z)) < 0

Note that since invariance should just guarantee trajectories
do not leave a set, we should only be asking that this condi-
tion holds on the boundary or a neighborhood of the set.

Hence, we require
(VB(z), f(z)) < 0 Vae (UOK)\Ke)

where U(0K,) is a neighborhood of K., so (U(0K.)\K.) are
points outside right outside K,!
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» When B is nonsmooth, then we use the generalized derivative
of a function:
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» When B is nonsmooth, then we use the generalized derivative

of a function:
> When B is locally Lipschitz, we replace the gradient

VB
by the generalized gradient in the sense of Clarke

OcB



Sy

» When B is nonsmooth, then we use the generalized derivative
of a function:
> When B is locally Lipschitz, we replace the gradient

VB
by the generalized gradient in the sense of Clarke

OcB

> When B is lower semicontinuous, we replace the gradient
VB
by the proximal subdifferential
0B



» When B is nonsmooth, then we use the generalized derivative
of a function:
> When B is locally Lipschitz, we replace the gradient

VB
by the generalized gradient in the sense of Clarke

OcB

> When B is lower semicontinuous, we replace the gradient
VB
by the proximal subdifferential
0B

Nonsmooth barrier certificates naturally emerge in applications,
in particular, in obstacle avoidance problems where the unsafe
set is typically given by the intersection of half spaces.




