Deceptive Decision-Making Against Adversaries: Theory, Algorithms, and User Studies

Yagiz Savas

yagiz.savas@utexas.edu

In collaboration with Christos Verginis, Michael Hibbard, Emilie Thome, and Ufuk Topcu

Deception is a critical capability that helps ...

animals to survive.

teams to win games.

armies to win battles.

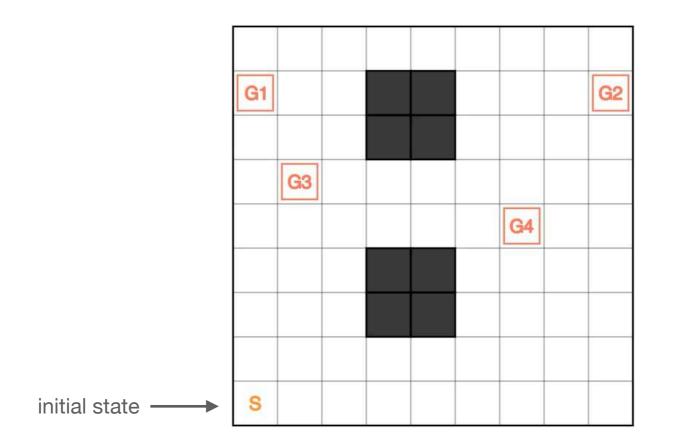
Deceptive capabilities in autonomy will lead to enhanced security ...

in surveillance missions.

in aerial battles.

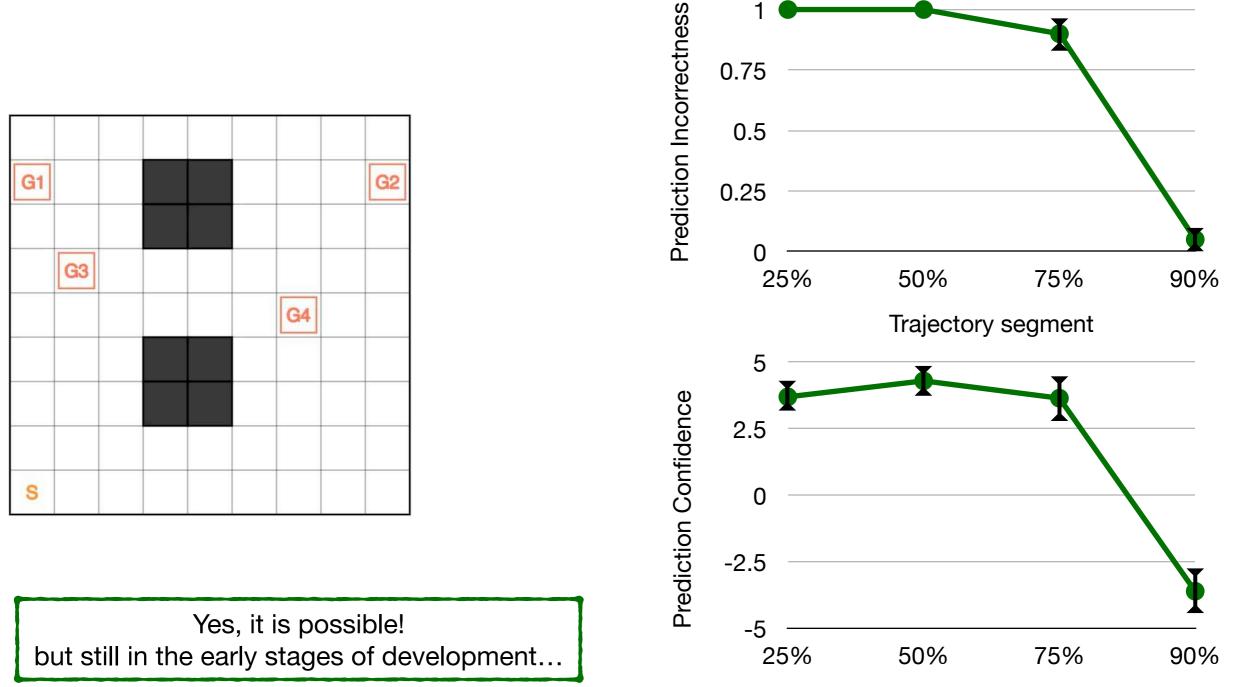
in cyber space.

Is autonomous deception really possible?



Is autonomous deception really possible?

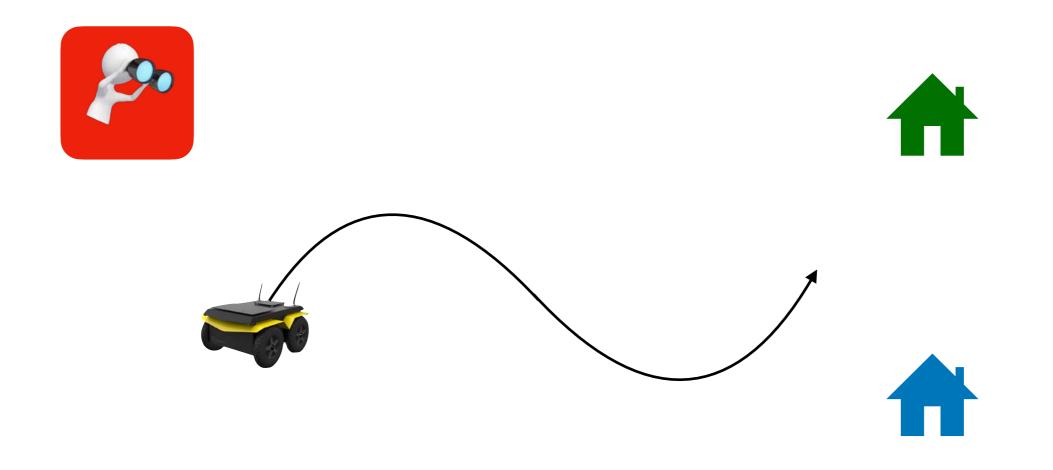
* Based on the user study in [1]



Trajectory segment

Overview

- Observer's prediction model
- Deception as a constrained optimization problem
- Technical considerations
- User studies and a case study in Manhattan, New York



Related work and contributions

- Game-theoretic approaches with demanding computational requirements [1,2]
- Heuristic approaches tailored to specific scenarios [3,4]
- Gradient descent-based approaches that have only local optimality guarantees [5]

Contribution: An efficient deception algorithm that works in stochastic environments, adjusts behavior according to predictions, and has global performance guarantees [6].

[1] R. Wagner, and R. Arkin, ``Acting deceptively: Providing robots with the capacity for deception", International Journal of Social Robotics, 3(1):5–26, 2011.

[2] A. Anwar, and C. Kamhoua, ``Game theory on attack graph for cyber deception", International Conference on Decision and Game Theory for Security, 445–456, 2020.

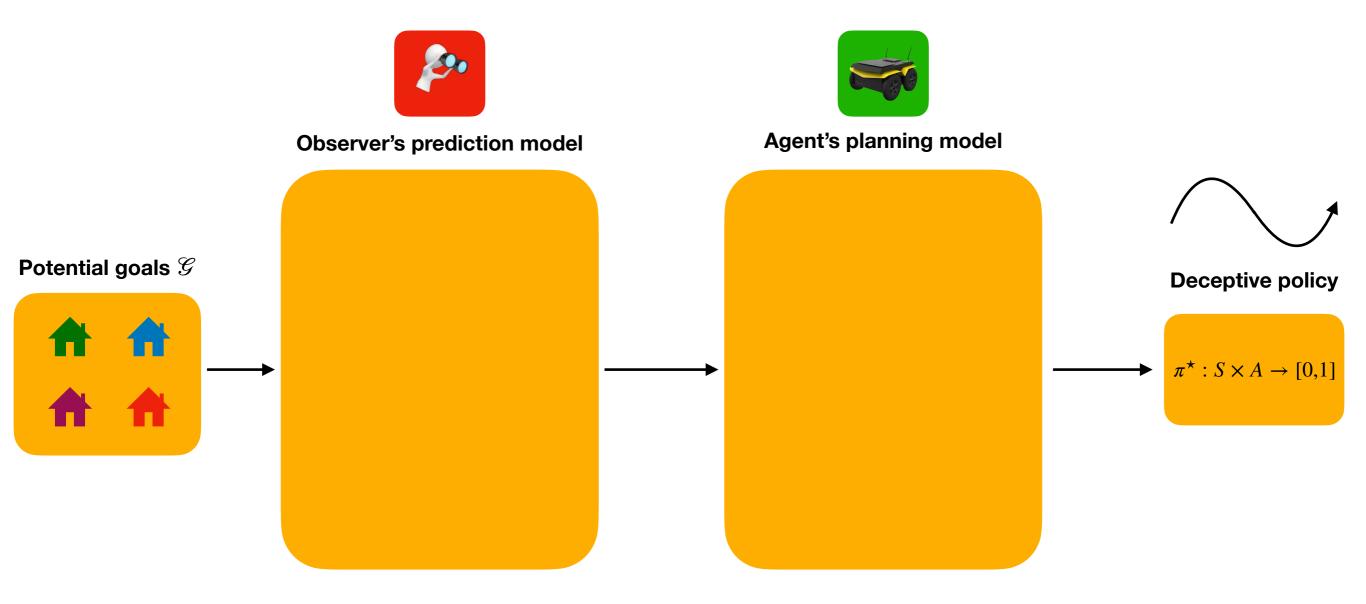
[3] P. Masters, and S. Sardina, ``Deceptive path-planning", International Joint Conference on Artificial Intelligence, 2017.

