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Deception is a critical capability that helps ...

animals to survive. teams to win games.

armies to win battles.
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in surveillance missions. in aerial battles.

in cyber space.

Deceptive capabilities in autonomy will lead to enhanced security …
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Is autonomous deception really possible?
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Is autonomous deception really possible?

Yes, it is possible! 

but still in the early stages of development…  

4

0

0.25

0.5

0.75

1

25% 50% 75% 90%

Trajectory segment

Pr
ed

ic
tio

n 
In

co
rre

ct
ne

ss

-5

-2.5

0

2.5

5

25% 50% 75% 90%

Trajectory segment

Pr
ed

ic
tio

n 
C

on
fid

en
ce

* Based on the user study in [1] 

[1] Y. Savas, C. Verginis, U. Topcu, ``Deceptive decision-making under uncertainty”, AAAI Conference on Artificial Intelligence, 2021 (under review)



Overview

• Observer’s prediction model


• Deception as a constrained optimization problem


• Technical considerations


• User studies and a case study in Manhattan, New York
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Related work and contributions

Contribution: An efficient deception algorithm that works in stochastic environments, 

adjusts behavior according to predictions, and has global performance guarantees [6].

• Game-theoretic approaches with demanding computational requirements [1,2]


• Heuristic approaches tailored to specific scenarios [3,4]


• Gradient descent-based approaches that have only local optimality guarantees [5]

[1] R. Wagner, and R. Arkin, ``Acting deceptively: Providing robots with the capacity for deception”, International Journal of Social Robotics, 3(1):5–26, 2011.

[2] A. Anwar, and C. Kamhoua, ``Game theory on attack graph for cyber deception”, International Conference on Decision and Game Theory for Security, 445–456, 2020.

[3] P. Masters, and S. Sardina, ``Deceptive path-planning”, International Joint Conference on Artificial Intelligence, 2017.

[4] M. Pettinati, and R. Arkin, ``Push and pull: Shepherding multi-agent robot teams in adversarial situations”, International Conference on Advanced Robotics and its Social 
Impacts, 2019.

[5] A. Dragan, A, R. Holladay, and S. Srinivasa, ``Deceptive robot motion: synthesis, analysis and experiments”, Autonomous Robots, 39(3):331–345, 2015.
[6] Y. Savas, C. Verginis, U. Topcu, ``Deceptive decision-making under uncertainty”, AAAI Conference on Artificial Intelligence, 2021 (under review) 6



Overall system model

Potential goals 𝒢

Observer’s prediction model Agent’s planning model

Deceptive policy

π⋆ : S × A → [0,1]

7



Overall system model

Potential goals 𝒢





     







fficiency.
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Observer’s prediction model: the principle of maximum entropy

Observers expect the agent behavior to be goal-directed with a certain degree of efficiency.

The principle of maximum entropy: the distribution that best represent the current state of knowledge     

         is maximally noncommittal with regard to missing information
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Observer’s prediction model: the principle of maximum entropy

Observers expect the agent behavior to be goal-directed with a certain degree of efficiency.

We can formally express the agent’s expected goal-directed behavior  asπG

πG ∈ arg min
π∈Π

𝔼π[
∞

∑
t=0

γt
o(c(st, at) − αH(π(st, ⋅ )))]

subject to: Prπ(Reach[G]) = Rmax(G)

cost function 

c : S × A → [0,1]

efficiency parameter α

reach the goal  

with maximum probability

G

entropy regularization

The principle of maximum entropy: the distribution that best represent the current state of knowledge     

         is maximally noncommittal with regard to missing information
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Observer’s prediction model: computing predictions

Given a partial agent trajectory , the observer aims to predict the agent’s true goal ζ1:T G⋆ ∈ 𝒢 .

The observer knows that the agent is moving towards one of  potential goals .N 𝒢 = {G1, G2, …, GN}

9



Observer’s prediction model: computing predictions

Given a partial agent trajectory , the observer aims to predict the agent’s true goal ζ1:T G⋆ ∈ 𝒢 .

The observer knows that the agent is moving towards one of  potential goals .N 𝒢 = {G1, G2, …, GN}

Pr(G |ζ1:T) =
Pr(ζ1:T |G)Pr(G)

∑G′￼∈𝒢 Pr(ζ1:T |G′￼)Pr(G′￼)
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Observer’s prediction model: computing predictions

Given a partial agent trajectory , the observer aims to predict the agent’s true goal ζ1:T G⋆ ∈ 𝒢 .

