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Overview

• We are seeking to solve the Swarm Initialization Problem (SIP) in the 
special case of a circular swarm trajectory (eccentricity = 0, exact).

• We assume invariance of swarm optimality under:

• Rotation of the swarm within a known space of valid rotations;

• Translation of the swarm within a known space of valid translations;

• Transposition, or re-labeling of any two satellites.

• Quantization of the orbit into evenly-spaced ‘checkpoints’

• Same number of checkpoints as satellites.

• Assume no checkpoint is ‘special’; i.e., re-orienting global coordinates 
to set any checkpoint as ‘initial’ results in an identical problem.

• Construction of formation chains based on geometry alone.

• Assessment of formation chains for compatibility with dynamics.

• Uses Munkres’ Algorithm to identify orbits compatible with geometry.
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Swarm-Preserving Operations



Swarm-Preserving Operations

• Invariance of swarm optimality under rotation of the swarm within a 
known space of valid rotations:

• Example: Planar formations rotated about the normal of their plane.



Swarm-Preserving Operations

• Invariance of swarm optimality under translation of the swarm within a 
known space of valid translations.

• Complicated by requirement that no one checkpoint is ‘special’.

• Supports two ‘modes’ of translation:

1. Globally fixed displacement applied to all checkpoints.

2. Swarm fixed displacement normal to axis of swarm rotation.



Swarm-Preserving Operations

• Translation by globally fixed displacement vector.

Original Swarm Trajectory
(Coplanar with Earth center)

Displaced Swarm Trajectory
(Plane Q parallel to plane P)

P

Q



Swarm-Preserving Operations

• Translation by swarm fixed displacement vector.

1. Perform rotation and shift
along displacement vector.

2. Parallel transport vector
from step 1.

3. Perform rotation and shift
along displacement vector.

4. Parallel transport vectors
from steps 1 and 3.

5. Perform rotation and shift
along displacement vector.

1.

2. 3.

4.

5.



Swarm-Preserving Operations

• Invariance of swarm optimality under transposition, or re-labeling of any 
two satellites.
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Index Chains

• A suitable combination of rotation, translation, and re-indexing produces 
geometry-based formation chains.

• We define index chains to determine the path followed by a satellite.

• Index chains separate the notions of satellites and positions in the swarm.

• Consider three checkpoints for a three-satellite formation, shown below:

• For any checkpoint, position A, B, or C may contain satellite 1, 2, or 3.

• Assume indexing for checkpoint 1 is arbitrary, so we may reduce all six 
cases down to one: Satellite 1 at position A; 2 at B; and 3 at C.

Positions: A, B, and C
Satellites: 1, 2, and 3

Checkpoint 1 Checkpoint 2 Checkpoint 3

A A A

C C CB B B



Index Chains

• We see that for each satellite / position at checkpoint 1, there are three 
possibilities at checkpoint 2.

• After one satellite has been placed, two possibilities remain for the next.

• After two satellites have been placed, only one possibility remains.

• There are six configurations for three satellites.

• n! configurations for a general n satellites.

Checkpoint 1 Checkpoint 2 Checkpoint 3

A A A

C C CB B B

Positions: A, B, and C
Satellites: 1, 2, and 3

= 1 = 2 = 3



• It can be shown that, under these requirements, the full index chain for 
each satellite is fully defined by the first two checkpoints.

• Results in n2 index chains for n satellites.

• Valid assignments must have unique row and column indices.

Index Chains

Index Chain for 3 Satellites

Moves to Position Index

A B C

Satellite Index

1 (at A) A, A, A A, B, C A, C, B

2 (at B) B, A, C B, B, B B, C, A

3 (at C) C, A, B C, B, A C, C, C



• Replacing the index chains on the previous table with scalar cost function 
values, we produce a classic 1-to-1 assignment problem.

• The Munkres (or Hungarian) Algorithm may be used to identify the 
highlighted permutations with a suitable choice of cost function 𝒦.

Index Chains

Chain Cost for 3 Satellites

Moves to Position Index

A B C

Satellite Index

1 (at A) 𝒦1→𝐴 𝒦1→𝐵 𝒦1→𝐶

2 (at B) 𝒦2→𝐴 𝒦2→𝐵 𝒦2→𝐶

3 (at C) 𝒦3→𝐴 𝒦3→𝐵 𝒦3→𝐶
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Assessing Chain Cost

A A

A

B

B

B

C

C

C

Checkpoint 1Checkpoint 2

Checkpoint 3



Assessing Chain Cost

A A

A

B

B

B

C

C

C

Checkpoint 1Checkpoint 2

Checkpoint 3

A to B

B to C
C to A



Assessing Chain Cost

A A

A

B

B

B

C

C

C

Checkpoint 1Checkpoint 2

Checkpoint 3

A to C

C to B B to A



Assessing Chain Cost

A A

A

B

B

B

C

C

C

Checkpoint 1

Checkpoint 3

A to A

A to A A to A

Checkpoint 2



Assessing Chain Cost

• Fixed parameters of the chain cost function:

Description Symbolic Representation Degrees of Freedom

Normalized positions 
(relative to swarm centroid)