[4] M. Pettinati, and R. Arkin, "Push and pull: Shepherding multi-agent robot teams in adversarial situations", International Conference on Advanced Robotics and its Social Impacts, 2019.

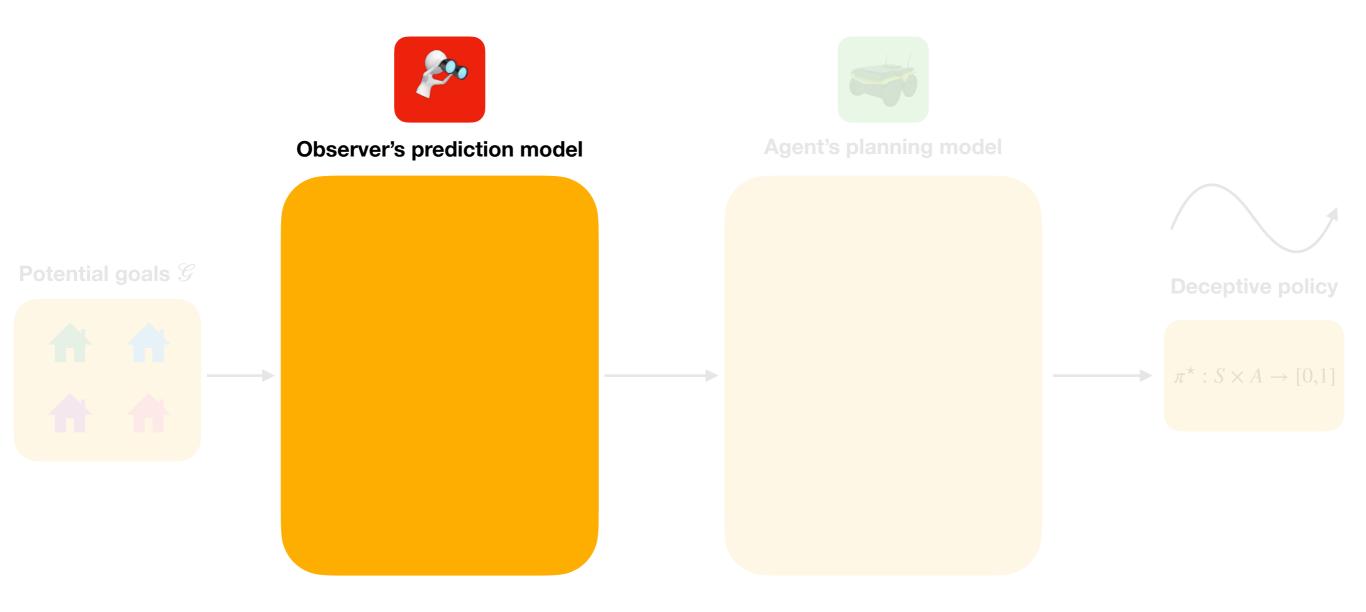
[5] A. Dragan, A, R. Holladay, and S. Srinivasa, ``Deceptive robot motion: synthesis, analysis and experiments", Autonomous Robots, 39(3):331-345, 2015.

[6] Y. Savas, C. Verginis, U. Topcu, "Deceptive decision-making under uncertainty", AAAI Conference on Artificial Intelligence, 2021 (under review)

Overall system model

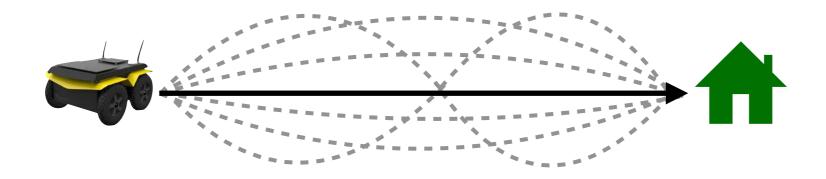


Overall system model



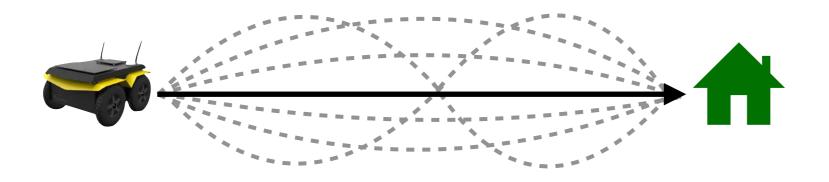
Observer's prediction model: the principle of maximum entropy

Observers expect the agent behavior to be goal-directed with a certain degree of efficiency.



Observer's prediction model: the principle of maximum entropy

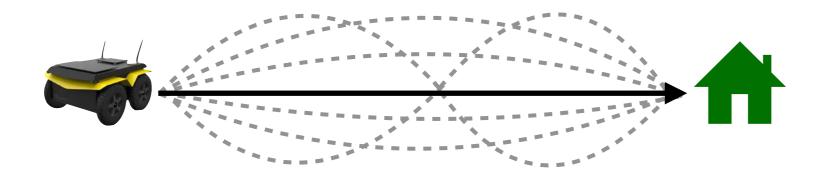
Observers expect the agent behavior to be goal-directed with a certain degree of efficiency.



The principle of maximum entropy: the distribution that best represent the current state of knowledge is maximally noncommittal with regard to missing information

Observer's prediction model: the principle of maximum entropy

Observers expect the agent behavior to be goal-directed with a certain degree of efficiency.



The principle of maximum entropy: the distribution that best represent the current state of knowledge is maximally noncommittal with regard to missing information

We can formally express the agent's expected goal-directed behavior $\overline{\pi}_G$ as

$$\overline{\pi}_{G} \in \arg\min_{\pi \in \Pi} \mathbb{E}^{\pi} \Big[\sum_{t=0}^{\infty} \gamma_{o}^{t} \Big(c(s_{t}, a_{t}) - \alpha H(\pi(s_{t}, \cdot)) \Big) \Big]$$

entropy regularization
$$\overline{\pi}_{G} \in \arg\min_{\pi \in \Pi} \mathbb{E}^{\pi} \Big[\sum_{t=0}^{\infty} \gamma_{o}^{t} \Big(c(s_{t}, a_{t}) - \alpha H(\pi(s_{t}, \cdot)) \Big) \Big]$$

subject to: $\Pr^{\pi}(Reach[G]) = R_{max}(G)$ \longleftarrow reach the goal G
with maximum probability

The observer knows that the agent is moving towards one of N potential goals $\mathscr{G} = \{G_1, G_2, ..., G_N\}$.

Given a partial agent trajectory $\zeta_{1:T}$, the observer aims to predict the agent's true goal $G^{\star} \in \mathcal{G}$.

The observer knows that the agent is moving towards one of N potential goals $\mathcal{G} = \{G_1, G_2, ..., G_N\}$.

Given a partial agent trajectory $\zeta_{1:T}$, the observer aims to predict the agent's true goal $G^{\star} \in \mathcal{G}$.

Bayes' rule
$$\longrightarrow \Pr(G | \zeta_{1:T}) = \frac{\Pr(\zeta_{1:T} | G) \Pr(G)}{\sum_{G' \in \mathscr{G}} \Pr(\zeta_{1:T} | G') \Pr(G')} \longleftarrow \Pr(G)$$
 Prior beliefs on potential goals

How is the agent expected to reach the goal G'?