The observer knows that the agent is moving towards one of  potential goals .N 𝒢 = {G1, G2, …, GN}

Pr(G |ζ1:T) =
Pr(ζ1:T |G)Pr(G)

∑G′￼∈𝒢 Pr(ζ1:T |G′￼)Pr(G′￼)
Bayes’ rule

Prior beliefs on potential goals

How is the agent expected to reach the goal ?G′￼

QG(s, a) = − c(s, a) + γo ∑
s′￼∈𝒮

P(s, a, s′￼)VG(s′￼)

VG(s) = softmax
a

QG(s, a) .

Compute the conditional probabilities  using the expected goal-directed behavior .Pr(ζ1:T |G) πG

πG(s, a) = e
α(QG(s,a)−VG(s)) } softmax value iteration 


efficiently computable
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Given a partial agent trajectory , the observer aims to predict the agent’s true goal ζ1:T G⋆ ∈ 𝒢 .

The observer knows that the agent is moving towards one of  potential goals .N 𝒢 = {G1, G2, …, GN}

Pr(G |ζ1:T) =
Pr(ζ1:T |G)Pr(G)

∑G′￼∈𝒢 Pr(ζ1:T |G′￼)Pr(G′￼)
Bayes’ rule

Prior beliefs on potential goals

How is the agent expected to reach the goal ?G′￼

QG(s, a) = − c(s, a) + γo ∑
s′￼∈𝒮

P(s, a, s′￼)VG(s′￼)

VG(s) = softmax
a

QG(s, a) .

Compute the conditional probabilities  using the expected goal-directed behavior .Pr(ζ1:T |G) πG

πG(s, a) = e
α(QG(s,a)−VG(s)) } softmax value iteration 


efficiently computable

Pr(G |ζ1:T) ≈
eVG(sT)−VG(s1)Pr(G)

∑G′￼∈𝒢 eVG′￼(sT)−VG′￼(s1)Pr(G′￼)
.

As a result, we have

} Pr(G |ζ1:T) = Pr(G |s1, sT)

only a function of the initial state

 and the current state 
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Overall system model

Potential goals 𝒢

Observer’s prediction model Agent’s planning model

Deceptive policy

π⋆ : S × A → [0,1]
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Overall system model

Potential goals 𝒢

Observer’s prediction model Agent’s planning model

Deceptive policy

π⋆ : S × A → [0,1]c : S × A → [0,1]

Pr(G |s1, sT)Goal-directed behavior

Efficiency parameter

α ∈ [0,∞)

Prior beliefs

Pr(G)

10



Agent’s planning model: expressing deception as a cost function

We express deception objective as a generic cost function

f : S × A → [0,1]
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Agent’s planning model: expressing deception as a cost function

We express deception objective as a generic cost function

f : S × A → [0,1]

f (s, a) = 1 + Pr(G⋆ |s1, s) − max
G∈𝒢\{G⋆}

Pr(G |s1, s)

Exaggeration:

Relative likelihood of decoy goal

0 1

f(
s,

a)

2

Cost decreases as 

decoy becomes more


 likely to be the true goal
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Agent’s planning model: expressing deception as a cost function

We express deception objective as a generic cost function

f : S × A → [0,1]

f (s, a) = 1 + Pr(G⋆ |s1, s) − max
G∈𝒢\{G⋆}

Pr(G |s1, s)

Exaggeration:

Relative likelihood of decoy goal

0 1

f(
s,

a)

2

Cost decreases as 

decoy becomes more


 likely to be the true goal

f (s, a) = ∑
G∈𝒢

∑
G′￼∈𝒢

Pr(G |s1, s) − Pr(G′￼|s1, s)

Ambiguity:

Relative decoy goal probability
0 1

f(
s,

a)

2

Cost decreases as 

the likelihood of all goals 


become equal
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Agent’s planning model: a constrained optimization problem

The agent’s objective is to reach its goal while deceiving the observer about its goal for as long as possible

π⋆ ∈ arg min
π∈Π

𝔼π[
∞

∑
t=0

γt
a f (st, at)]

subject to: Prπ(Reach[G⋆]) = Rmax(G⋆) reach the true goal  

with maximum probability

G⋆

minimize total discounted cost
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Agent’s planning model: a constrained optimization problem

