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Optimization with Complex or Unknown Models
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Zeroth-Order (Derivative-Free) Optimization

T : Gradient is unavailable
. 1 )
Optimization problem: xﬂel 11 f(x) incomputable, private

Zeroth-order gradient estimators:

fxy + duy)

The one-point estimator G5 () = ;

convergence rate.

uy s subject to large variance and, therefore, slow
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The two-point estimator G'5(x;) = ;

objective function to be time-invariance.

us has less variance but requires the
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Asynchronous Distributed Optimization

Distributed Optimization Problem: min f(z)

where the decision vector = = [z1, 22 ,...,z ]’ concatenates local decision variables.

Synchronous Gradient Estimator:
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Asynchrony Model

Definition: (Asynchrony Model) At each time step, one agent is independently and randomly
selected according to a fixed distribution P = [p1,p2,-..,pn]. The selected agent i can

query the value of the cost function once and update its local decision variable, while the
decisions of the other agents {x; } i are fixed.
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Asynchrony Residual-Feedback
Gradient Estimator

Asynchronous Gradient Estimator:

-

Uy ¢

J

Gi,&(l't) =

(f(xe + 0uie) — f(Tp—m + OUit—m))

\

In the asynchronous setting, #;,: only perturbs the local decisionz;,:+ of agent 7 , who is

activated at time ¢.
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Second Moment of the
Asynchronous Gradient Estimator

Consider the asynchronous update at agent ¢ , who is activated at time ¢ :
Ti 41 = Tit + G 5(xy)

U; ¢

J

where G s(z;) = (f(ze + ouit) — f(@p—m + OUit—m))

Lemma Under the Asynchrony Model, and define by
E[|Gs(z:)[1%] := Es, [E[IVaf (@) |[é: = ]

Then, running the asynchronous updates, we have that
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The second moment at time ¢ depends on the whole history of the algorithm. Duke
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Convergence Analysis

Theorem Under the Asynchrony Model, and run the asynchronous updates for 7" iterations.
Let  be uniformly randomly selected from 1 |terat|ons Selecting the step size @ = /Pmin /T3

and the smoothing parameter 6 = 2Lov/n /T6 we have that
E[|Vf(&)]°] < O(R*T~3).

Deterministic asynchronous algorithm achieves the
same convergence rate as the stochastic synchronous
algorithm. The asynchrony can be thought as one
source of function evaluation noise at local agents.
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Numerical Experiments

Distributed Feature Learning Problem

For each patient J, different types of data are collected at heterogenous data collectors. These
data are used collaboratively to make predictions.

min l {dj 1:3, yj Z log yi Z Widjvi))

Z1,L2,r3

D = R
O '/z]
dj1 = ¢1(Dj1,71)

Al
! ~
Data collector 1 collects raw bio-signal data D; ; @

L}

for patient 7, extracts low dimensional biomarker
feature d; 1 through feature extraction function ¢1

with parameter 21 . d. o —
2= 6Dy, Duke

UNIVERSITY




Numerical Experiments

Comparison to an asynchronous two-point gradient estimator

Gis(ze) = it (f(ze +0uis) — f(2i—m))
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- framework converges faster compared to
é 0.70 1 the two-point scheme, due to its low
gradient estimate variance and twice the
0.65 1 number of updates.
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Summary

We proposed an asynchronous zeroth-order gradient
estimator using residual feedback, proved that the converge
rate is the same as stochastic synchronous cases, and

validated it in an asynchronous distributed feature learning
problem.
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Transfer Reinforcement Learning
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Motivation for Transfer RL
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Qutline

Few-Shot RL in Heterogeneous Action Spaces using Subgoal Mapping

* Problem setting and related method
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Transfer RL with Heterogeneous Agents
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Problem Formulation

Problem statement:

Define a source data set D with expert and learner demonstrations for some tasks sampled from
distribution D , with expert demonstrations in action space A and learner demonstrations in action
space A;. The goal is to transfer knowledge from expert to learner so the learner can quickly solve

unseen tasks in D using D.