The observer knows that the agent is moving towards one of N potential goals $\mathcal{G} = \{G_1, G_2, ..., G_N\}$.

Given a partial agent trajectory $\zeta_{1:T}$, the observer aims to predict the agent's true goal $G^{\star} \in \mathcal{G}$.

Bayes' rule
$$\longrightarrow$$
 $\Pr(G|\zeta_{1:T}) = \frac{\Pr(\zeta_{1:T}|G)\Pr(G)}{\sum_{G' \in \mathscr{G}} \Pr(\zeta_{1:T}|G')\Pr(G')}$ \longleftarrow Prior beliefs on potential goals

How is the agent expected to reach the goal
$$G'$$
?

Compute the conditional probabilities $Pr(\zeta_{1:T} | G)$ using the expected goal-directed behavior $\overline{\pi}_{G}$.

The observer knows that the agent is moving towards one of N potential goals $\mathcal{G} = \{G_1, G_2, ..., G_N\}$.

Given a partial agent trajectory $\zeta_{1:T}$, the observer aims to predict the agent's true goal $G^{\star} \in \mathcal{G}$.

Bayes' rule
$$\longrightarrow$$
 $\Pr(G|\zeta_{1:T}) = \frac{\Pr(\zeta_{1:T}|G)\Pr(G)}{\sum_{G' \in \mathscr{G}} \Pr(\zeta_{1:T}|G')\Pr(G')}$ \longleftarrow Prior beliefs on potential goals

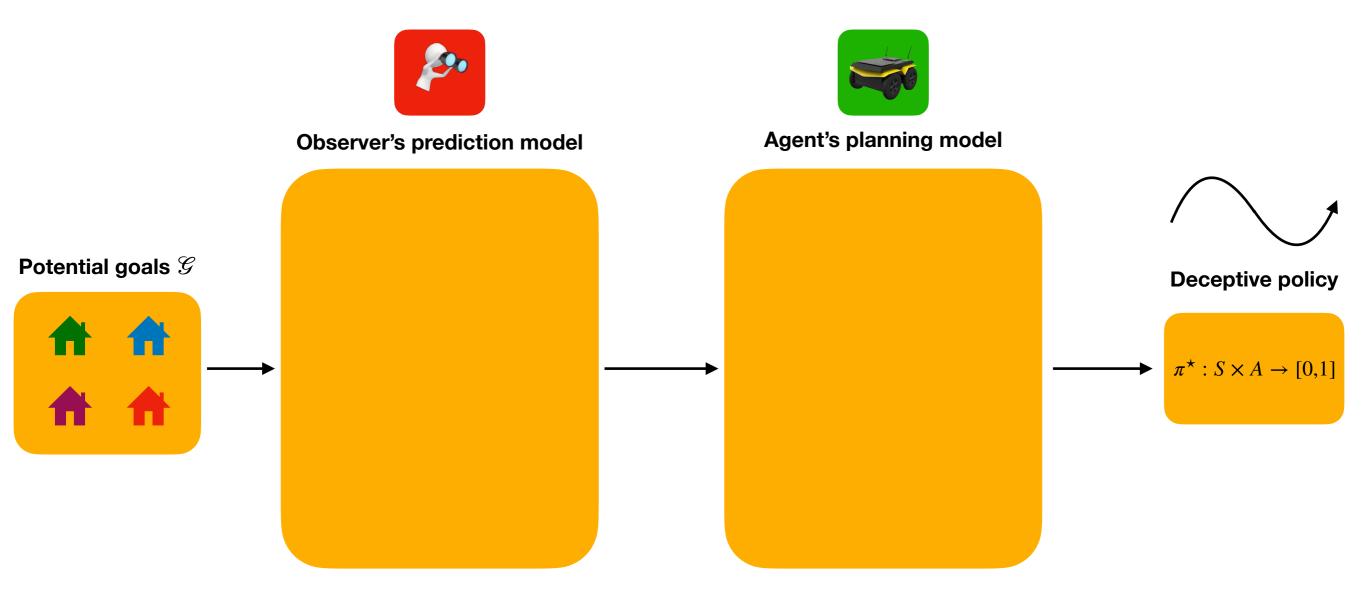
How is the agent expected to reach the goal G'?

Compute the conditional probabilities $Pr(\zeta_{1:T} | G)$ using the expected goal-directed behavior $\overline{\pi}_G$.

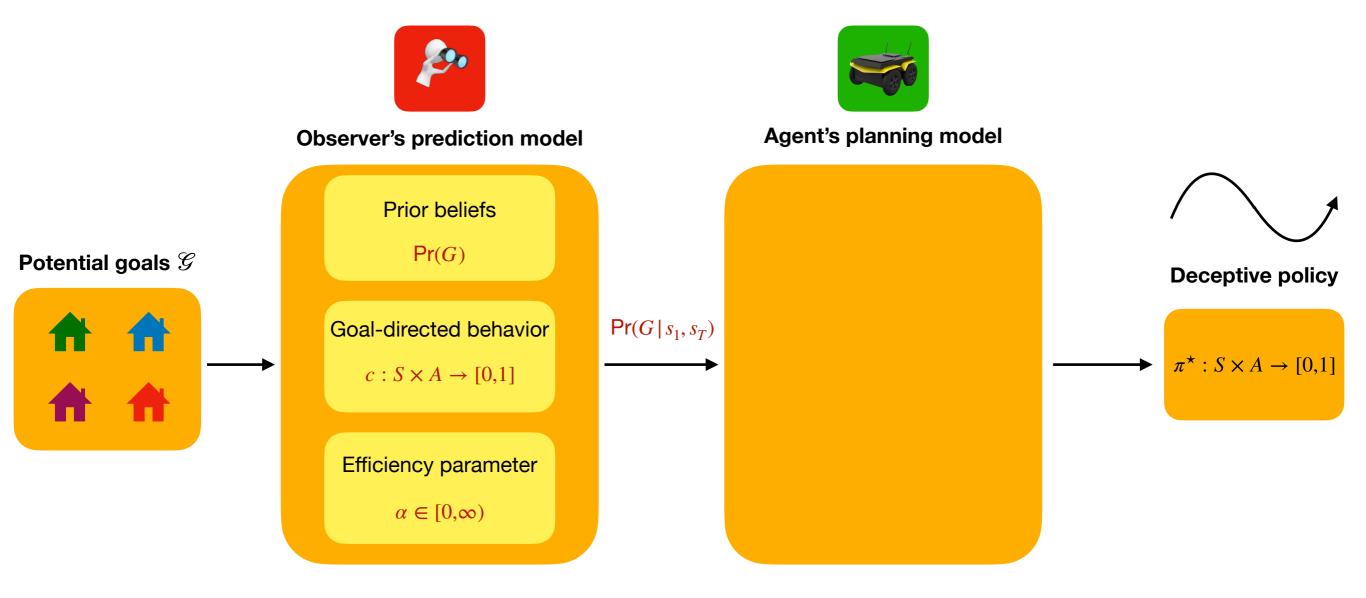
As a result, we have

$$\Pr(G|\zeta_{1:T}) \approx \frac{e^{V_G(s_T) - V_G(s_1)} \Pr(G)}{\sum_{G' \in \mathscr{F}} e^{V_{G'}(s_T) - V_{G'}(s_1)} \Pr(G')} \cdot \int \frac{\Pr(G|\zeta_{1:T}) = \Pr(G|s_1, s_T)}{\operatorname{only} a \text{ function of the initial state}}$$

Overall system model



Overall system model



Agent's planning model: expressing deception as a cost function

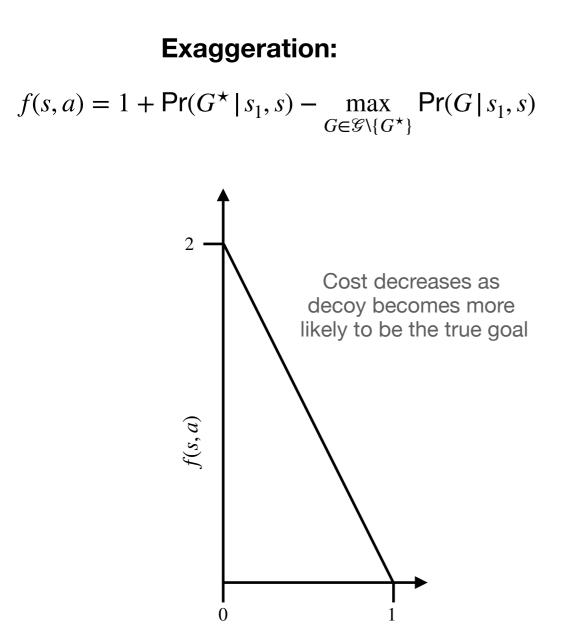
We express deception objective as a generic cost function

