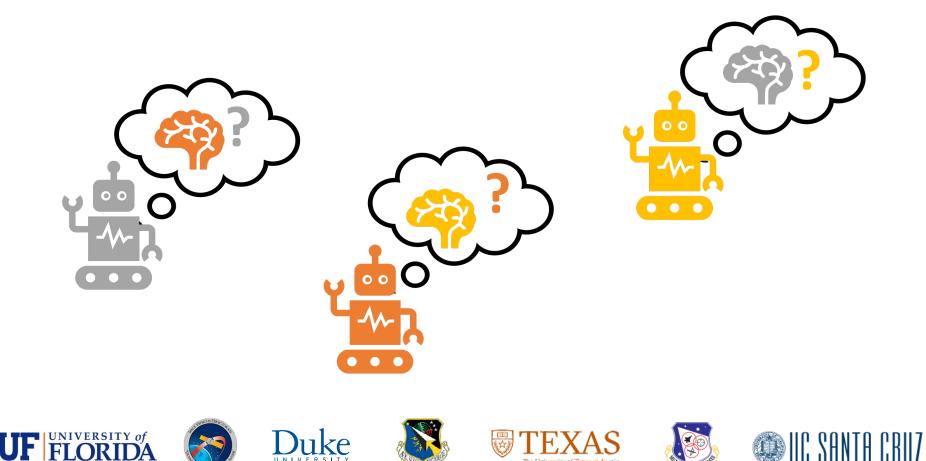
Structural Alignment in Worstcase Security Analysis and Multiagent Design

Washington Garcia (UF)

Kevin Butler (UF) Pin-Yu Chen (IBM) Somesh Jha (UW) Scott Clouse (AFRL/ACT3

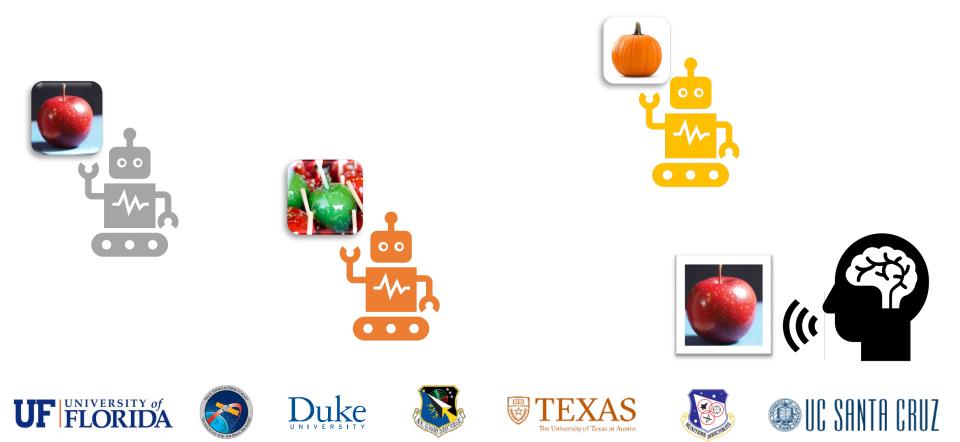
Motivation

Entities in a multi-agent system must be aware of their surroundings, but also the *representational structure* of their counterparts. This can bolster situational awareness:



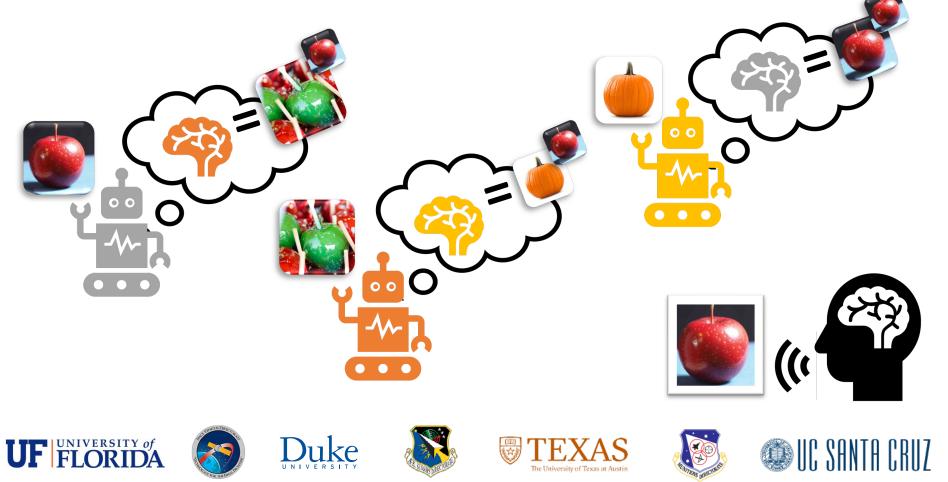
What is a good yardstick for representations?

A "human-in-the-loop" or proxy thereof can provide a grounding or point of reference for representations:



What is a good yardstick for representations?

A "human-in-the-loop" or proxy thereof can provide a grounding or point of reference for representations:



Two main questions:

- 1. Is agent concept resolution possible from an *adversary's* perspective? What's the worst-case security analysis?
- 2. It isn't always realistic to have a human-in-the-loop, or finegrained data labels. What are ways around this?

- A1: Expansion of our previous hard-label paper, in submission to IEEE SaTML 2023.
- A2: Presented initial idea @ NAACL 2022. Introduced expansion during previous meeting. Then worked on it as part of AFRL 2022 internship.

Two main questions:

- 1. Is agent concept resolution possible from an *adversary's* perspective? What's the worst-case security analysis?
- 2. It isn't always realistic to have a human-in-the-loop, or finegrained data labels. What are ways around this?

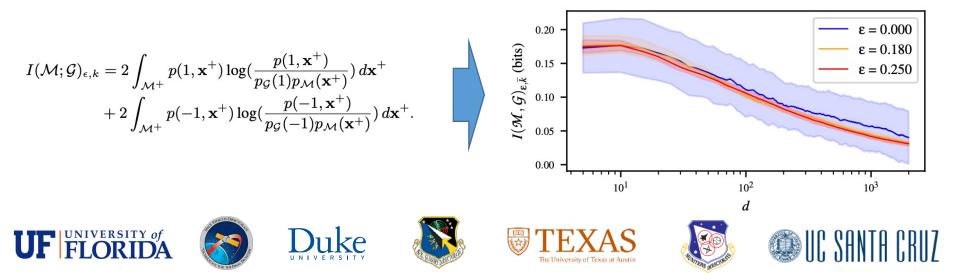
- A1: Expansion of our previous hard-label paper, in submission to IEEE SaTML 2023.
- A2: We presented an initial idea @ NAACL 2022. Introduced expansion during previous meeting. Then worked on it as part of AFRL 2022 internship.

Assumptions:

- 1. Agent data lives on a low-dimensional manifold
- 2. The distribution of data points (M), true gradients (G), and ZO gradient estimates form a Markov chain:

$$\mathcal{M}
ightarrow \mathcal{G}
ightarrow ilde{\mathcal{G}}$$

We showed previously that manifold-gradient *mutual information* can be modeled as a function of data dimension:



In practice, *does the Markov chain (MC) exist?*

First, show that the MC can be modeled by a zeroth-order (i.e., hard-label) adversary through two algorithms.

Local step neighborhood analysis (Algorithm 1):

Build local neighborhood from ZO queries as Gaussian process (GP)

Use queries to train linear model of decision boundary.

