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Big Picture

▶ Desire low cost, low complexity, robust, high-performance solutions
to tracking/RADAR in GPS-denied environments

▶ Low cost, low complexity ⇒ small sensors with unreliable clocks
▶ Robust: no single point of failure ⇒ distributed sensors with

robustness to failure of individual sensors
▶ High-performance ⇒ produce reliable localization estimates using

noisy measurements and noisy clocks
▶ Given accurate locations and tightly synchronized clocks, distributed

sensor networks can produce accurate location estimates
▶ Clock synchronization requires communication among sensors and

localization may not be possible during the synchronization times
▶ Need to optimize between localization and synchronization to

maximize performance
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System Model 1

▶ Fixed network of m sensing agents

▶ Single asset to be tracked:
▶ Asset transmits beacon signal at known times to agents to facilitate

tracking in GPS-denied environment
▶ Asset moves according to known Markov model
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System Model 2

▶ Sensors measure time-of-flights (ToFs) of beacon signal and localizes
(LOC) asset by fusing these measurements
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System Model 3

▶ Each agent’s clock drifts independently and variance of clock signals
increase with time

▶ Agents can synchronize (SYNCH) clocks at expense of not being
able to measure ToFs during that time
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Model-Free Localization

▶ Let coordinates of asset and sensor i in interval k be (xk,a, yk,a, zk,a)
and (xi, yi, zi)

▶ Using sensor m − 1 as a reference, form linear equations A · vk = βk
▶ Here vk = [xk,a, yk,a, zk,a]

T, A is a matrix with row i given by

Ai = [2(xi − xm−1), 2(yi − ym−1), 2(zi − zm−1)] ,

i ∈ {0, 1, . . . ,m − 2},

and βk is a column vector with component

βi = c2 (τ̂ 2
k,i − τ̂ 2

k,m−1
)
−
(
x2

i − x2
m−1

)
−
(
y2

i − y2
m−1

)
−
(
z2

i − z2
m−1

)
, i ∈ {0, 1, . . . ,m − 2}
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Localization Solution

▶ The least squares solution is given by [̂xk,a, ŷk,a, ẑk,a]
T = A†βk where

A† =
(
ATA

)−1 AT is the Moore-Penrose pseduo-inverse of A
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Improving Localization and Coordinating Synchronization

▶ Pure localization generally not good enough because of noisy clocks
▶ Does not inform system of when SYNC is needed
▶ Resolve both problems by treating tracking problem as HMM and

treating choice of SYNC/LOC as control problem

▶ Since true state of asset never known, result is Partially Observable
Markov Decision Process (POMDP)
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POMDP General Form

1. A finite set of states X

2. A finite set of controls U
3. A continuous set of observations Z
4. A state-to-state transition function:

pij(u) = Pr(Xk+1 = j|Xk = i,Uk = u)
5. A state-to-observation transition function:

qjz(u) = f(Zk+1 = z|Xk+1 = j,Uk = u), and
6. A cost function

c(x, u, z)

10 / 29
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Control Set

▶ Controls: U = {ul, us}

▶ ul: localize (loc)
▶ us: synchronize (synch)
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State Space

▶ Xk = (Mk,T(s)
k ):

▶ Mk is the state of the asset’s movement
▶ T(s)

k is the number of time slots since last sync
and

▶ Note that at time k, T(s)
k is known (deterministic) given the previous

controls u0, u1, . . . , uk−1
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Belief States, Observation Sequences and Control
Sequences

▶ Given:
▶ zk: vector of observations up to interval k
▶ uk−1: vector of controls leading up to interval k − 1

▶ Belief state at interval k is bk:

bk(x) = Pr (Xk = x |zk,uk−1 )
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Belief Update

▶ Continuous observation space (localization results) – most papers
consider finite observation space

bk+1(xk+1) =
f (zk+1, xk+1 |uk )

f (zk+1 |uk )
, where

(1)

f(zk+1, xk+1 |uk ) =
∑

xk∈X
f(zk+1, xk+1 |zk, xk,uk ) f(zk, xk |uk )

=
∑

xk∈X
f(zk+1, xk+1 |xk, uk ) f(zk, xk |uk−1 )

= f(zk+1 |xk+1 )
∑

xk∈X
Pr(xk+1 |xk, uk ) f(zk, xk |uk−1 )
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More on the Belief Update

▶ The conditional distribution of zk given xk is modeled as Gaussian:

with mean determined by the ML state of bk and variance
(

T(s)
k

)2

▶ If the control is sync, then no measurement zk+1 is available; then,
update the belief by applying the Markov model transitions
probabilities

bk+1 = P · bk

15 / 29
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Cost Function

▶ Distance between asset’s true location and the ML estimate from
the belief state

ck = |L(xk)− L(x̂k)|
where
▶ xk is true state
▶ x̂k = argmax

x∈X
bk(x)
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Movement Models

▶ Evaluate performance using simple location-only, one-dimensional
Markov chains:

▶ Chain 1: uniform probability of staying or moving to adjacent states:

x1 x2 x3 xn-1 xn

17 / 29
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Movement Model 2

▶ Chain 2: model an asset that primarily loiters near middle of region,
rarely transitions to the outer edges

x5x4x1 x2 x3 x6 x7 x8 x9 x10 x11
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Belief State Compression

▶ Belief state is a sufficient statistic for deciding the control uk at
stage k

▶ However: state space has |X | continuous dimensions
▶ Observation: Beliefs generally concentrated around one state and

spread out away from that state
▶ Quantize beliefs into triple of discrete values

xk = [T(s)
k , x̂k, σ2

k,x]:
▶ T(s)

k : is the number of time since last sync
▶ x̂k: ML estimate for movement state
▶ σ2

k,x: Quantized variance of movement state

21 / 29
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Belief State Compression 2

▶ Whereas spreading of beliefs is an implicit factor in original belief
state, it becomes an explicit component of the compressed state
through the variance measure

▶ Called: Triple Q-Learning (TQ-Learning)
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TQ-Learning Update

▶ Use tabular Q-learning with usual update rule:

Q(x, u) = Q(x, u) + α

[
c + γmin

u′
Q(g(x, u), u′)− Q(x, u)

]

▶ Here, c is the cost of performing u from whatever true state the
asset actually is in, g is a generic state update function, and u′ is the
control that minimizes the cost in the next interval

▶ The other constants affect how learning progresses:
▶ α: learning rate
▶ γ: discount factor

23 / 29
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Stochastic Policies and Model-Free approaches

▶ Stochastic policies are also optimized over and compared against
TQ-learning

▶ Fixed-rate stochastic (FRS): controls (ul, us) chosen with
probabilities (1 − sync_rate, sync_rate), respectively
▶ experimentally found best sync rate to minimize average cost

▶ Model-free (MF) localization: based on raw localization results from
triangulation
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Testing Results: Model P1
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Testing Results: Model P2
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Conclusion

▶ Formulated problem of optimizing synchronization times for system
of distributed sensors tracking an asset as a POMDP

▶ Applied state-space compression to form low-dimensionality, discrete
state space appropriate for tabular Q-learning

▶ Results show Q-learning is able to significantly outperform pure
localization or stochastic updates
▶ can identify when synchronization is needed based on spread of

beliefs (as measured through variance)
▶ Very early work: good candidate for deep Q-learning, want to

consider RADAR problem, moving sensors, ...
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