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What low-level controllers
could serve as building blocks (modes)

for this kind of framework?



Control Objective

Provided:

I MAS with ẋp = up, p ∈ V, in a compact domain Ω ⊂ Rd,

I Obstacles (components of ∂Ω) of general shape,

I Distance-limited comms: p, q ∈ V may communicate⇔ ‖xp − xq‖ ≤ R,

I Prescribed communication graph G = (V, E),

I Available solution to single-agent navigation of Ω,

Task: the MAS follows a leader ` ∈ V, while ‖xp − xq‖ ≤ R for all pq ∈ E .





Control Objective

A few possible objections.

I Why not just share target info and navigate individually?

 Agents may break the communication structure, jeopardizing the mission

 Restricted agent access to target info, leader trajectory, or nav solution

I Global solutions for complex cluttered environments are scarce [1, 2]. . .

 . . . but they are maturing, e.g. [3, 4, 5, 6] using only local sensing

I This problem had already been solved, many times!

 . . . only for convex domains [7] w/o collision avoidance [8, 9]

 . . . and for point/spherical obstacles [10, 11], to name a few

I Why restrict to fully actuated dynamics (ẋp = up)?

 This may be seen as a high-level abstraction

 heterogeneous extensions and higher order & constrained lifts are the next step.
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Control Objective

A few possible objections.

I Why not just share target info and navigate individually?

 Agents may break the communication structure, jeopardizing the mission

 Restricted agent access to target info, leader trajectory, or nav solution

I Global solutions for complex cluttered environments are scarce [1, 2]. . .

 . . . but they are maturing, e.g. [3, 4, 5, 6] using only local sensing

I This problem had already been solved, many times!

 . . . only for convex domains [7] w/o collision avoidance [8, 9]

 . . . and for point/spherical obstacles [10, 11], to name a few

I Why restrict to fully actuated dynamics (ẋp = up)?

 This may be seen as a high-level abstraction

 heterogeneous extensions and higher order & constrained lifts are the next step.

Need a systematic & prescriptive extension of
arbitrary single-agent navigation solutions to distributed

graph-maintaining MAS controllers (“Plug and Play”)



Control Objective

Our Notion of a Single-Agent Navigation Solution [12]:

Definition (Navigation Field)

Let Ω ⊂ Rd, d ≥ 2 be a compact domain given by Ω , [β ≥ 0], where β is a
C∞-smooth function of Rd with regular value 0. A navigation field on Ω is a
locally Lipschitz-continuous map n : Ω× Ω→ Rd satisfying the following
conditions for every y ∈ int(Ω):

1. 〈n(y, z),∇zβ(z)〉 > 0 almost everywhere on ∂Ω;

2. z = y is the unique stable equilibrium of n(y,−);

3. For almost all initial conditions x(0) ∈ Ω, the solutions x(t) of
ẋ = n(y, x) converge to y as t→∞;

4. There is a continuous positive function α : int(Ω)→ R such that
‖n(y, z)‖ ≥ α(y)‖y − z‖ holds for all z in a neighborhood of y.

I All known solutions are of this form, many with α(y) ≡ 1.

I Consistent with imposing Rantzer-type dual-Lyapunov conditions [13, 9].



Control Objective

MAIN IDEA: Replace consensus dynamics with the analogous navigation
components.

I The PnP field is a superposition of navigation fields aimed at local targets,

up ,
∑
q∼pξ

p
qn

p
q + vp , npq(x) , n(xq, xp) instead of xq − xp. (1)

I Asymmetric Rescaling Factors, ξpq (x) , ξ(xq, xp) are TBD.

I Task Component. Guides the leader to the target with gain γ > 0,

v`(x) , γn(x∗, x`)−
∑
q∼`ξ

`
qn
`
q(x), vp = 0 if p 6= `. (2)

 may be replaced with a different leader task!

Superposition of navigation fields
leaves Ω invariant by design.



Control Objective

What if ξpq where identically 1?




Control Objective

What if ξpq where identically 1?

Compare with the clover-leaf, with a slow leader:




Control Objective

What if ξpq where identically 1?

. . . and with the clover-leaf again, with a faster leader:




A Weak Invariance Principle (WIP)

Configurations.

I Configurations/Ensemble States

x , (xp)p∈V ∈ (Rd)V , ∆x , (xq − xp)pq∈E ∈ (Rd)E (3)

 need to be careful about edge orientation, see our paper [12]

I s-Available edges of a configuration x, for s > 0, are

Es(x) , {pq ∈
(V

2

)
: ‖xq − xp‖ ≤ s}. (4)

I s-Valid Configurations for G are the ones in Cs(G), where

Cs(G) , {x ∈ ΩV : E ⊆ Es(x)}. (5)

Weak Invariance Problem for Graph Maintenance:
For any % ∈ (0, R), construct controllers u such that every solution of ẋ = u
with initial (‘safe’) condition x(0) ∈ C%(G) remains in CR(G) for all time.



A Weak Invariance Principle (WIP)

Edge-Potentials and Total Potentials, following [7].

