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{\”/ Recall from 2020. ..

Challenge: Autonomous generation of complex distributed cooperative
behaviors requires reasoning over very large combinatorial structures.
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Challenge: Autonomous generation of complex distributed cooperative
behaviors requires reasoning over very large combinatorial structures.

[they live happily ever after]

> Here, “very large combinatorial structure” =the space of all spanning trees
over a varying set of agents.
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ggzé Recall from 2020. ..

WHAT LOW-LEVEL CONTROLLERS
COULD SERVE AS BUILDING BLOCKS (MODES)
FOR THIS KIND OF FRAMEWORK?
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\/’, Control Objective

Provided:
> MAS with @, = up, p € V, in a compact domain Q C R¢,
» Obstacles (components of OL2) of general shape,
> Distance-limited comms: p,q € V may communicate < ||z, — z4|| < R,

» Prescribed communication graph G = (V,€),

v

Available solution to single-agent navigation of €2,

Task: the MAS follows a leader £ € V, while ||z, — 24

| < R for all pg € €E.

PnP controller in action

PrP controller in action
=0 =0
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g\,:,/} Control Objective

A few possible objections.

» Why not just share target info and navigate individually?
~~ Agents may break the communication structure, jeopardizing the mission

~~ Restricted agent access to target info, leader trajectory, or nav solution
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~~> ... but they are maturing, e.g. [3, 4, 5, 6] using only local sensing
» This problem had already been solved, many times!
~> ...only for CONVEX domains [7] w/o collision avoidance [8, 9]

~~ ...and for POINT/SPHERICAL obstacles [10, 11], to name a few

UFiioiia € Duke RBY OTEXas  § @ s




{\v/} Control Objective

A few possible objections.

» Why not just share target info and navigate individually?
~~ Agents may break the communication structure, jeopardizing the mission
~~ Restricted agent access to target info, leader trajectory, or nav solution
> Global solutions for complex cluttered environments are scarce [1, 2]...
~~> ... but they are maturing, e.g. [3, 4, 5, 6] using only local sensing
» This problem had already been solved, many times!
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» Why restrict to fully actuated dynamics (&p = up)?
~~ This may be seen as a high-level abstraction

~> heterogeneous extensions and higher order & constrained lifts are the next step.
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\ /J Control Objective

A few possible objections.
» Why not just share target info and navigate individually?
~~ Agents may break the communication structure, jeopardizing the mission
~ Restricted agent access to target info, leader trajectory, or nav solution
> Global solutions for complex cluttered environments are scarce [1, 2]...
~~> ... but they are maturing, e.g. [3, 4, 5, 6] using only local sensing
» This problem had already been solved, many times!
~> ...only for CONVEX domains [7] w/o collision avoidance [8, 9]
~~ ...and for POINT/SPHERICAL obstacles [10, 11], to name a few
» Why restrict to fully actuated dynamics (&p = up)?
~~ This may be seen as a high-level abstraction

~> heterogeneous extensions and higher order & constrained lifts are the next step.

Need a SYSTEMATIC & PRESCRIPTIVE extension of
ARBITRARY single-agent navigation solutions to distributed
graph- ma/ntam/ng MAS controllers (“Plug and Play”)
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%:\‘v/ , Control Objective

Our Notion of a Single-Agent Navigation Solution [12]:

Definition (Navigation Field)

Let Q C RY, d > 2 be a compact domain given by Q £ [3 > 0], where 3 is a
C°°-smooth function of R? with regular value 0. A navigation field on Q is a
locally Lipschitz-continuous map n: Q x Q — R satisfying the following
conditions for every y € int(Q2):

1. (n(y,z),V2B(z)) > 0 almost everywhere on 9;
2. z =y is the unique stable equilibrium of n(y, —);

3. For almost all initial conditions z(0) € €, the solutions z(t) of
z =n(y,z) converge to y as t — oo;

4. There is a continuous positive function « : int(2) — R such that
In(y, 2)|| > a(y)|ly — z|| holds for all z in a neighborhood of y.

