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to tracking/RADAR in GPS-denied environments
» Low cost, low complexity = small sensors with unreliable clocks
» Robust: no single point of failure = distributed sensors with
robustness to failure of individual sensors
» High-performance = produce reliable localization estimates using
noisy measurements and noisy clocks
» Given accurate locations and tightly synchronized clocks, distributed
sensor networks can produce accurate location estimates

» Clock synchronization requires communication among sensors and
localization may not be possible during the synchronization times

» Need to optimize between localization and synchronization to
maximize performance

2/29



System Model 1

» Fixed network of m sensing agents
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System Model 2

» Sensors measure time-of-flights (ToFs) of beacon signal and localizes
(LOC) asset by fusing these measurements

To . .
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System Model 3

» Each agent’s clock drifts independently and variance of clock signals
increase with time
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System Model 3

» Each agent’s clock drifts independently and variance of clock signals
increase with time

> Agents can synchronize (SYNCH) clocks at expense of not being
able to measure ToFs during that time
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Model-Free Localization

> Let coordinates of asset and sensor i in interval k be (xk a, Yk 2, Zk.2)
and (X,', Yi, Z,')
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Model-Free Localization

> Let coordinates of asset and sensor i in interval k be (xk a, Yk 2, Zk.2)
and (x;, yi, zj)
» Using sensor m — 1 as a reference, form linear equations A - v, = 3,
» Here v, = [xk@,yk’a,zk,a]T, A is a matrix with row /i given by
A = [2(xi — xm—1), 2(¥i = Ym-1), 2(zi = zm-1)],
ie{0,1,...,m—2},

and B3, is a column vector with component

Bi = é (7/:13,/_ ?E,mq) - (X,2 _X%nq) - ()’,2 _ﬁnq)
—(z-2,_4), i€{0,1,...,m—2}

1
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Localization Solution

» The least squares solution is given by [?kya,f/k@,?k?a]T = A3, where
Af = (ATA)f1 AT is the Moore-Penrose pseduo-inverse of A
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Improving Localization and Coordinating Synchronization

» Pure localization generally not good enough because of noisy clocks
» Does not inform system of when SYNC is needed

» Resolve both problems by treating tracking problem as HMM and
treating choice of SYNC/LOC as control problem
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Improving Localization and Coordinating Synchronization

» Pure localization generally not good enough because of noisy clocks
» Does not inform system of when SYNC is needed

» Resolve both problems by treating tracking problem as HMM and
treating choice of SYNC/LOC as control problem

> Since true state of asset never known, result is Partially Observable
Markov Decision Process (POMDP)
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POMDP General Form

1. A finite set of states X’
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POMDP General Form

S

A finite set of states X’

A finite set of controls U

A continuous set of observations Z

A state-to-state transition function:

pii(u) = Pr(Xip1 = ji Xk = i, Ux = u)

A state-to-observation transition function:
qj2(v) = AZikp1 = 2 X1 = j, U = u), and
A cost function

c(x, u, 2)
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Control Set

» Controls: U = {uy, us}
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Control Set

» Controls: U = {uy, us}
» u: localize (loc)
» u: synchronize (synch)
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State Space

> Xy = (M, Tf)):
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State Space

S
> Xk = (Mka 7—2))
» My is the state of the asset’s movement
> 7*,(5) is the number of time slots since last sync

and

> Note that at time k, Tg(s) is known (deterministic) given the previous
controls ug, Uy, ..., Uk_1

12/29



Belief States, Observation Sequences and Control
Sequences

» Given:

P z,: vector of observations up to interval k
» u,_1: vector of controls leading up to interval k— 1
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Belief States, Observation Sequences and Control
Sequences

» Given:

P z,: vector of observations up to interval k
» u,_1: vector of controls leading up to interval k— 1

> Belief state at interval k is by:

bk(X) =Pr (Xk = X|Zk, I.lkfl)
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Belief Update

» Continuous observation space (localization results) — most papers
consider finite observation space

f(Zkt10 Xkt 1 [Uk)

