Exploitation of Rotational Symmetries to Solve the Swarm Initialization Problem

Taryn J. Noone \& Norman G. Fitz-Coy

包TEXAS
© ILS Shlit crill

- We have developed a sound, mathematical basis for solving the swarm initialization problem in a special case.
- We will assume a circular swarm trajectory (eccentricity $=0$, exact)
- We define two operations which preserve swarm optimality:
- Rotation of the swarm within some known space of valid rotations;
- Transposition of any two satellites at any point in the orbit.
- Quantization of the solution space has enabled the use of discretized optimization methods - chiefly, the Munkres Algorithm.
- A staged optimization approach solves the problem in successively more detailed passes.
- Computational slowness is the current major obstacle to implementing this method.
- Careful algorithm selection;
- Parallelization of the process;
- Dividing stages by regularity of use;

Duke
包TEXAS
© SLC SHITI CHILI

Principal Definitions

In prior discussions, a swarm was defined to be a close-flying formation of satellites for which the following quantities could be defined:

- Swarm envelope
- A closed, convex set of points with no holes, gaps, or voids, which contains all satellites in the swarm.
- Mathematically speaking, the boundary of the envelope must be simply connected.
- The swarm envelope may not contain points inaccessible to the satellites (e.g., points at or below Earth's surface).
- For this discussion, we will use a spherical envelope.
- Must include a reference point that marks the envelope center.
- This point need not to be an element of the swarm envelope.
- For this discussion, we will use the center of the sphere.

Duke
獣TEXAS
© SLS SHITI CRIIL

Principal Definitions

Principal Definitions

Principal Definitions

- Swarm trajectory
- A user-defined function of time which specifies the position of the swarm envelope relative to any point with known coordinates.
- This latter point can be taken to be the center of the Earth.
- Position measured to the envelope-relative reference point.
- If necessary, this definition may include a function to specify the orientation of the swarm envelope.
- Unnecessary in the case of a spherical envelope.
- While it is not a strict requirement in the general case, trajectories should follow spacetime geodesics.
- For this discussion, we will assume that the swarm trajectory can be approximated by a Keplerian orbit of zero eccentricity.

Duke
圈TEXAS
.

Principal Definitions

Principal Definitions

- Swarm distribution
- The arrangement of satellites within the sphere envelope as defined relative to the envelope-relative reference point.
- The most abstract component of the satellite swarm, incorporating mission-specific parameters, an unknown number of degrees of freedom, and the swarm cost functional.
- For this discussion, we will assume that the swarm distribution can be rotated about the envelope relative reference point.
- Swarm centroid
- A function of the satellite positions which determines the true center of the swarm.
- Distinct from the envelope-relative reference point, as the centroid is determined by satellite positions, not envelope geometry.
- For this discussion, we will use the arithmetic mean of all satellite positions to define the swarm centroid.

Duke
© ILS SHINI CRHIL

For this discussion, we will default to our test case of twelve satellites:

- The swarm envelope is a sphere of radius $\boldsymbol{\rho}$ with reference at its center.
- The swarm trajectory is a circular orbit of radius \boldsymbol{a}.
- The satellites in the swarm should be distributed at the vertices of a regular icosahedron.
- The swarm may be transformed by any rotation about its center.
- The swarm centroid is defined using the arithmetic mean:

$$
\vec{r}_{O}(t)=\frac{1}{12} \sum_{i=1}^{12} \vec{r}_{i}(t)
$$

Duke
圈TEXAS
(4)UC SANTH CRUZ

A rotating icosahedron is still an icosahedron. Animation from Wikipedia.

© ILS SANTI CHIUL

- Note that n successive rotations by $2 \pi / n$ radians about a given axis will result in a net angle of 2π radians.
- We may, however, rotate by multiples of $2 \pi / n$ radians.
- Recognizing that a rotation by 2π radians is equivalent to no rotation, it follows that rotations by multiples of $n+1$ to $2 n-1$ are equivalent to rotations by multiples of 1 to $\boldsymbol{n - 1}$.
- We may also consider the negative multiples (i.e., $-(n-1)$ to -1).
- Rotations by a multiple of 0 need only be considered about a single axis, since this corresponds to zero rotation.
- With two distinct rotations to check (the starting attitude and the change in attitude), we must check $\mathbf{4 m ^ { 2 }} \boldsymbol{n}(\boldsymbol{n}-\mathbf{1})+\mathbf{1}$ formation chains.
- For 46 axes and 12 satellites, this corresponds to $1,117,249$ chains.
- Some of these chains may be sufficiently close to others to qualify as "duplicate." We may eliminate these duplicate chains.
- This process takes several days to a week or more on a single CPU, but only needs to be done once (the results may be saved and re-used).
- For 46 axes and 12 satellites, with duplicate elimination, we obtain between 5,000 and 10,000 formation chains depending on tolerance.
- These formation chains are saved and used in the next step.
- Note that, because these chains depend only on the selected value of the rotation, this process is invariant with respect to the radii of the formation, or its orbit.

Duke
圈TEXAS
(i)UC SANTH CRUL

Selecting Orbits

- Once a group of formation chains are selected, we must then pull orbits from them by selecting the first two formations out of the chain.
- For this pair, we may connect each satellite from the first formation to any position from the second.
- Connecting the i th satellite to the j th position yields an orbit. Comparing this orbit to the formation chain yields a contribution to a cost function, $J_{i j}$.
- For each i and j, we select the two formations with minimal $J_{i j}$.
- Note that, for each pair, we may propagate the assignment to another formation, so we must compare the values of $J_{i j}$ for each formation in the chain.
- The optimal assignment may be determined using the Munkres Algorithm

Duke
圈TEXAS
© ILS SHIII CRILI

Selecting Orbits

- The Munkres algorithm runs in $O\left(n^{4}\right)$ time, so we are currently investigating ways to avoid running the Munkres algorithm in cases where it would clearly produce a suboptimal result.
- For example, if the sum of the n smallest elements in the cost matrix, J is greater than the current best result, we may skip the algorithm.
- Once the best result has been found, that formation chain is selected, along with the assignment function determined by Munkres and the orbits it generates.
- Those orbits are passed on to the next stage of optimization, which uses continuous optimization to further refine the initial velocities and minimize the swarm cost functional.

Duke
包TEXAS
© ULS SHNII CHIUL

- Implement code to run the orbit selection protocol.
- Implement code to refining stage.
- Run this with known test cases, such as the LISA configuration.
- Compare performance for low-n vs. high-n cases.

Duke