I Edge Tension Function. For r : [0,∞)→ [0,∞), p, q ∈ V, define

wpq(x) , r(‖xq − xp‖) (6)

if pq ∈ E and wpq = 0 otherwise.

I Edge Potentials are derived from the tension function via

Vpq(x) , P (‖xq − xp‖), P (ρ) ,
∫ ρ

0

r(s)sds. (7)

 . . . when r > 0 is constant, Vpq is the usual spring potential

I Total Potential. All the edge potentials are collected to form

VG(x) ,
∑
pq∈E

Vpq(x) = 1
2

∑
p∈V

∑
q∼p

P (‖xq − xp‖). (8)



A Weak Invariance Principle (WIP)

Extending an argument from [7], we have:  also works in hybrid settings [14]

Theorem (Weak Invariance for Graph Maintenance)

Suppose r is monotone non-decreasing on [0, R] and |E|P (%) < P (R). Let
u = u(x) be a Lipschitz-continuous controller on ΩV .
If V̇G ≤ 0 holds whenever ‖xq − xp‖ ∈ [%,R] for some pq ∈ E , then every
trajectory under u with x(0) ∈ C%(G) remains in CR(G) for all time.

Proof.
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Extending an argument from [7], we have:  also works in hybrid settings [14]

Theorem (Weak Invariance for Graph Maintenance)

Suppose r is monotone non-decreasing on [0, R] and |E|P (%) < P (R). Let
u = u(x) be a Lipschitz-continuous controller on ΩV .
If V̇G ≤ 0 holds whenever ‖xq − xp‖ ∈ [%,R] for some pq ∈ E , then every
trajectory under u with x(0) ∈ C%(G) remains in CR(G) for all time.

Proof. Take x(t) a trajectory with x(0) ∈ C%(G) exiting CR(G). Let

t1 , inf {t ∈ [0,∞) : x(t) /∈ CR(G)} , t0 , sup {t ∈ [0, t1) : x(t) ∈ C%(G)} .

First, x(t0) ∈ Cρ(G) implies VG(t0) ≤ |E|P (%) < P (R). Next, for at least one
pq ∈ E we have ‖xq(t1)− xp(t1)‖ = R, hence P (R) ≤ VG(t1) and therefore
also VG(t0) < VG(t1).
However, by assumption we have VG(t1)− VG(t0) =

∫ t1
t0
V̇G(t)dt ≤ 0, which

contradicts the previous observation.



Consensus & Weighted Laplacians

Advantages of the Edge Potentials Design.

I Edge Gradient. This design comes to ensure the identities

∇pVpq = wpq(xp − xq) = −∇qVpq, ∇uVpq = 0, (9)

for pq ∈ E and any u ∈ V, u 6= p, q.

I Total Gradient. Magically, it turns out that

∇VG(x) = 2(Lw ⊗ Id)x. (10)

I Weighted Vector Laplacian. As an operator on (Rd)V ≡ RV ⊗Rd,

((Lw ⊗ Id)x)p =
∑
q∼pwpq(xp − xq). (11)

I (Lw ⊗ Id) is positive-semidefinite;
I ker(Lw ⊗ Id) is the consensus subspace, ∆V , {x : ∆x = 0},

provided G is connected.



Consensus & Weighted Laplacians

Under the hood of, e.g. [15, 16, 7], as presented in [12]:

I Write x = x0 + x⊥, x0 ∈∆V , x⊥ ∈ (∆V)⊥.

I Write the dynamics/controller as ẋ = u, u = −(Lw ⊗ Id)x + v,

I −(Lw ⊗ Id)x is the consensus component;
I v is the task component of the controller.

I For ‖∆x‖∞ ∈ [%,R], a bunch of standard arguments yields. . .

 an edge is at risk of breaking
V̇G(x) = 〈ẋ, 2(Lw ⊗ Id)x〉

= 〈−(Lw ⊗ Id)x + v, 2(Lw ⊗ Id)x〉

= −2‖(Lw ⊗ Id)x
⊥‖2 + 2〈v, (Lw ⊗ Id)x

⊥〉

≤ −2λ2(G, w)2‖x⊥‖2 + 2‖v‖‖Lw ⊗ Id‖‖x⊥‖

≤ −λ2(G, w)2‖∆x‖∞ + 2‖v‖ · λN (G, w) ·
√
N‖∆x‖∞

≤ −r(%)2λ2(G)2%2 + 2‖v‖ · r(R)λN (G) ·
√
NR

≤ −λ2(G)2%2r(%)2 + 2‖v‖ · 2∆(G)r(R) ·
√
NR.

(12)



Consensus & Weighted Laplacians

Applying the Weak Invariance Principle:

I For ‖∆x‖∞ ∈ [%,R] we always have  an edge is at risk of breaking

V̇G(x) ≤ −λ2(G)2%2r(%)2 + 4
√
N∆(G)Rr(R)‖v‖ (13)

I In the case v = 0, the graph will always be maintained.

I In the case r(0) > 0, an exponential rate of convergence to rendezvous is
to be expected for sufficiently small ‖v‖.

I In the case when v 6= 0, bounds on ‖v‖ may guarantee graph
maintenance, with appropriate design of r.