 $f:S\times A\to [0,1]$

Agent's planning model: expressing deception as a cost function

We express deception objective as a generic cost function

 $f:S\times A\to [0,1]$

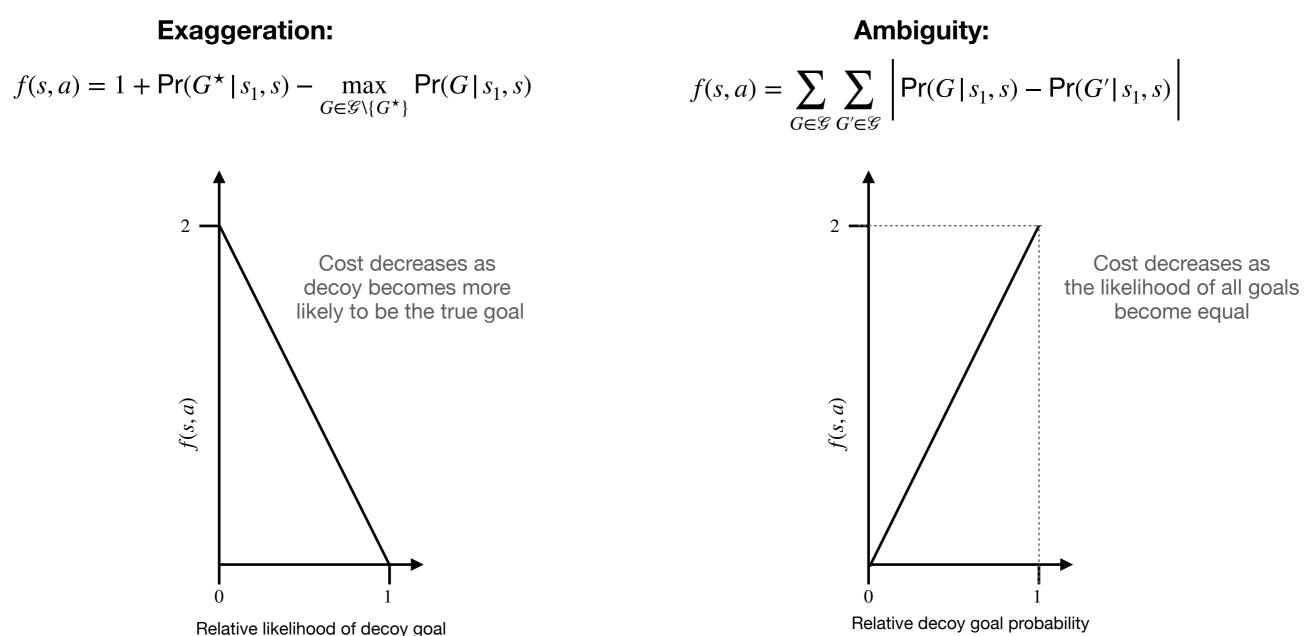


Relative likelihood of decoy goal

Agent's planning model: expressing deception as a cost function

We express deception objective as a generic cost function

 $f:S\times A\to [0,1]$



Agent's planning model: a constrained optimization problem

The agent's objective is to reach its goal while deceiving the observer about its goal for as long as possible

$$\pi^{\star} \in \arg\min_{\pi \in \Pi} \mathbb{E}^{\pi} \Big[\sum_{t=0}^{\infty} \gamma_{a}^{t} f(s_{t}, a_{t}) \Big] \qquad \longleftarrow \qquad \text{minimize total discounted cost}$$

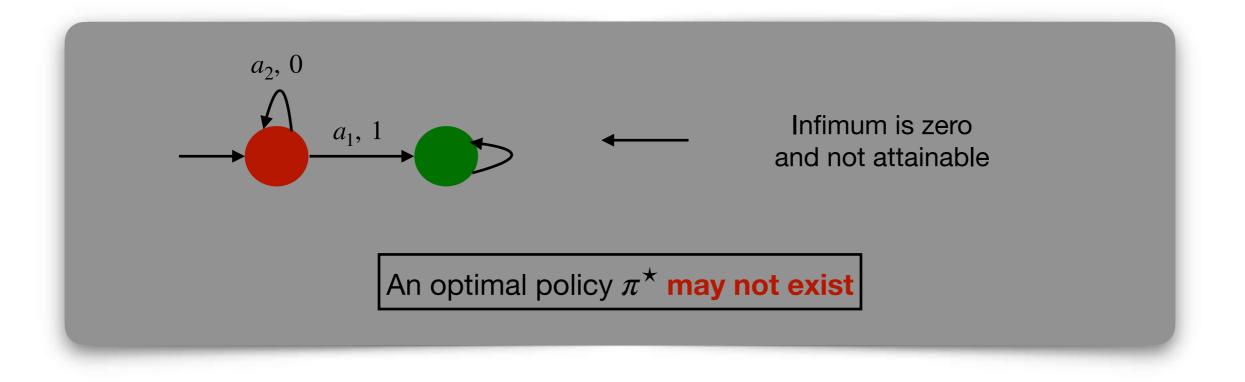
subject to: $\Pr^{\pi}(Reach[G^{\star}]) = R_{max}(G^{\star}) \qquad \qquad \text{reach the true goal } G^{\star}$
with maximum probability

Agent's planning model: a constrained optimization problem

The agent's objective is to reach its goal while deceiving the observer about its goal for as long as possible

$$\pi^{\star} \in \arg\min_{\pi \in \Pi} \mathbb{E}^{\pi} \Big[\sum_{t=0}^{\infty} \gamma_{a}^{t} f(s_{t}, a_{t}) \Big] \qquad \longleftarrow \qquad \text{minimize total discounted cost}$$

subject to: $\Pr^{\pi}(Reach[G^{\star}]) = R_{max}(G^{\star}) \qquad \qquad \text{reach the true goal } G^{\star}$
with maximum probability



Minimizing total discounted cost subject to reachability constraints

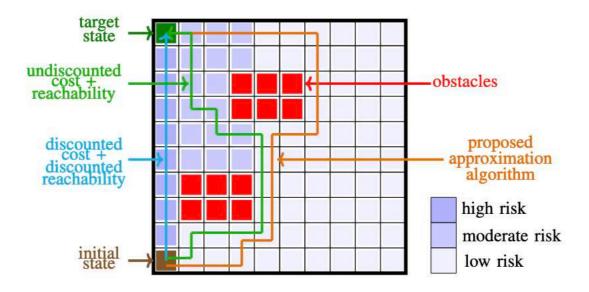
We provide a comprehensive analysis of this problem in [1].

We provide **necessary and sufficient** conditions for the existence of optimal policies.

We show that an ϵ -optimal **stationary** policy exists and can be synthesized **efficiently.**

We show that it is **NP-hard** to synthesize an optimal **stationary deterministic** policy.

We show that a stationary deterministic policy with suboptimality guarantees can be synthesized efficiently.