ො𝜌𝒾 ∀ 𝒾 ∈ 1, 2, … , 𝑛 2𝑛

Radius of swarm envelope 𝜌 1

Radius of swarm trajectory 𝑎0 1

Offset angle of swarm 
(polygonal swarm shapes)

𝜙 1

Earth-centered coordinate 
basis of swarm trajectory

𝑋, 𝑌, መ𝑍 3



Assessing Chain Cost

• Geometric variables incorporated in the chain cost function:

Description Symbolic Representation Degrees of Freedom

Axis of initial rotation ො𝑢 2

Angle of initial rotation 𝜃 1

Initial displacement Ԧ𝑠 3

Axis of incremental rotation ෝ𝑤 2

Interrotational displacement ΔԦ𝑠 3



Assessing Chain Cost

• Dynamical variables incorporated in the chain cost function:

• Total degrees of freedom: 4𝑛 + 18

Description Symbolic Representation Degrees of Freedom

Semi-major axis 𝑎 1

Orbital eccentricities for 
each satellite

𝑒𝒾 ∀ 𝒾 ∈ 1, 2, … , 𝑛 𝑛

Initial true anomaly (𝑡 = 0) 
for each satellite

𝜈𝒾 ∀ 𝒾 ∈ 1, 2, … , 𝑛 𝑛



𝑋

𝑌

𝑎0 𝑋 𝜌

𝜌 ො𝜌1

𝜌 ො𝜌2

𝑋

መ𝑍

𝑌

𝜌 ො𝜌3 𝜙

Assessing Chain Cost

• Fixed parameters of the chain cost function:



Assessing Chain Cost

• Geometric variables incorporated in the chain cost function:

ො𝑢

𝜃



Assessing Chain Cost

• Geometric variables incorporated in the chain cost function:

Ԧ𝑠𝑎0 𝑋 + Ԧ𝑠

መ𝑍



Assessing Chain Cost

• Geometric variables incorporated in the chain cost function:

ෝ𝑤



Swarm-Preserving Operations

• Translation by swarm fixed displacement vector.

1. Perform rotation and shift
along displacement vector.

2. Parallel transport vector
from step 1.

3. Perform rotation and shift
along displacement vector.

4. Parallel transport vectors
from steps 1 and 3.

5. Perform rotation and shift
along displacement vector.

1.

2. 3.

4.

5.



• We may now define the chain cost function for each element of this matrix:

𝒦𝒾1→𝒾2 =
1

𝑛


𝒿=0

𝑛−1

Ԧ𝑟𝒿 | 𝒾1,𝒾2
geometry

− Ԧ𝑟𝒿 | 𝒾1,𝒾2
dynamics 2

Assessing Chain Cost

Chain Cost for 3 Satellites

Moves to Position Index

A (index 1) B (index 2) C (index 3)

Satellite Index

1 (at A) 𝒦1→1 𝒦1→2 𝒦1→3

2 (at B) 𝒦2→1 𝒦2→2 𝒦2→3

3 (at C) 𝒦3→1 𝒦3→2 𝒦3→3
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• Process is intended for swarms with any number of satellites.

• Process must produce results of LISA swarm to be considered viable.

• Consider a LISA-like configuration with the following parameters.

Reproducing LISA

Parameter / Variable Value

ො𝜌𝒾 cos 𝒾 − 1 ∙ 120° 𝑋 − sin 𝒾 − 1 ∙ 120° 𝑌

𝜌 1,000 km

𝑎0 10,000 km

𝜙 0°

ො𝑢 𝑌

𝜃 −60°

ෝ𝑤 sin 120° 𝑋 + cos 120° መ𝑍



• Dynamic variables can be defined for the three-satellite case by specifying 
motion as either right-handed or left-handed with respect to ෝ𝑤.

• Right-handed motion means that each satellite moves clockwise from 
one checkpoint to the next (i.e., satellite 1 follows path A, B, C).

• Left-handed motion moves counter-clockwise (i.e., path A, C, B).

Reproducing LISA

Left-handed motion Right-handed motion



Parameter / Variable Left-Handed Motion Right-Handed Motion

Ԧ𝑠 − 20.14 km መ𝑍 66.62 km መ𝑍

ΔԦ𝑠 0 km 0 km

𝑎 10,076 km 10,032 km

𝑒1 0.0454 0.0508

𝑒2 0.0454 0.0508

𝑒3 0.0454 0.0508

𝜈1 180° 180°

𝜈2 305° 65°

𝜈3 55° 295°

• Left-handed motion ⟹ path A, C, B; right-handed motion ⟹ path A, B, C.

Reproducing LISA



• Path comparison for right-handed motion.

Reproducing LISA



• Path comparison for right-handed motion.

Reproducing LISA



• Path comparison for left-handed motion.

Reproducing LISA
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• The difference in timing between left- and right-handed motion is the 
result of uneven spacing between checkpoints 2 and 3.

• Left-handed motion squeezes together the positions near periapse.

• Comparing the periapse leg of the orbit to the apoapse legs, we see that 
traversal in the same amount of time is physically impossible.