» All known solutions are of this form, many with a(y) = 1.

> Consistent with imposing Rantzer-type dual-Lyapunov conditions [13, 9].
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{\\”/, Control Objective

MAIN IDEA: Replace consensus dynamics with the analogous navigation
components.

» The PnP field is a superposition of navigation fields aimed at local targets,
up = D geplong +vp, mg(x) 2 n(wg,xp) instead of 2, —x,. (1)

> Asymmetric Rescaling Factors, &2 (x) £ £(zq, xp) are TBD.
» Task Component. Guides the leader to the target with gain v > 0,

ve(x) 2 yn(x*, ) — ZqNéfgnf;(x), vp =01if p#£ L. (2)

~> may be replaced with a different leader task!

Superposition of navigation fields
leaves €} invariant by design.
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g\ ,.,/) : Control Objective

What if £] where identically 1?7
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and with the clover-leaf again, with a faster leader:
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{\w/} Invariance Principle (WIP)

Configurations.

» Configurations/Ensemble States
X £ (zp)pev € (]Rd)vv Ax £ (24 — Tp)pgee € (Rd)g (3)

~~ need to be careful about edge orientation, see our paper [12]

» s-Available edges of a configuration x, for s > 0, are
Es(x) £ {pg € (3): lzg — 2| < s} (4)
» s-Valid Configurations for G are the ones in ,(G), where
C(G) 2 {xeQV: ECEX)) (5)

Weak Invariance Problem for Graph Maintenance:
For any o € (0, R), construct controllers u such that every solution of X = u
with initial (‘safe’) condition x(0) € €,(G) remains in €r(G) for all time.
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{\w/} Invariance Principle (WIP)

Edge-Potentials and Total Potentials, following [7].
» Edge Tension Function. For r: [0,00) — [0,00), p,q € V, define

Wpq (%) 2 7([|lzg — 2p]|) (6)
if pg € € and wpqy = 0 otherwise.

» Edge Potentials are derived from the tension function via

Vio(%) 2 P(l|zq — z,])), P(p) 2 /Opr(s)sds. 7)

~> ...when r > 0 is constant, Vi, is the usual spring potential

» Total Potential. All the edge potentials are collected to form

Vo(x) £ Y Via(x) = 53 D> Plllzg — z])). (8)

PgEE PEV q~p
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{\w/} Invariance Principle (WIP)

Extending an argument from [7], we have: ~~ also works in hybrid settings [14]

Theorem (Weak Invariance for Graph Maintenance)

Suppose r is monotone non-decreasing on [0, R] and |E| P(p) < P(R). Let
u = u(x) be a Lipschitz-continuous controller on QY.

If Vg < 0 holds whenever |z, — || € [0, R] for some pq € &, then every
trajectory under u with x(0) € 6,(G) remains in €r(G) for all time.

Proof.
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Jg\w/’ variance Principle (WIP)

Extending an argument from [7], we have: ~~ also works in hybrid settings [14]

Theorem (Weak Invariance for Graph Maintenance)

Suppose r is monotone non-decreasing on [0, R] and |E| P(p) < P(R). Let
u = u(x) be a Lipschitz-continuous controller on QY.

If Vg < 0 holds whenever |z, — || € [0, R] for some pq € &, then every
trajectory under u with x(0) € 6,(G) remains in €r(G) for all time.

Proof. Take x(t) a trajectory with x(0) € %,(G) exiting ¥r(G). Let
t1 = inf {t € [0,00): x(t) & Cr(G)}, to = sup {t € [0,t1): x(t) € €,(G)}.

First, x(to) € €,(G) implies Vg(to) < |€] P(0) < P(R). Next, for at least one
pq € € we have ||zq(t1) — zp(t1)]] = R, hence P(R) < Vg(t1) and therefore
also Vg (to) < Vg(t1).