[1] Y. Savas, C. Verginis, M. Hibbard, U. Topcu, "On minimizing total discounted cost in MDPs subject to reachability constraints", IEEE Transactions on Automatic Control, 2022. (accepted)

Synthesizing policies via linear programming

Variables: x(s, a) for all $s \in S, a \in A$

Constraints: $x(s, a) \ge 0$

min

x(s,a)

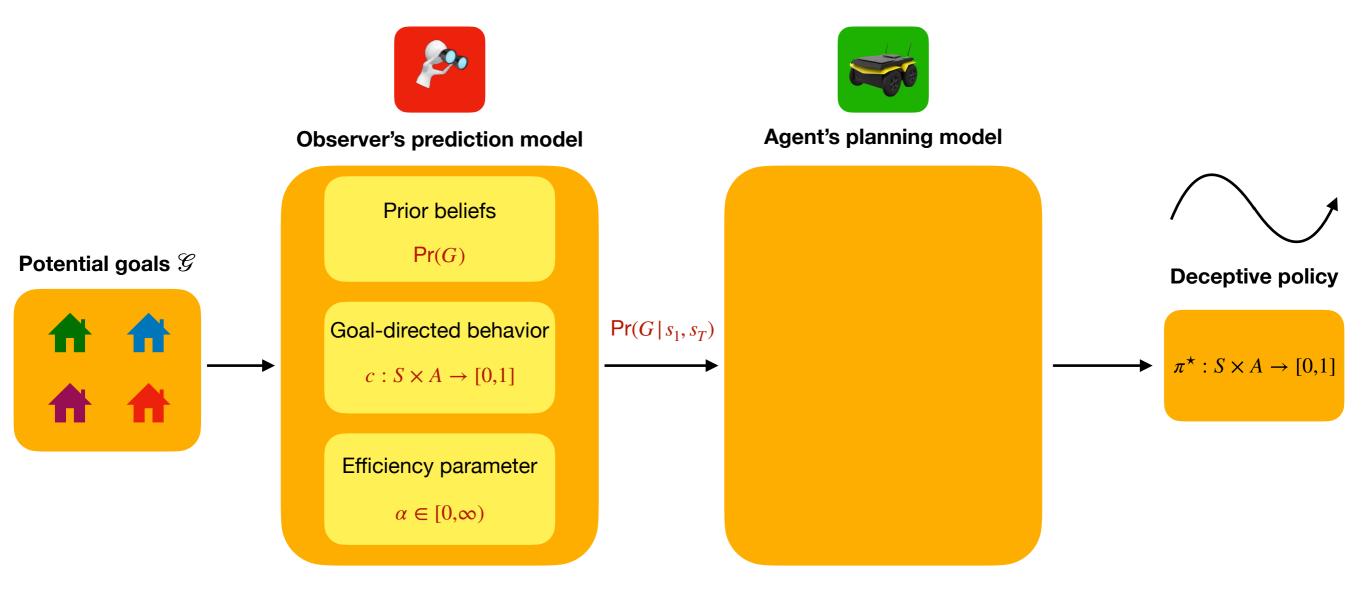
$$\sum_{a \in A} x(s, a) - \sum_{t \in S} \sum_{a \in A} \mathbb{P}_{t,a,s} x(t, a) = \mathbb{I}\{s = s_1\}$$

$$\sum_{t \in S} \sum_{a \in A} x(t, a) P_{t, a, G^{\star}} = R_{\max}(G^{\star})$$

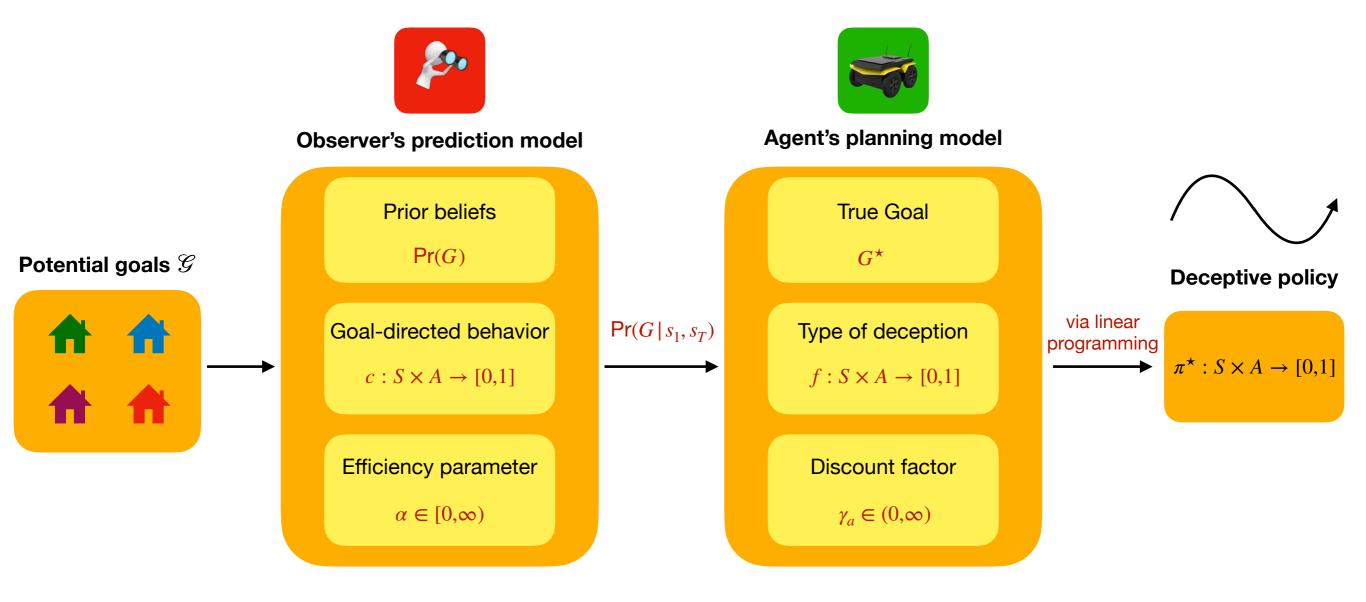
Objective:

$$\sum_{s \in S} \sum_{a \in A} x(s, a) g(s, a)$$

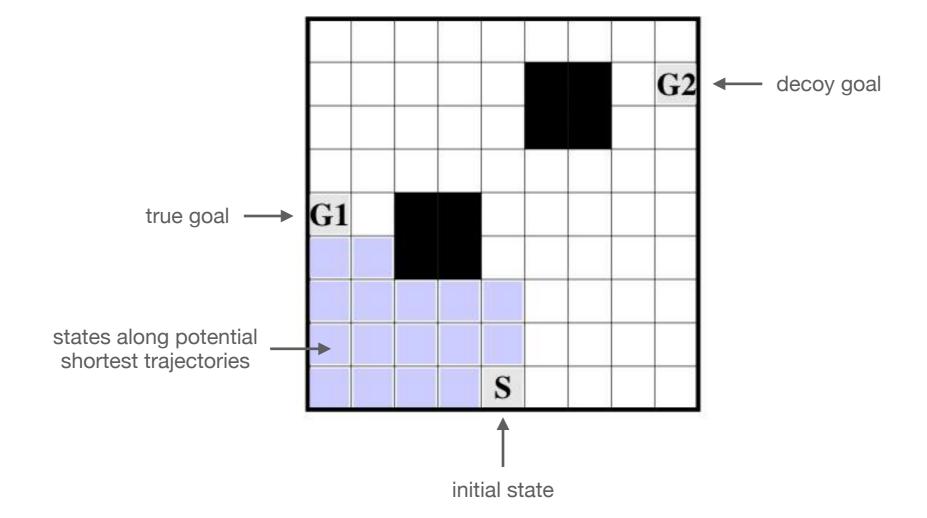
Overall system model



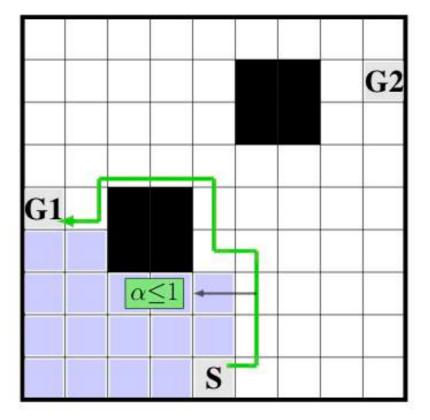
Overall system model



The agent starts from S and aims to reach its goal G_1 while **exaggerating** its behavior towards G_2 .

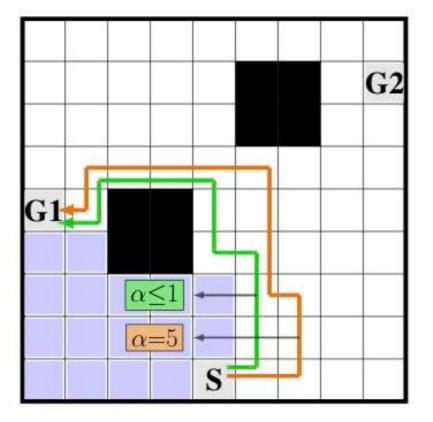


The agent starts from S and aims to reach its goal G_1 while **exaggerating** its behavior towards G_2 .



