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Adding Resiliency
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Our Goal: Add resiliency to controls across different/all levels of the autonomy stack



Low-Level Control in the Presence of Attacks
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Xp+1 = (X, Ug) + Wy supp(a) = X
Vi = CXy + ay + vy ap; = 0,vi € K¢

Theorem 1 [1,2,3,4,5]:
A system presented above is perfectly attackable if and only if it is unstable, and at least

one eigenvector v corresponding to an unstable mode satisfies supp(Cv) € K andvis a
reachable state of the dynamic system.

Physics-based detectors cannot always protect us from an intelligent attacker

[1] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in First Workshop on Secure Control Systems, 2010

[2] C. Kwon, W. Liu, and |. Hwang, “Analysis and design of stealthy cyber attacks on unmanned aerial systems”, J. of Aerospace Inf. Systems, 2014
[3] I. Jovanov and M. Pajic, “Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems”, IEEE Trans. on Automatic Control, 2019
[4] A. Khazraei and M. Pajic, “Perfect Attackability of Linear Dynamical Systems with Bounded Noise,” ACC 2020.

[5] A. Khazraei and M. Pajic, “Attack-Resilient State Estimation with Intermittent Data Authentication,” Automatica, 2021.
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What happens when we include
perception?



Vulnerability of
Perception

* Deep Learning is workhorse in modern perception
pipelines

» Attacks on perception studied at single sensor, single

time-instance level; LIDAR underrepresented

Not representative of real systems or adv. objectives!

* Real systems use sensor fusion across multiple sensors and
multiple time points; rely heavily on LiDAR

* Adv. Objectives include creating false objects, removing
existing objects, or translating existing objects --> very few
systematic evaluations of all outcomes

e Sensor fusion claimed to be "resilient”, often "silver-
bullet” for defense but this claim rarely
experimentally validated

Point cloud (LiDAR) data & algorithms are
under-analyzed in the security community

Sensor fusion (e.g. fusion at data-level, tracking-
level) must be analyzed due to ubiquitous
adoption across industry
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Camera-LiDAR Fusion
Multiple Architectures for Sensor Fusion
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e Semantic fusion popular across industry due to:
— Reduce of "curse of dimensionality" of input space
— Greater flexibility in industry for "plug-and-play"/swap-ability of components

* Feature-level-fusion high-performing due to fusion of low-level, machine-
learned features

* Fusion touted to improve resiliency and performance compared to single-
sensor perception alone

Semantic-Level Fusion

Most common sensors:

* LiDAR data is sparse in R4
— X-Y-Z-intensity
— Full 3D resolution

* Camera data is dense in R3

— R-G-B channels
— 2D (angles-only) resolution

Feature-Level Fusion
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Find Fusion On-Par With Existing Defenses Against
Naive Spoofing Attacks

Undefended attack success high against
LiDAR-only percep at close range

Attack Success Rate Injected Near 8 m

*Undefended attack success high against
LiDAR-only percep at med. range

Attack Success Rate Injected Near 30 m
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*Fusion guards against naive

atack at med. Range *CARLO does not guard against

*SVF guards against naive *ShadowCatcher does not guard against

(except EPNET; AVOD performs ok)

Attack Success Rate Injected Near 30 m

10
- FCN
g o8| —: PN "
- — AVOD 5 &%
%S 061 —... EPNET i 0 TN /s
s EPNET A N = \
=] N Jmep= 7 \
< o4 N /\/ﬁ\ =1 By !
ot & NI T
0 o _ //\/ T — - —3 N
2 02 P //ﬁ\\//? NN
=
0.0 e ¥ ¥ ¥ T ;
0 5 50 75 100 125 150 175 200

Number of Spoof Points

*Novel contribution of our work

naive attack at medium range

Attack Success Rate Injected Near 30 m
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Beyond Naive Attack: Novel Frustum Attack Is Feasible

Three candidate realizations of the frustum attack.

Compromise Fusion (and LiDAR-only) Additional configurations shown later
[ . T . Spoofer )
 Fusion robust against naive attack because naive attack | T
is not consistent between sensor modalities lg - a."
« Ensure consistency by spoofing within the frustum (i.e. in- i
view, as seen by camera) of existing vehicles St o o
» This does not require any knowledge of the camera data  Target vehide ———— %{
- Al ]=)
Victim vehicle Frustum \ v =/

Other vehicle

Spoof points in front or

Feasibility behind target  Spoef points in front or
« We validated attack feasibility with limited additional Frustum
knowledge required over original, naive black-box
spoofing
« Only additional requirement is attack orientation

e

BT el

Victim vehicle et vehicle

Spoofer
Other vehicle

=

Demonstrated controlling (i.e.
moving to attacker's specified
location) spoof points stably
over time with moving vehicles




Frustum Attack is Widely Successful

Duke

PRATT SCHOOL of
ENGINEERING

Compromise Fusion (and LiDAR-only)

Frustum attack demonstrated to compromise BOTH LiDAR-only
AND camera-LiDAR fusion

Frustum attack shown indefensible by state-of-the-art defenses
(CARLO, SVF, ShadowCatcher, LIFE)

Extensive Evaluations

Fraction of Instances
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o

We perform the most extensive evaluation of attacks on perception to-date
with 8 algorithms and 4 defenses (7 and 3 for large-scale evaluation)

> 75 million attack traces evaluated --> number of spoof points, distance of
spoof point placement, each object, each frame of data
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(b) Target victim (yellow, 238
pts) has many more points than
the spoof points (red 20pts)
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(a) Target
vehicle at
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from victim

(c) BEV shows false positive
detection around spoofed points



Longitudinal Frustum Attacks Are Dangerous
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Evaluation of Multi-Frame Tracking

Use captured KITTI dataset to evaluate impact of

frustum attack over multiple frames

Demonstrated stably executing frustum attack in
longitudinally-consistent way to obtain adversarial

tracks (white + cyan) that can:
1) project to collide with victim
2) project to accelerate flow of traffic
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End-to-End, Industry-Grade AVs
* Preliminary evaluation of the vulnerability of Baidu

Apollo perception + control stack to the frustum
attack — emergency braking engaged
« Baidu fuses LIDAR and camera detections at
the tracking-level
« Use multi-stage approach since Baidu+SVL
combination is still under development
» Physics-based simulations of AV driving with the

SVL Simulator

Beginning of scene, before spoof

Spoofed FP

l‘-—‘\

J Victim emergency
braking

After frustumspof



Stealthy Spoofing Frustum-Attacks: Duke
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So, what happens when we include perception?

Xp+1 = f (Xx) + Buy + wy,
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