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Motivation

Entities in a multi-agent system must be aware of their 
surroundings, but also the representational structure of their 
counterparts. This can bolster situational awareness:
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A “human-in-the-loop” or proxy thereof can provide a 
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Motivation

Two main questions: 
1. Is agent concept resolution possible from an adversary’s 

perspective? What’s the worst-case security analysis?
2. It isn’t always realistic to have a human-in-the-loop, or fine-

grained data labels. What are ways around this?

A1: Expansion of our previous hard-label paper, in submission 
to IEEE SaTML 2023. 

A2: Presented initial idea @ NAACL 2022. Introduced  
expansion during previous meeting. Then worked on it as 
part of AFRL 2022 internship.
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A1: Approach

Assumptions:
1. Agent data lives on a low-dimensional manifold
2. The distribution of data points (M), true gradients (G), 

and ZO gradient estimates form a Markov chain:

We showed previously that manifold-gradient mutual 
information can be modeled as a function of data dimension:



Approach

In practice, does the Markov chain (MC) exist?
First, show that the MC can be modeled by a zeroth-order 
(i.e., hard-label) adversary through two algorithms.
Local step neighborhood analysis (Algorithm 1):

Use queries to train linear model 
of decision boundary.

Build local neighborhood from ZO 
queries as Gaussian process (GP)
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Results

Using (average) R2 score of local models, we can answer the 
following:
1. Are hard-label queries sufficient to model the model’s 

semantic structure in the query neighborhood? 
2. Does dimension-reduction influence our structural 

knowledge?

A1. Yes:

Attack progression



Results

A2. Dimension-reduction leads to finer-grained structural 
information: 

Lower dimension
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information: 



Results

Second part of original question, what is the worst-case attack 
analysis?
Formulate adaptive attacks based on Algorithm 1 & 2, denoted 
MC and DynBiLN (cyan):

CIFAR-10 ImageNet



Geometric Interpretation
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A2: Approach

First, agents learn human-interpretable perceptual 
knowledge priors:

C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin, “This Looks Like That: Deep Learning for Interpretable Image Recognition,” arXiv:1806.10574 [cs, 
stat], 2019.
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Multi-task learning (MTL)

• Sender solves two joint tasks:
1. Learn to embed their top-1 activate structure (zS) in the message
2. Learn to describe the target objects

• Receiver solves two joint tasks:
1. Learn to reconstruct the sender’s top-1 structure (rec(zS)) from the 

message (reconstruction loss) 

2. Learn to signal the correct target object (classification loss) 



Qualitative Results



‘Tatanka’ game

Consider a gradual expansion of the sender agent’s 
concept allowance, as in “Tatanka” clip from Dances 
with Wolves:



Concept allowance
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Semiotic Learning

• Senders solve two three joint tasks:
1. Learn to embed their top-1 activate structure in the 

message
2. Learn to describe the target objects
3. Update knowledge structure based on embedding 

difficulty
• Receivers solve two three joint tasks:

1. Learn to reconstruct the sender’s top-1 structure from 
the message

2. Learn to signal the correct target object
3. Update knowledge structure based on perceived utility of 

sender structure



Semiotic Learning

Training instability and automatic recovery: 

P = human-aligned 
correction
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Conclusion

Adversaries can learn semantic structure in a neighborhood 
around a sample, and this informs geometric interpretation of 
generalization errors. 
• Can we get the global semantic structure with few samples and 

queries? Implication: leakage of learned manifold
• Connection to diffusion models

Semiotic learning offers an avenue for automatic structural 
validation, without explicit labels! 
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