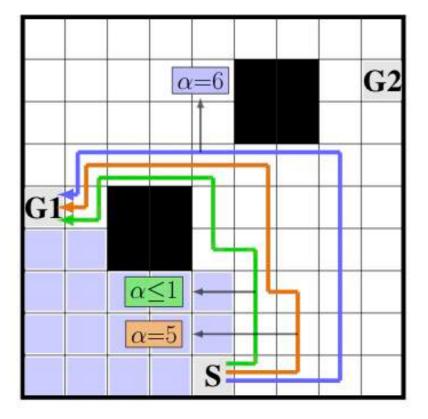
Effect of α : is the agent expected to be efficient?

The agent starts from S and aims to reach its goal G_1 while **exaggerating** its behavior towards G_2 .



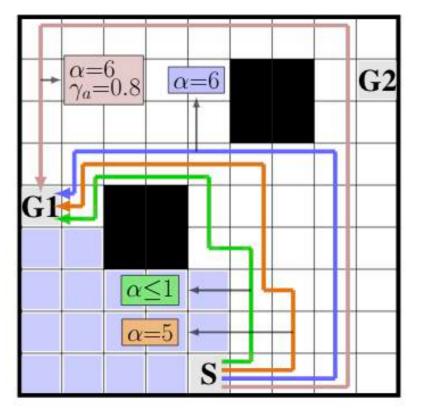
Effect of α : is the agent expected to be efficient?

The agent starts from S and aims to reach its goal G_1 while **exaggerating** its behavior towards G_2 .



Effect of α : is the agent expected to be efficient?

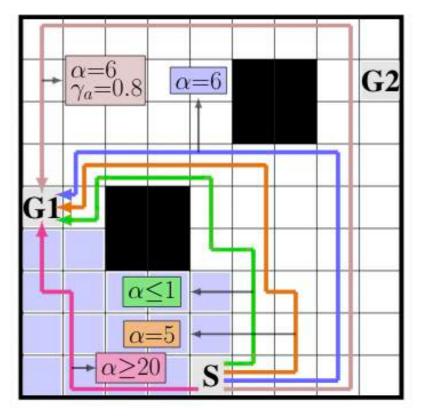
The agent starts from S and aims to reach its goal G_1 while **exaggerating** its behavior towards G_2 .



Effect of α : is the agent expected to be efficient?

Effect of γ_a : let's exploit further regions for deception.

The agent starts from S and aims to reach its goal G_1 while **exaggerating** its behavior towards G_2 .

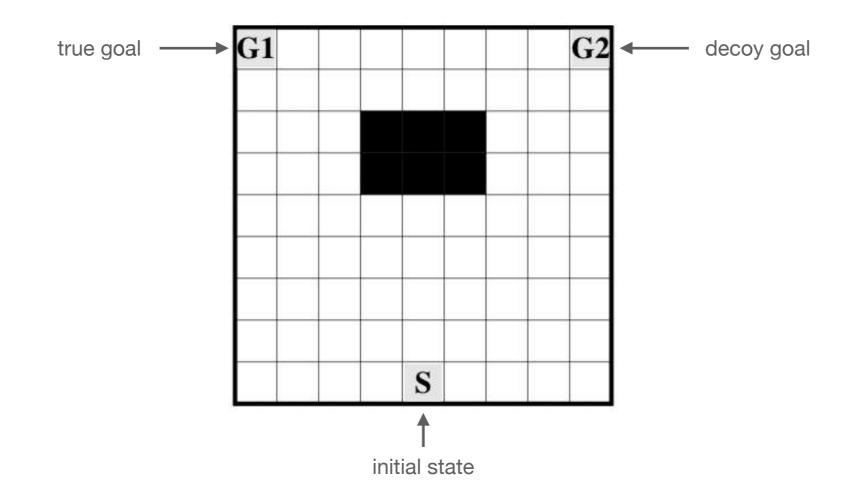


Effect of α : is the agent expected to be efficient?

Effect of γ_a : let's exploit further regions for deception.

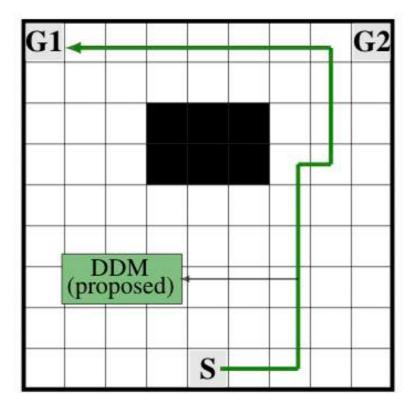
User Study 1 - the importance of global optimality

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.



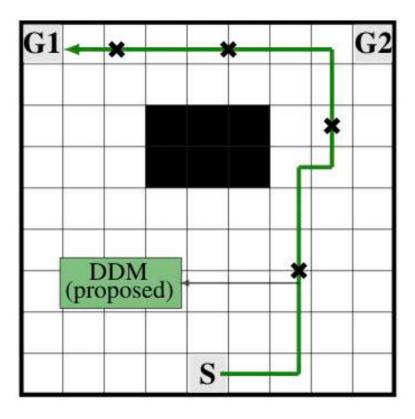
User Study 1 - the importance of global optimality

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.



User Study 1 - the importance of global optimality

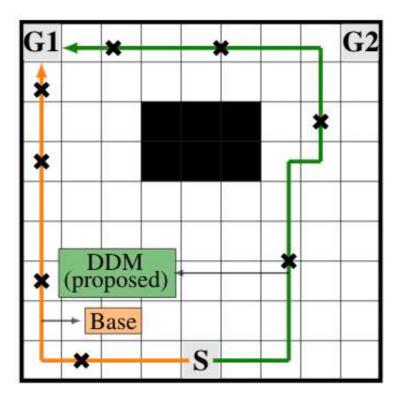
A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.



Question 1: Based on the robot's partial trajectory, which one do you think is the robot's goal?

Question 2: How confident are you in the robot's goal?

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.

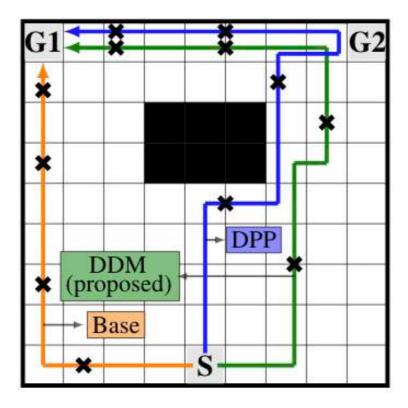


Question 1: Based on the robot's partial trajectory, which one do you think is the robot's goal?

Question 2: How confident are you in the robot's goal?

Base: Baseline trajectory (shortest path to the goal)

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.

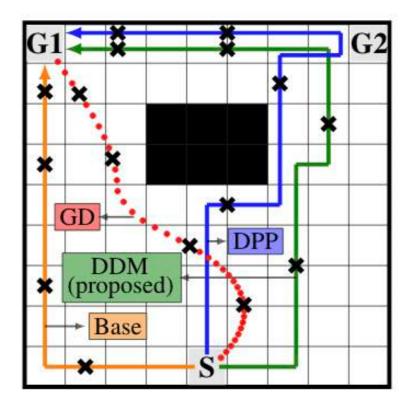


Question 1: Based on the robot's partial trajectory, which one do you think is the robot's goal?

Question 2: How confident are you in the robot's goal?

- Base: Baseline trajectory (shortest path to the goal)
- **DPP**: A heuristic approach utilizing least deceptive point

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.

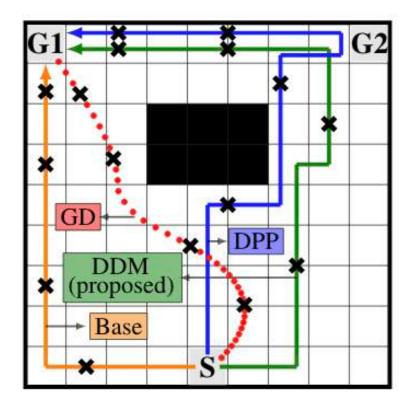


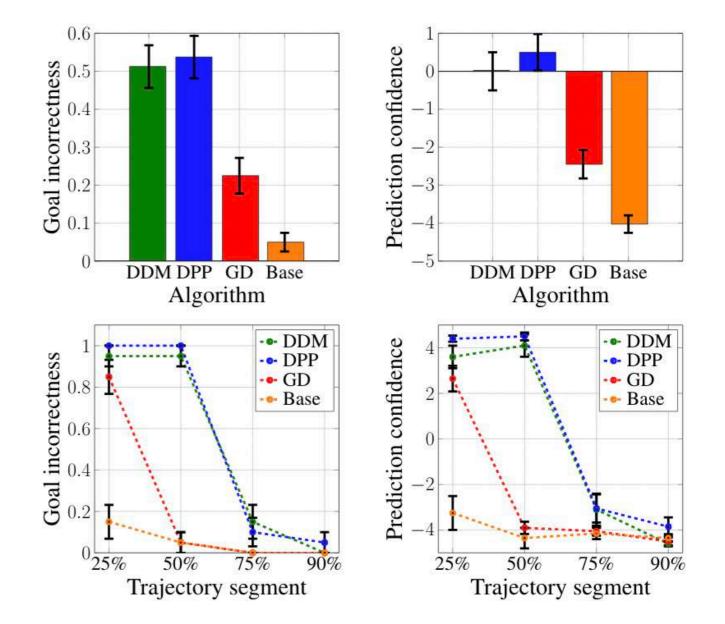
Question 1: Based on the robot's partial trajectory, which one do you think is the robot's goal?