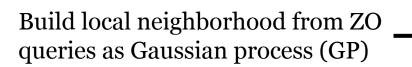
Algorithm 1: Local Markov chain step (MC_step)

Input: Hard-label Gaussian process (GP), LIME kernel width k
Output: Sample feature coefficients W ∈ ℝ^d and their quality score R² ∈ ℝ, GP result (res)
1 initialize LIME Ridge regression trainer (LIME) [31]
2 /* Execute GP to collect samples */
3 X, Y, res ← GP()

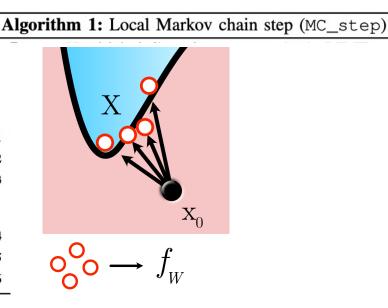
4 $f_W \leftarrow \text{LIME}(X, Y, k)$ 5 $R^2 \leftarrow f_W(X)$ 6 return W, R^2 , res

In practice, *does the Markov chain (MC) exist?*

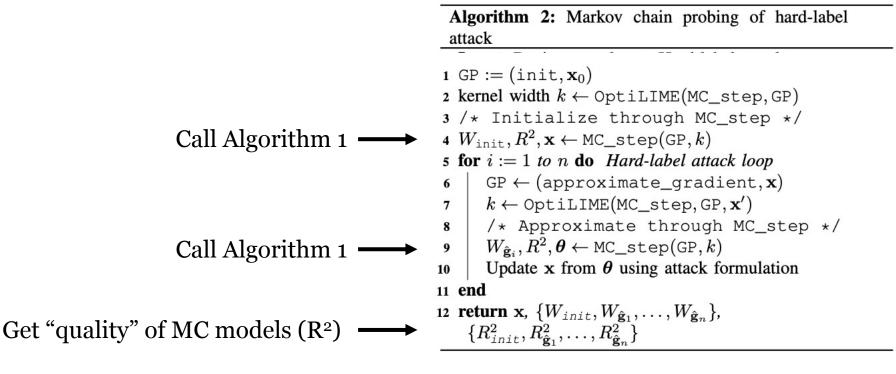
- First, show that the MC can be modeled by a zeroth-order (i.e., hard-label) adversary through two algorithms.
- Local step neighborhood analysis (Algorithm 1):



Use queries to train linear model of decision boundary.

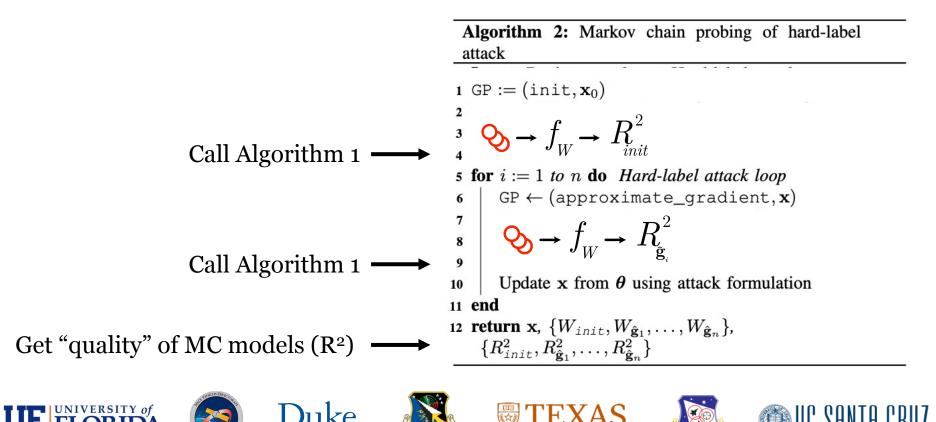


Using Algorithm 1 to model local ZO queries, we can model the whole-attack agent Markov chain through Bayesian optimization (OptiLIME).



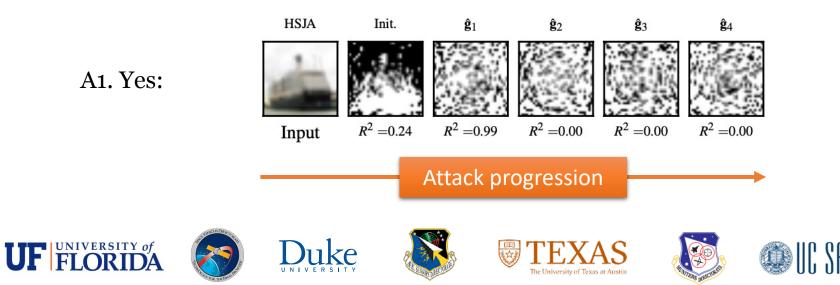
Approach

Using Algorithm 1 to model local ZO queries, we can model the whole-attack agent Markov chain through Bayesian optimization (OptiLIME).