Terminology:

Task sampled from overall distribution d~ D (p)

Trajectory of an agent for a task T (d) = [(SO, ap
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Previous Approaches

Neural Network Architectures:

» Uses a fixed teacher policy to share policy parameters with a student policy
 Blending policies can be complex in many environments, especially if action spaces are so different
 |Ifthere is little overlap between different agents, then sharing of parameters is not as useful

Modular Approaches:

» Uses modular blocks that represent policies to solve tasks to combine with agent blocks
» Requires explicit meshing of blocks
 Has similar limitation to architecture based heterogeneous transfer

Handcoded Mappings:

Human expert maps between two action spaces that are different
Can be subject to bias, accuracy is not guaranteed

Not scalable

Mappings are most agnostic to very differing action spaces
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Qutline

Few-Shot RL in Heterogeneous Action Spaces using Subgoal Mapping

* Proposed method
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Intuition Behind Algorithm

Varying primitive action sequences

Red agent: Moves diagonally
Blue agent: Moves vertically and horizontally

Solution: use trajectories of subgoals instead of primitive actions to break policy hierarchically

Duke

UNIVERSITY




Hierarchical Algorithm Design

Hierarchical Policy Functions

Mapping Function Ty - ({gexpert}f:07p) — {glearner}f:O

. . T
Subgoal Function (High Level) Th - {gleamer}t:() — (learner

: . T
Primitive Action Function (Low Level) TN - (Slearnera glearner) — {alearner}t:()
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Subgoal Sequence as a LSTM

LSTM Neural Network Model and Training | 77 : ({gexpert};ﬁrzovp) — {glearner}f:o

Sequence to Sequence

Input
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Model
Bidirectional LSTMs: take
input sequence in order and Deczader
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Algorithm Design

Warm Initializing High Level Learner Policy

LSTM output for an unseen task is a sequence of predicted subgoals for the learner agent

However, LSTM output might not always be accurate: how can we extract useful subgoal information if

there are any errors?

Solution: warm initialize the high level learner policy with supervised learning, as the goal is to bias the

weights initially towards the LSTM model’s subgoal predictions

Learning Optimal Policy from Warm Initialized High Level Policy

Once the high level learner policy is warm initialized, we use a standard reinforcement learning algorithm

to train the high level and low level policies for that unseen task

If LSTM output is correct, then the training time to converge onto the optimal policy must be faster than

training the policy without any transfer
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Qutline

Few-Shot RL in Heterogeneous Action Spaces using Subgoal Mapping

* Numerical experiments
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Numerical Experiments

Example of a task within overall set
Goal is to take both pawns within episode (10 timesteps). -1 for an empty square, +10 for a pawn

Pawns always on dark squares to
accommodate dark square bishop

Assume same fixed position for
both agents

Global coordinates for each square
go from left to right, bottom to top

Duke

UNIVERSITY




LSTM Training and Qutput

Training the LSTM Model

Compute bishop and knight expert trajectories
using Djikstra’s algorithm

l

( One-hot encode both trajectories J

v

Input through LSTM Neural Network Model and
train with categorical cross entropy loss function

LSTM U Task
STM Output on Unseen Tas Padding built in to allow for variable

output lengths

=> 37 43 28 43 (expect /3'7 43 28 34 )

== 26 32 26 9 (expect 42 32 26 9 )
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Numerical Experiments

LSTM Correctly Predicts Learner Sequence of Subgoals

Average Reward
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Numerical Experiments

LSTM Makes 1 Error in Prediction of Learner Sequence of Subgoals
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Numerical Experiments

LSTM Makes 2+ Errors in Prediction of Learner Sequence of Subgoals

Average Reward
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Summary

Transferring across heterogeneous agents with different action spaces is difficult
because there is no explicit mapping that is known between the expert and learner
agent

Our method seeks to learn this mapping and use its predictions on unseen tasks to
give the learner agent an initial biased high level policy which can better direct the
agent’s exploration towards an optimal policy

Our experimental results in a discrete space show that our method is viable in
transferring across agents with heterogeneous action spaces

Future works include extending this work to a continuous case and discovering
subgoals rather than predefining them
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