We are looking for something similar, but with the additional
guarantee of Ω remaining invariant (obstacle-avoidance)



The “Plug’n Play” MAS Controller

Now define the PnP field “for real”:

I The PnP field is a superposition of navigation fields aimed at local targets,

up ,
∑
q∼pξ

p
qn

p
q + vp , npq(x) , n(xq, xp). (14)

I Asymmetric Rescaling Factors, ξpq (x) , ξ(xq, xp) given by

ξ(y, z) ,
r(‖y − z‖)‖y − z‖2

〈n(y, z), y − z〉 . (15)

I Task Component. Guides the leader to the target with gain γ > 0,

v`(x) , γn(x∗, x`)−
∑
q∼`ξ

`
qn
`
q(x), vp = 0 if p 6= `. (16)



The “Plug’n Play” MAS Controller

So why do we need the asymmetric rescaling from (15)?

I To deploy the WIP, must relate u(x) to (Lw ⊗ Id)x.

Definition

Let δ ∈ (0, 1]. A navigation field n on Ω is (R, δ)-good, if for all y, z ∈ Ω with
‖y − z‖ ≤ R one has

〈n(y, z), y − z〉 ≥ δ‖n(y, z)‖‖y − z‖. (17)

I n is “well-aligned” with the radial field for
nearby targets: cos∠(n(y, z), y − z) ≥ δ.

I Smaller R leads to larger δ. . .

I Trade-off between obstacle curvature and
communication radius?

n(y,z)

y-z

z
y



The “Plug’n Play” MAS Controller

Relating u to (Lw ⊗ Id)x. Consider the orthogonal decomposition

n(y, z) , p(y, z) + o(y, z), p(y, z) ∈ Sp(y − z), o(y, z) ⊥ (y − z). (18)

I When ‖y − z‖ ≤ R, this and (15) result in

ξ(y, z)n(y, z) = r(‖y − z‖)(y − z) + ξ(y, z)o(y, z). (19)

I If n is (R, δ)-good, then o(y, z) satisfies

‖y − z‖ ≤ R =⇒ ‖o(y, z)‖ ≤
√

1− δ2‖n(y, z)‖. (20)

I Overall, the PnP field takes the form:

u = −(Lw ⊗ Id)x + O + v, Op ,
∑
q∼p

ξpqo
p
q , opq , o(xq, xp). (21)

Now we may apply the WIP!



The “Plug’n Play” MAS Controller

WIP for the PnP controller. Modifying (13) for our case,

V̇G(x) ≤ −λ2(G)2%2r(%)2 + 4
√
N∆(G)Rr(R) (‖O‖+ ‖v‖)

...

≤ −λ2(G)2%2r(%)2

+ 4N∆(G)2
√

1−δ2
δ

R2r(R)2
(

1 + d`
∆(G)

1√
N

)
+ 4
√
N∆(G)Rr(R) · γ‖n(x∗, x`)‖.

(22)

For N ≥ 4 we have:

V̇G(x) ≤ −λ2(G)2%2r(%)2

+ 6N∆(G)2
√

1−δ2
δ︸ ︷︷ ︸

,δ∗

R2r(R)2

+ 4
√
N∆(G)Rr(R) · γ‖n(x∗, x`)‖.

(23)



The “Plug’n Play” MAS Controller

. . . All we need for a WIP is. . .

6δ∗N∆(G)2R2r(R)2 + 4γ
√
N∆(G)Rr(R)‖n(x∗, x`)‖ ≤ λ2(G)2%2r(%)2 (‡)

I Evidently, δ close to 1 and γ small enough will do the trick, with careful
design of the tension, r.

I BAD NEWS: we are not free to select a small δ∗. It is a
geometric property of our task!

I You cannot satisfy (‡) with a cycle around a circular obstacle.

I Communication radius needs to be very small compared to obstacles. . .

I . . . but the number of agents cannot be too large either:
λ2(G) = 4 sin2 π

2N
for a chain.

I GOOD NEWS: (‡) is extremely conservative. The PnP
controller works much better in practice!
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Case Study [12]: const. tension when safe

Soft springs between agents:
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Soft springs between agents:

Compare with softer springs:




Case Study [12]: const. tension when safe

Soft springs between agents:

Compare with stiff springs:




Case Study: zero tension when safe

Leader at front of obstacle (closer to the target):



Case Study: zero tension when safe

Leader at front of obstacle (closer to the target):

Compare with leader behind the obstacle (low PnP gain):




Case Study: zero tension when safe

Leader at front of obstacle (closer to the target):

. . . and leader behind the obstacle, with higher PnP gain:



Last Thoughts

To be continued. . .

I General behavior (non-zero tension). When the graph gets
disconnected, its components seem to be driven to rendezvous. Is
there a theorem here?

I Topological constraints. Accounting for cycles winding around
obstacles or trapping them (in 3D)

I Better WIP bounds, especially in the zero-tension case?

I Expand the range of tasks. Using generalized dual-Lyapunov
functions à-la Rantzer [13]?

I Hybrid Open System of PnP-controlled MAS tasks. A categorical
framework for disconnecting and reconnecting, adding and removing
agents, etc.



Thank You for Your Attention!
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