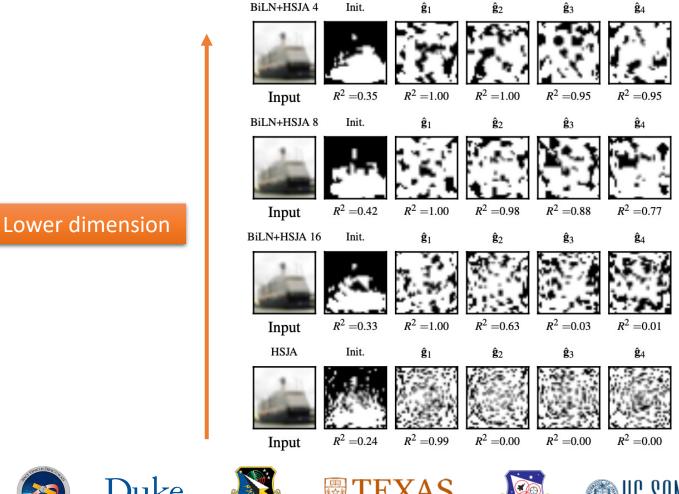


Using (average) R² score of local models, we can answer the following:

- 1. Are hard-label queries sufficient to model the model's semantic structure in the query neighborhood?
- 2. Does dimension-reduction influence our structural knowledge?



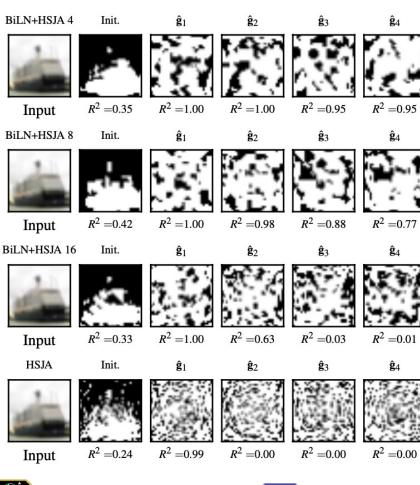
A2. Dimension-reduction leads to finer-grained structural information:



A2. Dimension-reduction leads to finer-grained structural information:

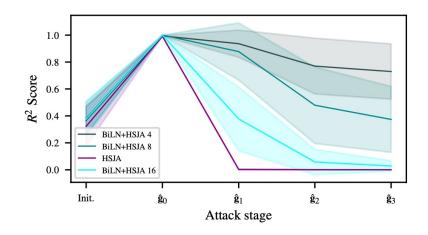
UF FLORIDA

Lower dimension



Results

A2. Dimension-reduction leads to finer-grained structural information:



	Attack Variant	$ar{R}^2$	FID	$\frac{SR@40k}{(\epsilon=0.031)}$	LPIPS
Madry CIFAR-10	$ \begin{array}{l} \text{HSJA} \\ \rightarrow \text{BiLN 16} \\ \rightarrow \text{BiLN 8} \\ \rightarrow \text{BiLN 4} \end{array} $	0.259 0.363 0.624 0.779	0.244 0.074 0.026 0.026	0.272 0.298 0.224 0.130	$ \begin{vmatrix} 0.676 \pm 0.275 \\ 0.654 \pm 0.277 \\ 0.668 \pm 0.304 \\ 0.709 \pm 0.345 \end{vmatrix} $
Natural CIFAR-10	$ \begin{array}{l} \text{HSJA} \\ \rightarrow \text{BiLN 16} \\ \rightarrow \text{BiLN 8} \\ \rightarrow \text{BiLN 4} \end{array} $	0.263 0.368 0.622 0.759	0.240 0.085 0.028 0.012	1.000 0.984 0.826 0.472	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Second part of original question, what is the worst-case attack analysis?

