Structural Alignment in Worst-
case Security Analysis and Multi-
agent Design
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Entities in a multi-agent system must be aware of their
surroundings, but also the representational structure of their
counterparts. This can bolster situational awareness:
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What is a good yardstick for representations?

A “human-in-the-loop” or proxy thereof can provide a
grounding or point of reference for representations:
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Two main questions:

1. Is agent concept resolution possible from an adversary’s
perspective? What’s the worst-case security analysis?

2. Itisn’t always realistic to have a human-in-the-loop, or fine-
grained data labels. What are ways around this?

A1: Expansion of our previous hard-label paper, in submission
to IEEE SaTML 2023.

A2: Presented initial idea @ NAACL 2022. Introduced
expansion during previous meeting. Then worked on it as
part of AFRL 2022 internship.
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,%,‘\w/’ A1: Approach

Assumptions:
1. Agent data lives on a low-dimensional manifold

2. The distribution of data points (M), true gradients (G),
and ZO gradient estimates form a Markov chain:

~

M—-G—G

We showed previously that manifold-gradient mutual
information can be modeled as a function of data dimension:

— €=0.000
€=0.180

0.20 -

1,x") £ 0.15
I(M;G). :2/ 1,x")lo _ &) dx™t = ~ —— £=0.250
( ),k M+p( ) g(pg(l)pM(X"')) f‘_‘;h
p(-1,x") i o SR
+2/ —1,x") 1o dx™.
i DX ety E s

UF|FLORIDA



A \'z'/, Approach

In practice, does the Markov chain (MC) exist?

First, show that the MC can be modeled by a zeroth-order
(i.e., hard-label) adversary through two algorithms.

Local step neighborhood analysis (Algorithm 1):

Algorithm 1: Local Markov chain step (MC_step)
Input: Hard-label Gaussian process (GP), LIME
kernel width k
Output: Sample feature coefficients W € R and their
quality score R? € R, GP result (res)

Build local neighborhood from ZO 1 initialize LIME Ridge regression trainer (LIME) [31]

2 /+ Execute GP to collect samples */

queries as Gaussian process (GP) 3 X,Y, res « GP()

Use queries to train linear model - fw < LIME(X,Y, k)

5 R? « fw(X)

of decision boundary. ¢ return W, R?, res
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4,*\‘:'/ , Approach

Build local neighborhood from ZO
queries as Gaussian process (GP)

Use queries to train linear model
of decision boundary.
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In practice, does the Markov chain (MC) exist?

First, show that the MC can be modeled by a zeroth-order
(i.e., hard-label) adversary through two algorithms.

Local step neighborhood analysis (Algorithm 1):

Algorithm 1: Local Markov chain step (MC_step)
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‘%,\‘3’/ , Approach

Using Algorithm 1 to model local ZO queries, we can model
the whole-attack agent Markov chain through Bayesian
optimization (OptiLIME).

Algorithm 2: Markov chain probing of hard-label
attack

1 GP := (init,xp)

2 kernel width k£ < OptiLIME(MC_step, GP)

3 / Initialize through MC_step x/
Call Algorithm 1 =—> 4 W.,;., R?,x ¢ MC_step(GP, k)

5 for 7 :== 1 to n do Hard-label attack loop

6 GP « (approximate_gradient,x)

7 k + OptiLIME(MC_step, GP,x’)

8 /* Approximate through MC_step */
Call Algorithm 1 =——> 9 | Wg,, R?,0 < MC_step(GP, k)

10 Update x from 6 using attack formulation

11 end

. o 12 return X, {Winie, Wg,,...,Wg, },
Get “quality” of MC models (R2) =—b {Re o RE iR
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Using (average) R2 score of local models, we can answer the
following;:

1. Are hard-label queries sufficient to model the model’s
semantic structure in the query neighborhood?

2. Does dimension-reduction influence our structural
knowledge?

A1. Yes:
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Results

A2. Dimension-reduction leads to finer-grained structural

information:

Lower dimension
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A2. Dimension-reduction leads to finer-grained structural
information:
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A2. Dimension-reduction leads to finer-grained structural
information:
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Attack =0 SR@40k
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HSJA 0.259 0.244 0.272 0.67640.275

Madry — BiILN 16 0363  0.074 0.298 0.654+0.277
CIFAR-10 — BIiLN 8 0.624  0.026 0.224 0.668+0.304
— BiLN 4 0.779 0.026 0.130 0.709+0.345 <@

HSJA 0.263 0.240 1.000 0.496+0.211

Natural — BiLN 16 0.368 0.085 0.984 0.543+0.227
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4,\'3’/, Results

Second part of original question, what is the worst-case attack
analysis?