Question 2: How confident are you in the robot's goal?

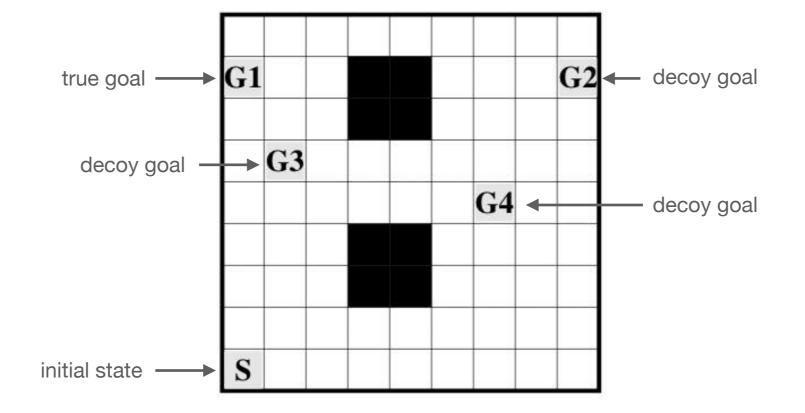
- Base: Baseline trajectory (shortest path to the goal)
- **DPP**: A heuristic approach utilizing least deceptive point
- **GD**: A functional gradient descent-based approach

A user study via Amazon MTurk (320 participants) to illustrate the benefits of global guarantees.

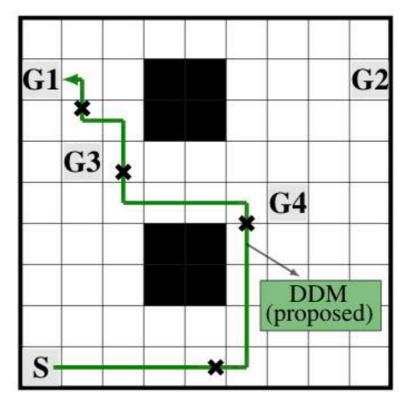




A user study via Amazon MTurk (240 participants) to illustrate the benefits of prediction-awareness.



A user study via Amazon MTurk (240 participants) to illustrate the benefits of prediction-awareness.

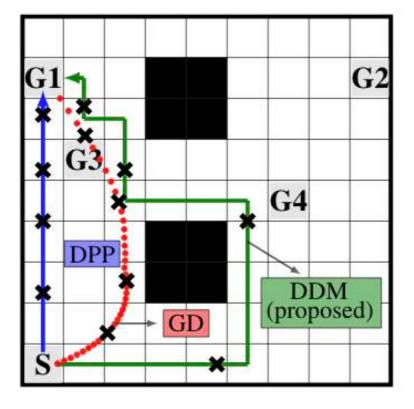


Question 1: Based on the robot's partial trajectory, which one do you think is the robot's goal?

Question 2: How confident are you in the robot's goal?

Question 3: Based on the robot's partial trajectory, which one do you think is the robot's second most likely goal?

A user study via Amazon MTurk (240 participants) to illustrate the benefits of prediction-awareness.

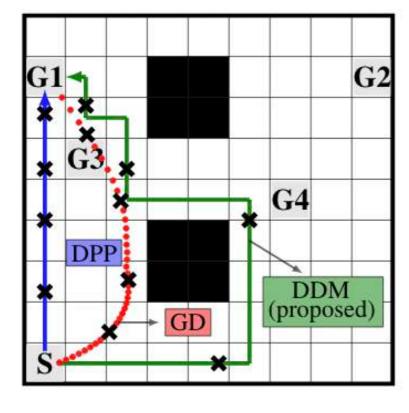


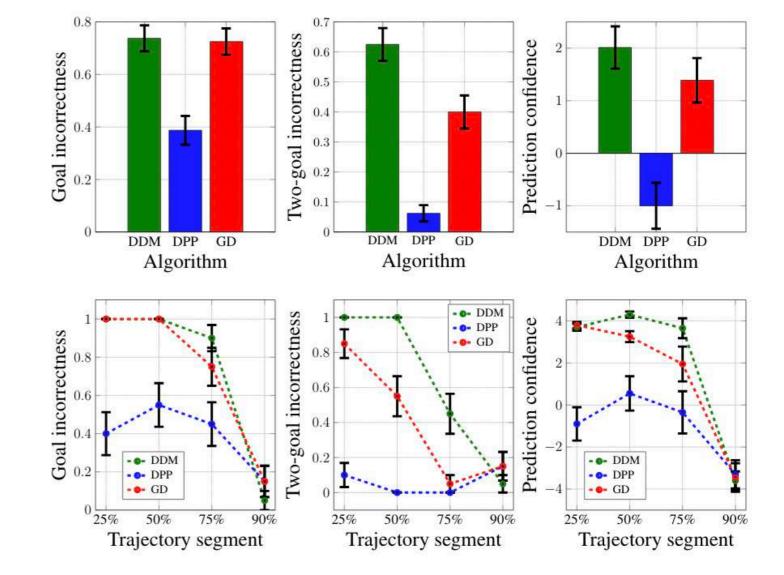
Question 1: Based on the robot's partial trajectory, which one do you think is the robot's goal?

Question 2: How confident are you in the robot's goal?

Question 3: Based on the robot's partial trajectory, which one do you think is the robot's second most likely goal?

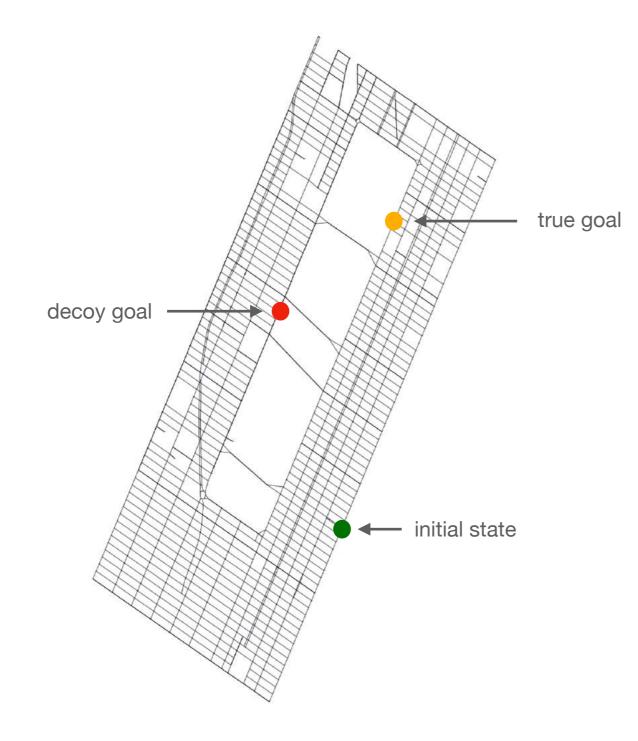
A user study via Amazon MTurk (240 participants) to illustrate the benefits of prediction-awareness.

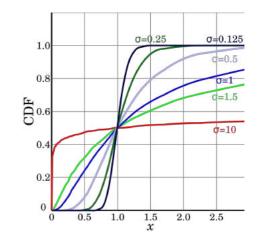




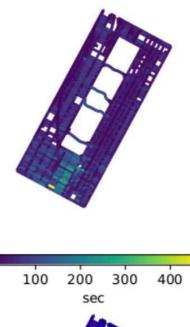
A case study in the streets of Manhattan, New York

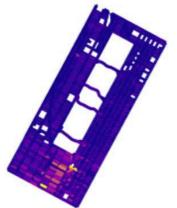
Real travel speed data from an open-source database in [1].