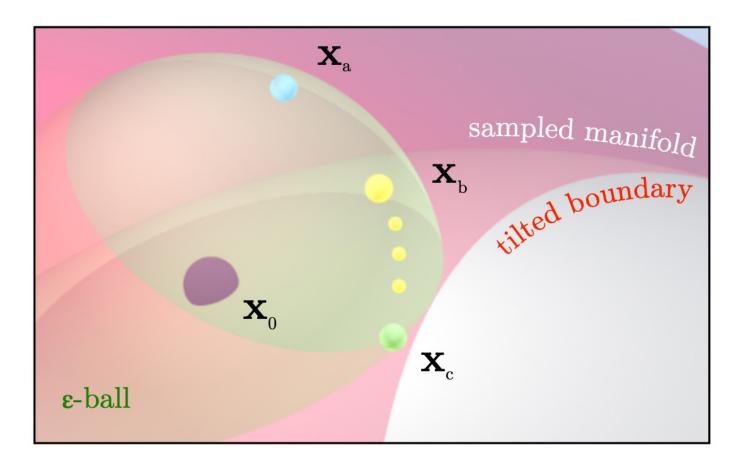
Formulate adaptive attacks based on Algorithm 1 & 2, denoted MC and DynBiLN (cyan):

C	FAR-10	
Attack Variant	FID	$\frac{\text{SR AUC}}{(\epsilon=0.031)}$
HSJA	0.253	0.537
\rightarrow BiLN 4	$0.026 \downarrow$	0.342
\rightarrow BiLN 8	$0.023\downarrow$	$0.574\uparrow$
\rightarrow BiLN 16	$0.074\downarrow$	0.720 \uparrow
MC HSJA	$0.213\downarrow$	0.545
\rightarrow BiLN 4	0.022 ↓	0.356
\rightarrow BiLN 8	0.026 🗸	$0.577 \uparrow$
\rightarrow BiLN 16	0.068 🗼	$0.705 \uparrow$
$\rightarrow DynBiLN$	0.030 ↓	0.607 ↑
RayS	0.057	1.000

ImageNet

RayS	0.302	1.000
$\rightarrow DynBiLN$	$0.657\downarrow$	$0.774\uparrow$
\rightarrow BiLN 64	2.287	$0.615 \uparrow$
\rightarrow BiLN 32	$1.079\downarrow$	$0.771 \uparrow$
\rightarrow BiLN 16	$0.271\downarrow$	$0.772 \uparrow$
MC HSJA	1.591	0.331
\rightarrow BiLN 64	2.567	$0.655 \uparrow$
\rightarrow BiLN 32	$1.085\downarrow$	0.771
\rightarrow BiLN 16	$0.312\downarrow$	$0.777 \uparrow$
HSJA	1.541	0.344
Attack Variant	FID	$\frac{\text{SR AUC}}{(\epsilon=0.031)}$

Geometric Interpretation



Duke

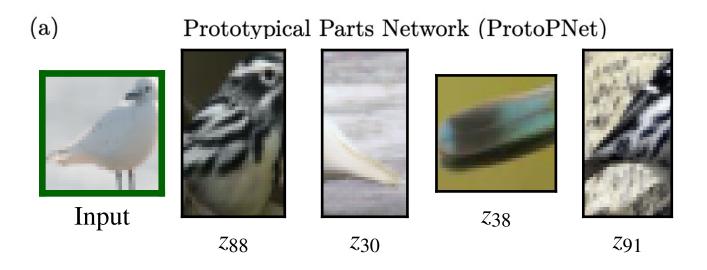
Two main questions:

- 1. Is agent concept resolution possible from an *adversary's* perspective? What's the worst-case security analysis?
- 2. It isn't always realistic to have a human-in-the-loop, or finegrained data labels. What are ways around this?

A1: Expansion of our previous hard-label paper, in submission to IEEE SaTML 2023.