However, by assumption we have Vg(t1) — Vg(to) = fttol Vg(t)dt < 0, which
contradicts the previous observation. O
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{\w/} sus & Weighted Laplacians

Advantages of the Edge Potentials Design.

» Edge Gradient. This design comes to ensure the identities
Vi Vg = Wpq(Tp — Tq) = —VgVpg, VuVpg =0, (9)

forpg € £ and any u € V, u # p, q.
» Total Gradient. Magically, it turns out that

VVg(x) = 2(Lw ® Ig)x. (10)
» Weighted Vector Laplacian. As an operator on (R%)Y = RY @ R?,
(Lw ® Ia)x)p = Zq~pwpq(x:n — Tq). (11)
> (Ly ® 1) is positive-semidefinite;

> ker(L, ® I4) is the consensus subspace, Ay = {x: Ax = 0},
provided G is connected.

UFiisiich @ Duke &Y




{\w/} us & Weighted Laplacians

Under the hood of, e.g. [15, 16, 7], as presented in [12]:
> Write x = xg + x*, x0 € Ay, x*+ € (AV)J‘.
» Write the dynamics/controller as x = u, u = — (L, ® Ig)x + v,

» —(Ly, ® Ig)x is the consensus component,
> v is the task component of the controller.

> For |Ax||« € [0, R], @ bunch of standard arguments yields. . .

Vo () = (5,2(Ly ® L)) ~> an edge is at risk of breaking
(—(Lw @ Ig)x + v,2(Ly ® Ly)x)
= —2|(Lo ® Ta)x " ||* + 2(v, (Lw ® La)x™)
< —2X2(G, w)? |l ||* + 2| v ]| Lw ® Lallllx™ | (12)
—22(G,w)*[|Ax]|oc +2[[v][ - An (G, w) - VN[ Ao
—r(0)X2(9)*¢" + 2|[vI| - (R)An(9) - VNR
< =X (9)*0"r(0)* + 2IIvI| - 2A(G)r(R) - VNR.

IN

IN
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{\w/’ us & Weighted Laplacians

Applying the Weak Invariance Principle:

> For HAX”OO S [Q, R] we aIways have ~> an edge is at risk of breaking
Vo(x) < —X2(G)*0*r(0)” +4VNA(G)Rr(R)|1v| (13)

» In the case v = 0, the graph will always be maintained.

» In the case r(0) > 0, an exponential rate of convergence to rendezvous is
to be expected for sufficiently small ||v]|].

» In the case when v # 0, bounds on ||v|| may guarantee graph
maintenance, with appropriate design of r.

We are looking for something similar, but with the additional
guarantee of ) remaining invariant (obstacle-avoidance)

UFliiokiva €9 Duke &b



{\w/} g'n Play” MAS Controller

Now define the PnP field “for real”:

» The PnP field is a superposition of navigation fields aimed at local targets,
up = Zqu§gnZ +up,  nh(x) 2 n(zg, zp). (14)
> Asymmetric Rescaling Factors, £ (x) £ £(z4, ;) given by

o 7y = 2I)ly = =
R TS ()

» Task Component. Guides the leader to the target with gain v > 0,

ve(x) £ yn(z*, ) — Zq%fsné(x), v, =0if p#L (16)
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{\w/, g'n Play” MAS Controller

So why do we need the asymmetric rescaling from (15)?

> To deploy the WIP, must relate u(x) to (L. ® I4)x.

Definition
Let 6 € (0,1]. A navigation field n on Q is (R, §)-good, if for all y, z € Q with
lly — z|]| < R one has

(n(y,2),y — 2) 2 8lln(y, 2)lllly — =II- (17)

> nis “well-aligned” with the radial field for
nearby targets: cos Z(n(y,z),y — z) > 0.
» Smaller R leads to larger 6. ..

» Trade-off between obstacle curvature and
communication radius?