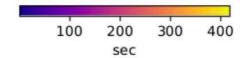




Lognormal travel time distribution

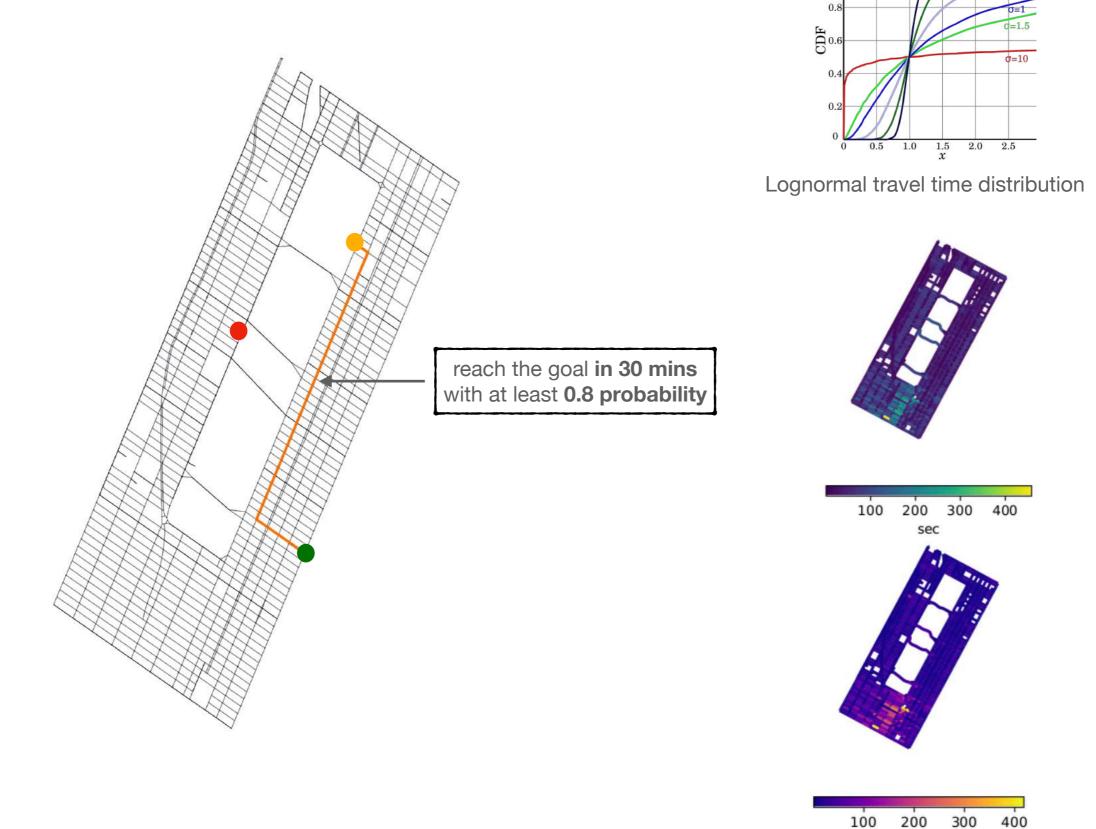






A case study in the streets of Manhattan, New York

Real travel speed data from an open-source database in [1].



[1] Uber Technologies, I. 2021. Uber movement.

sec

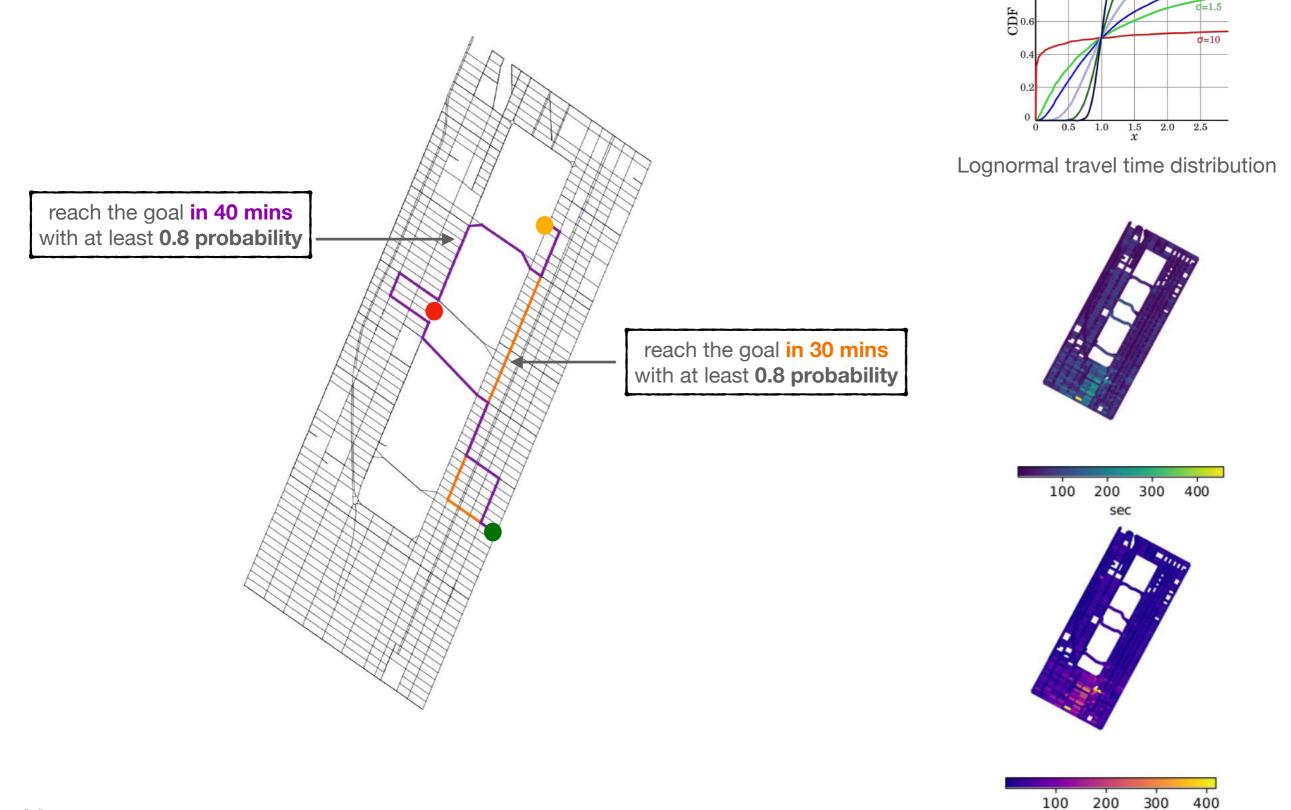
σ=0.125

=0.5

1.0

A case study in the streets of Manhattan, New York

Real travel speed data from an open-source database in [1].



sec

σ=0.125

d = 0.5

1.0

0.8

Conclusions

Deceptive capabilities have the potential to improve security in autonomy.

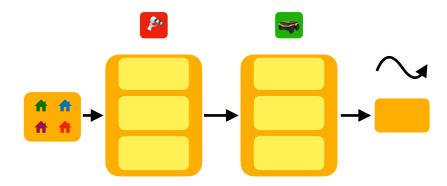
We propose an efficient deception algorithm that

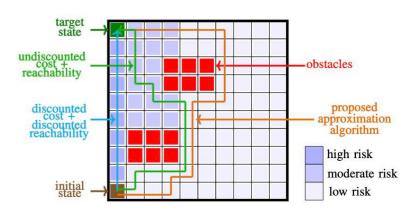
- works in stochastic environments,
- adjusts behavior according to predictions,
- and has global performance guarantees.

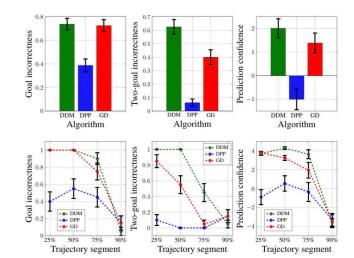
We present a comprehensive analysis for minimizing total discounted cost in MDPs subject to reachability constraints.

We show the effectiveness of the proposed method through user studies.

20







Thanks for listening!

Yagiz Savas

yagiz.savas@utexas.edu