A2: We presented an initial idea @ NAACL 2022. Introduced expansion during previous meeting. Then worked on it as part of AFRL 2022 internship.

First, agents learn human-interpretable perceptual knowledge priors:



C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin, "This Looks Like That: Deep Learning for Interpretable Image Recognition," arXiv:1806.10574 [cs, stat], 2019.

- Sender solves two joint tasks:
 - 1. Learn to embed their top-1 activate structure (z^s) in the message
 - 2. Learn to describe the target objects
- Receiver solves two joint tasks:
 - 1. Learn to reconstruct the sender's top-1 structure $(rec(\mathbf{z}^S))$ from the message (*reconstruction loss*)

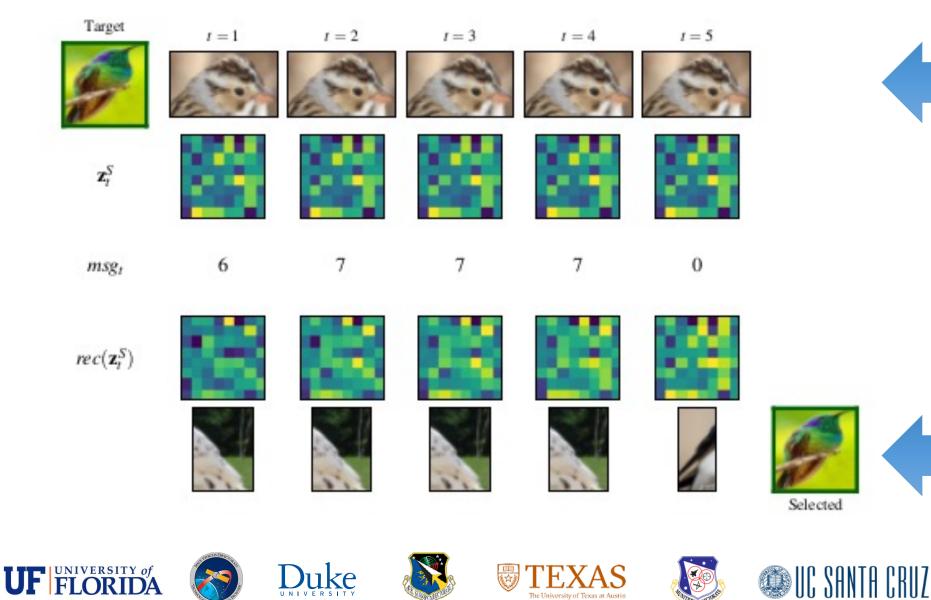
$$\mathcal{L}_{rec}(\mathbf{z}^{S}, rec(\mathbf{z}^{S})) = \frac{1}{L} \sum_{l=1}^{L} |\mathbf{z}_{(l)}^{S} - rec(\mathbf{z}_{(l)}^{S})|$$

2. Learn to signal the correct target object (*classification loss*)

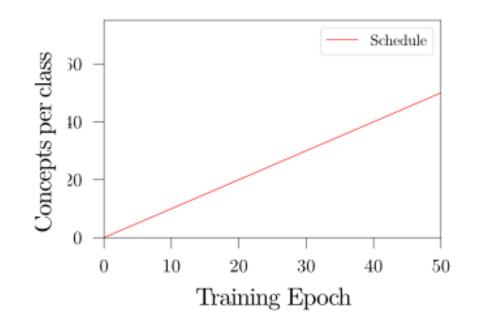
$$\mathcal{L}_{cls}(\mathbf{t}) = -\sum_{l=1}^L lpha \log p(y_{(l)} = \mathbf{t} \mid msg_{(l)}),$$