UFlsiokiva € Duke



{\w/} g'n Play” MAS Controller

Relating u to (L,, ® I;)x. Consider the orthogonal decomposition
n(y,2) 2 p(y,2) +o(y, 2), p(y,2) €Sp(y —2), o(y,2) L (y—2).  (18)
> When ||y — z|| < R, this and (15) result in
£y, 2)n(y, z) = r(lly — 2l (y — 2) + £(y, 2)o(y, 2). (19)
> If nis (R, d)-good, then o(y, z) satisfies
ly =zl < B = [lo(y, 2)[| < V1= 6%|[n(y, 2] (20)
> Overall, the PnP field takes the form:

u=—(L, ®I)x+ 9O+, DpéZ§qpoZ, ob £ o(xq,7p). (21)

q~p

Now we may apply the WIP!
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{\\”}J g'n Play” MAS Controller

WIP for the PnP controller. Modifying (13) for our case,

Vo(x) < =A2(6)%0*r(0)* + 4VNA(G)Rr(R) (IOl + [Iv])

< =X (9)%0%r(0)? (22)

+ANA(G)* Y2 Ry (R)? (1 + 2 %ﬁ)

+4VNA(G)Rr(R) - ylln(z", z0)].
For N > 4 we have:
Vo (x) < —X2(9)*0°r(0)®

+6NAG)? Y2 R2r(R)?
——

(23)

EX

+ 4V NA(G)Rr(R) - y|n(z*, z0)|.




{\v/} ug'n Play” MAS Controller

UF|

... All we need for a WIP is. ..

65" NA(G)’R*r(R)® + 4yVNA(G)Rr(R)n(z", ze)|| < X2(6)*0r(0)® (1)

» Evidently, § close to 1 and « small enough will do the trick, with careful
design of the tension, r.
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... All we need for a WIP is. ..

65" NA(G)’R*r(R)® + 4yVNA(G)Rr(R)n(z", ze)|| < X2(6)*0r(0)® (1)

» Evidently, § close to 1 and « small enough will do the trick, with careful
design of the tension, r.

» BAD NEWS: we are not free to select a small 6*. It is a
geometric property of our task!

» You cannot satisfy (1) with a cycle around a circular obstacle.
» Communication radius needs to be very small compared to obstacles. . .

» . ..but the number of agents cannot be too large either:
X2(G) = 4sin® s for a chain.
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{\w/’ g'n Play” MAS Controller

... All we need for a WIP is. ..

65" NA(G)’R*r(R)® + 4yVNA(G)Rr(R)n(z", ze)|| < X2(6)*0r(0)® (1)

» Evidently, § close to 1 and « small enough will do the trick, with careful
design of the tension, r.

» BAD NEWS: we are not free to select a small 6*. It is a
geometric property of our task!

You cannot satisfy (f) with a cycle around a circular obstacle.

vy

Communication radius needs to be very small compared to obstacles. . .

v

... but the number of agents cannot be too large either:
X2(G) = 4sin® 5 for a chain.

» GOOD NEWS: (1) is extremely conservative. The PnP
controller works much better in practice!

UFkiskia @ Duke B ©TEXAS
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Soft springs between agents:
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Soft springs between agents:
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PAP controller in action
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Compare with leader behind the obstacle (low PnP gain)
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To be continued. ..

» General behavior (non-zero tension). When the graph gets
disconnected, its components seem to be driven to rendezvous. Is
there a theorem here?

» Topological constraints. Accounting for cycles winding around
obstacles or trapping them (in 3D)

» Better WIP bounds, especially in the zero-tension case?

» Expand the range of tasks. Using generalized dual-Lyapunov
functions a-la Rantzer [13]?

» Hybrid Open System of PnP-controlled MAS tasks. A categorical
framework for disconnecting and reconnecting, adding and removing
agents, etc.
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THANK YOU FOR YOUR ATTENTION!
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