The agent’s objective is to reach its goal while deceiving the observer about its goal for as long as possible

π⋆ ∈ arg min
π∈Π

𝔼π[
∞

∑
t=0

γt
a f (st, at)]

subject to: Prπ(Reach[G⋆]) = Rmax(G⋆) reach the true goal  

with maximum probability

G⋆

minimize total discounted cost

An optimal policy  may not existπ⋆

a1, 1

a2, 0

Infimum is zero 

and not attainable
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Minimizing total discounted cost subject to reachability constraints

We show that an optimal stationary policy exists and can be synthesized efficiently.ϵ−

We show that it is NP-hard to synthesize an optimal stationary deterministic policy.

We show that a stationary deterministic policy with suboptimality guarantees can be synthesized efficiently.

We provide a comprehensive analysis of this problem in [1].

We provide necessary and sufficient conditions for the existence of optimal policies.

[1] Y. Savas, C. Verginis, M. Hibbard, U. Topcu, ``On minimizing total discounted cost in MDPs subject to reachability constraints”, 

      IEEE Transactions on Automatic Control, 2022. (accepted) 13



Synthesizing policies via linear programming

Variables:            for all x(s, a) s ∈ S, a ∈ A

Constraints: x(s, a) ≥ 0

∑
a∈A

x(s, a) − ∑
t∈S

∑
a∈A

ℙt,a,sx(t, a) = 𝕀{s = s1}

Objective: min
x(s,a) ∑

s∈S
∑
a∈A

x(s, a)g(s, a)

∑
t∈S

∑
a∈A

x(t, a)Pt,a,G⋆ = Rmax(G⋆)
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Overall system model

Potential goals 𝒢

Observer’s prediction model Agent’s planning model

Deceptive policy

π⋆ : S × A → [0,1]c : S × A → [0,1]

Pr(G |s1, sT)Goal-directed behavior

Efficiency parameter

α ∈ [0,∞)

Prior beliefs

Pr(G)
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Overall system model

Potential goals 𝒢

Observer’s prediction model Agent’s planning model

Deceptive policy

π⋆ : S × A → [0,1]c : S × A → [0,1]

Pr(G |s1, sT)Goal-directed behavior

Efficiency parameter

α ∈ [0,∞)

Prior beliefs

Pr(G)

f : S × A → [0,1]

Type of deception

Discount factor

γa ∈ (0,∞)

True Goal

G⋆

via linear 

programming
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Generating tunable deceptive behavior

The agent starts from  and aims to reach its goal  while exaggerating its behavior towards S G1 G2 .

initial state

true goal

decoy goal

states along potential

shortest trajectories 
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Generating tunable deceptive behavior

The agent starts from  and aims to reach its goal  while exaggerating its behavior towards S G1 G2 .

Effect of : is the agent expected to be efficient?α
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User Study 1 - the importance of global optimality

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.

true goal decoy goal

initial state
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A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.

Question 1:  Based on the robot’s partial trajectory, which one do you think is the robot’s goal?

Question 2: How confident are you in the robot’s goal?

GD: A functional gradient descent-based approach

DPP: A heuristic approach utilizing least deceptive point

Base: Baseline trajectory (shortest path to the goal)
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User Study 1 - the importance of global optimality

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.
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User Study 2 - the importance of prediction-awareness

true goal

initial state

decoy goal

decoy goal

decoy goal
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A user study via Amazon MTurk (240 participants) to illustrate the benefits of prediction-awareness.
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User Study 2 - the importance of prediction-awareness
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A user study via Amazon MTurk (240 participants) to illustrate the benefits of prediction-awareness.



A case study in the streets of Manhattan, New York

Real travel speed data from an open-source database in [1]. 

[1] Uber Technologies, I. 2021. Uber movement.

Lognormal travel time distribution

initial state

true goal

decoy goal
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Conclusions

Deceptive capabilities have the potential to improve security in autonomy.

We propose an efficient deception algorithm that 


• works in stochastic environments, 

• adjusts behavior according to predictions, 

• and has global performance guarantees.

We present a comprehensive analysis for minimizing total discounted cost 

in MDPs subject to reachability constraints.

We show the effectiveness of the proposed method through user studies.
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Thanks for listening!

Yagiz Savas


yagiz.savas@utexas.edu