$$\mathcal{L} = \mathcal{L}_{cls} + \mathcal{L}_{rec}$$

Qualitative Results

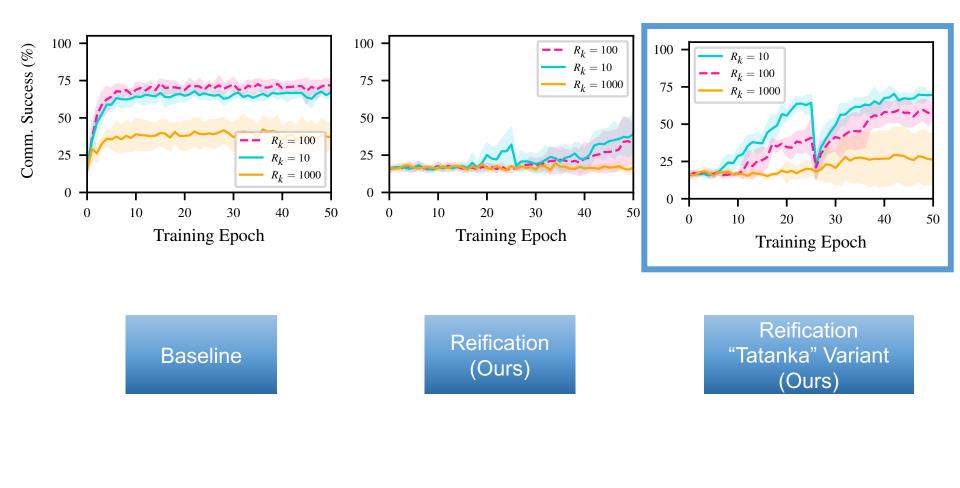


Consider a gradual expansion of the sender agent's concept allowance, as in "Tatanka" clip from Dances with Wolves:



'Tatanka' game

Concept allowance



uke

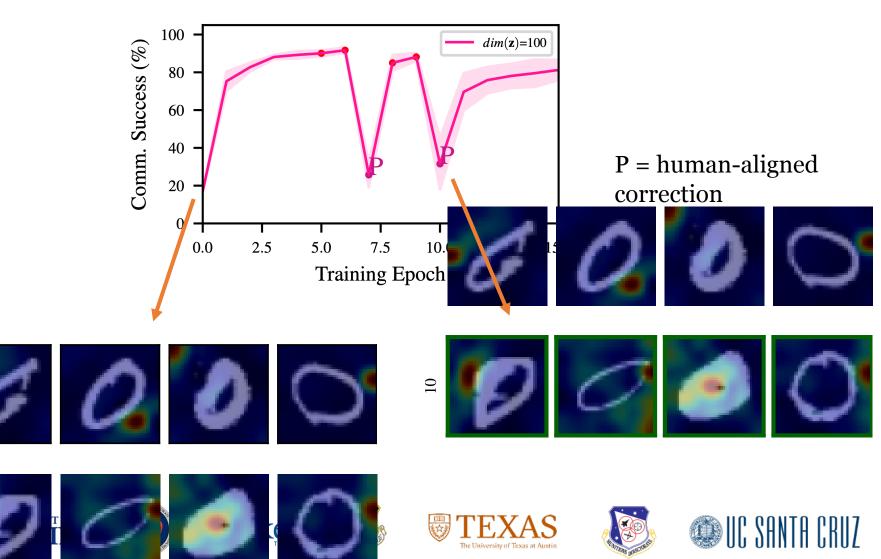
UC SANTA

- Senders solve two three joint tasks:
 - 1. Learn to embed their top-1 activate structure in the message
 - 2. Learn to describe the target objects
 - 3. Update knowledge structure based on embedding difficulty
- Receivers solve two three joint tasks:
 - 1. Learn to reconstruct the sender's top-1 structure from the message
 - 2. Learn to signal the correct target object
 - 3. Update knowledge structure based on perceived utility of sender structure

0

Semiotic Learning

Training instability and automatic recovery:



Adversaries can learn semantic structure in a neighborhood around a sample, and this informs geometric interpretation of generalization errors.

- Can we get the global semantic structure with few samples and queries? Implication: leakage of learned manifold
- Connection to diffusion models

Semiotic learning offers an avenue for automatic structural validation, without explicit labels!

Graduation: Dec. 2022 Joining UDRI in January

w.garcia@ufl.edu

Duke