, where
f(zis1 |uk)

brey1(Xt1) =
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f(Zkt10 Xkt 1 [Uk)

, where 1
f(zkr1 Juk) M)

brey1(Xt1) =

AZkr1, X1 [uk) = Z AZke1s Xir1 |2i, Xk, Uk ) Rz, X [u)
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= ¥ Azksrs X i uk) fze Xk uk-1)
xkEX
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More on the Belief Update

» The conditional distribution of zx given x is modeled as Gaussian:
2
with mean determined by the ML state of by and variance (Tf))

» If the control is sync, then no measurement z,; is available; then,
update the belief by applying the Markov model transitions
probabilities

b1 =P by
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Cost Function

» Distance between asset's true location and the ML estimate from
the belief state
ck = |L(xk) — L(X)|
where

> x is true state
» X« = arg max by(x
k g max k(%)
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Movement Models

» Evaluate performance using simple location-only, one-dimensional
Markov chains:
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Movement Models

» Evaluate performance using simple location-only, one-dimensional
Markov chains:

» Chain 1: uniform probability of staying or moving to adjacent states:
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Movement Model 2

» Chain 2: model an asset that primarily loiters near middle of region,
rarely transitions to the outer edges
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Belief State Evolution

Belief b(x)
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Belief State Evolution 2

Belief b(x)
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Belief State Compression

> Belief state is a sufficient statistic for deciding the control vy at
stage k
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> Belief state is a sufficient statistic for deciding the control vy at
stage k

» However: state space has |X| continuous dimensions

» Observation: Beliefs generally concentrated around one state and
spread out away from that state

» Quantize beliefs into triple of discrete values
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Belief State Compression

> Belief state is a sufficient statistic for deciding the control vy at
stage k

» However: state space has |X| continuous dimensions

» Observation: Beliefs generally concentrated around one state and
spread out away from that state

» Quantize beliefs into triple of discrete values
179 & 27
X = [7-§< » Xko Uk,x]'
> 74,(5): is the number of time since last sync

» Xr: ML estimate for movement state
> U,ixz Quantized variance of movement state
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Belief State Compression 2

» Whereas spreading of beliefs is an implicit factor in original belief
state, it becomes an explicit component of the compressed state
through the variance measure

» Called: Triple Q-Learning (TQ-Learning)
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TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Qx, 1) = Qx,u) + | ¢+ 7 min Qe(x, ), o) — Qx, )
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TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(X’ u) = Q(& u) +ajc+y rrl‘l'/n Q(g(lv u)’ u/) - Q(& u)

» Here, cis the cost of performing u from whatever true state the
asset actually is in, g is a generic state update function, and /' is the
control that minimizes the cost in the next interval

» The other constants affect how learning progresses:

» «: learning rate
» ~: discount factor
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Stochastic Policies and Model-Free approaches

» Stochastic policies are also optimized over and compared against
TQ-learning
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Stochastic Policies and Model-Free approaches

» Stochastic policies are also optimized over and compared against
TQ-learning
> Fixed-rate stochastic (FRS): controls (uy, us) chosen with
probabilities (1 — sync_rate, sync_rate), respectively
> experimentally found best sync rate to minimize average cost

» Model-free (MF) localization: based on raw localization results from
triangulation
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Training Curves: P, m=3
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Training Curves, P,, m =15
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Testing Results: Model P1

Average cost ¢
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Testing Results: Model P2
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Conclusion

» Formulated problem of optimizing synchronization times for system
of distributed sensors tracking an asset as a POMDP
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Conclusion

» Formulated problem of optimizing synchronization times for system
of distributed sensors tracking an asset as a POMDP

» Applied state-space compression to form low-dimensionality, discrete
state space appropriate for tabular Q-learning

» Results show Q-learning is able to significantly outperform pure
localization or stochastic updates

» can identify when synchronization is needed based on spread of
beliefs (as measured through variance)

» Very early work: good candidate for deep Q-learning, want to

consider RADAR problem, moving sensors, ...
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