Conclusions

Left-handed motion Right-handed motion



• The difference in timing between left- and right-handed motion is the 
result of uneven spacing between checkpoints 2 and 3.

• Left-handed motion squeezes together the positions near periapse.

• Comparing the periapse leg of the orbit to the apoapse legs, we see that 
traversal in the same amount of time is physically impossible.

Conclusions

Left-handed motion Right-handed motion



• Substituting parameter and variable values into the chain cost function, we 
apply the Munkres algorithm to the resulting cost matrix.

• Average cost of right-handed motion: 41 kilometers.

Conclusions

Chain Cost for 3 Satellites
(root mean-squared error)

Moves to Position Index

A B C

Satellite Index

1 (at A) 1,328 km 30 km 1,443 km

2 (at B) 969 km 1,286 km 46 km

3 (at C) 46 km 969 km 1,286 km



Conclusions

• Summary:

• Demonstrated that ‘formation chain’ framework produces accurate 
results for known swarm configurations.

• Provided a rigorous, mathematical basis for swarm initialization.

• Gained insight into relationship between dynamics and geometry.

• Next Steps:

• Publish formation chain framework as a solution to the swarm 
initialization problem.

• Apply formation chain framework to different swarm configurations.

• Explore additional methods to refine swarm optimality in general.
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Bonus

Index Chains



Positions: A, B, and C
Satellites: 1, 2, and 3

= 1 = 2 = 3

Positions: A, B, and C
Satellites: 1, 2, and 3

= 1 = 2 = 3

• Consider the case in which satellite 1 moves from position A to position C:

• Because no checkpoint can be ‘special’, the satellite at A must alwaysmove 
to C from one checkpoint to the next.

Bonus (Index Chains)

A

B
Checkpoint 1 Checkpoint 2 Checkpoint 3

A A

C CB BC

A

B
Checkpoint 1 Checkpoint 2 Checkpoint 3

A A

C CB BC



Positions: A, B, and C
Satellites: 1, 2, and 3

= 1 = 2 = 3

Positions: A, B, and C
Satellites: 1, 2, and 3

= 1 = 2 = 3

• Consequently, satellite 3 must have arrived at position C from position A:

• Next, since satellite 1 must arrive at A after three successive motions, the 
satellite at C cannot move to position A; the satellite at B must move to A.

Bonus (Index Chains)

A

B
Checkpoint 1 Checkpoint 2 Checkpoint 3

A

C CB BC

A

Checkpoint 1 Checkpoint 2 Checkpoint 3

A

C B C

AA

CB B



Bonus

Assessing Chain Cost



Assessing Chain Cost

• Geometric variables incorporated in the chain cost function:

ෝ𝑤

???



Assessing Chain Cost

• Geometric variables incorporated in the chain cost function:

𝑛 rotations for 𝑛 satellites ⟹ angle of rotation = 𝑚Δ where Δ = Τ2𝜋 𝑛.

ෝ𝑤

???



Assessing Chain Cost

• Geometric variables incorporated in the chain cost function:

ෝ𝑤

𝑚Δ

𝑚 ∈ 0, 1, … , 𝑛 − 1



• Must perform assignment analysis for each 𝑚 value from 0 to 𝑛 − 1.

• We may now define the chain cost function for each element of this matrix:

𝒦𝒾1→𝒾2,𝑚 =
1

𝑛


𝒿=0

𝑛−1

Ԧ𝑟𝒿 | 𝒾1,𝒾2,𝑚
geometry

− Ԧ𝑟𝒿 | 𝒾1,𝒾2,𝑚
dynamics 2

Assessing Chain Cost

Chain Cost for 3 Satellites

Moves to Position Index

A (index 1) B (index 2) C (index 3)

Satellite Index

1 (at A) 𝒦1→1,𝑚 𝒦1→2,𝑚 𝒦1→3,𝑚

2 (at B) 𝒦2→1,𝑚 𝒦2→2,𝑚 𝒦2→3,𝑚

3 (at C) 𝒦3→1,𝑚 𝒦3→2,𝑚 𝒦3→3,𝑚



Bonus

Reproducing LISA



Bonus (Reproducing LISA)

180°



Bonus (Reproducing LISA)

Ԧ𝑟1

−
1 − 𝑒

1 + 𝑒
Ԧ𝑟1

−
1 − 𝑒

1 + 𝑒
𝑅 መ𝑍, 120° Ԧ𝑟1

Ԧ𝑟3



Bonus (Reproducing LISA)

𝜈3

−𝜈3



• The exact value of the dynamical variables in the three-satellite case can be 
determined by defining the following vectors:

Bonus (Reproducing LISA)

Ԧ𝑟1Ԧ𝑟2

Ԧ𝑟3

Ԧ𝑟1 = position of satellite 1
at checkpoint 1.

Ԧ𝑟2 = position of satellite 1
at checkpoint 2.

Ԧ𝑟3 = position of satellite 1
at checkpoint 3.



• Path comparison for right-handed motion.

Bonus (Reproducing LISA)



• Path comparison for left-handed motion.

Bonus (Reproducing LISA)