Formulate adaptive attacks based on Algorithm 1 & 2, denoted
MC and DynBiLN (cyan):

) SR AUC . SR AUC
Attack Variant FID (€=0.031) Attack Variant FID (€=0.031)
HSJA 0.253 0.537 HSJA 1.541 0.344
— BiLN 4 0.026 | 0.342 — BILN 16 0.312 | 0.777 1
— BILN 8 0.023 | 0.574 1 — BILN 32 1.085 | 0.771 1
— BiLN 16 0.074 | 0.720 1 — BILN 64 2.567 0.655 1
MC HSJA 0.213 | 0.545 1 MC HSJA 1.591 0.331
— BILN 4 0.022 | 0.356 < — BILN 16 0.271] 07721 <«
— BILN 8 0.026 | 0.577 1 — BILN 32 1.079 | 0.771 1
— BiLN 16 0.068 | 0.705 1 — BILN 64 2.287 0.615 1
— DynBiLN 0.030 | 0.607 1 — DynBiLN 0.657 | 0.774 1
RayS 0.057 1.000 RayS 0.302 1.000
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Two main questions:

2. Itisn’t always realistic to have a human-in-the-loop, or fine-
grained data labels. What are ways around this?

A2: We presented an initial idea @ NAACL 2022. Introduced
expansion during previous meeting. Then worked on it as
part of AFRL 2022 internship.
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4,\,:’/, A2: Approach

First, agents learn human-interpretable perceptual
knowledge priors:

(a) Prototypical Parts Network (ProtoPNet)

Input
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C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin, “This Looks Like That: Deep Learning for Interpretable Image Recognition,” arXiv:1806.10574 [cs,
stat], 2019.
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\/, Multi-task learning (MTL)

 Sender solves two joint tasks:

1. Learn to embed their top-1 activate structure (z°) in the message
2. Learn to describe the target objects

 Receiver solves two joint tasks:

1. Learn to reconstruct the sender’s top-1 structure (rec(z®)) from the
message (reconstruction loss)
L
1
Lrec(ZS,TCC(ZS)) =7 Z |zzo’l) - rec(zf’;))|

=1

2. Learn to signal the correct target object (classification loss)

L
Las(t)=—> alogp(yq =t | msgy)
=1

L= Lcls + £rec
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4,\03’/, ‘Tatanka’ game

Consider a gradual expansion of the sender agent’s
concept allowance, as in “Tatanka” clip from Dances
with Wolves:

——  Schedule

20

Concepts per class

-
~—
—9

| |
0 10 20 30 40 50

Training Epoch

The University of Texas at Austin

UFiiokia &)

Ty



(/'
\.

Concept allowance

100 — 100

S —= R =100 — Re—10
N’ — —
S5 75 Ry =10 — = Rg=100
Q
(/52 50 —
' —— R, =100 [ =
g R =10 25 A =7
@) = R}, = 1000
0 T T T T 0 T T T T
0 10 20 30 40 50 0 10 20 30 40
Training Epoch Training Epoch
: Reification :
Baseline “Tatanka” Variant

(Ours) (Ours)

UNIVERSITY of 4@?’
UFfioriba &) Duke




\ ) . . .
4,\','/’ Semiotic Learning

 Senders solve twe three joint tasks:

1. Learn to embed their top-1 activate structure in the
message

2. Learn to describe the target objects

3. Update knowledge structure based on embedding
difficulty

» Receivers solve twe three joint tasks:

1. Learn to reconstruct the sender’s top-1 structure from
the message

2. Learn to signal the correct target object

3. Update knowledge structure based on perceived utility of
sender structure
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4'\.-./’ Semiotic Learning

Training instability and automatic recovery:

100 - = dim(z)=100
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\ /) .
4'\.-./’ Conclusion

Adversaries can learn semantic structure in a neighborhood
around a sample, and this informs geometric interpretation of
generalization errors.

« Can we get the global semantic structure with few samples and
queries? Implication: leakage of learned manifold

e Connection to diffusion models

Semiotic learning offers an avenue for automatic structural
validation, without explicit labels!
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Thank you

w.garcia@ufl.edu




