Reproducing Swarm Dynamics for a Three-Satellite System with Generalized Swarm Optimization

Taryn J. Noone & Norman G. Fitz-Coy

- We are seeking to solve the Swarm Initialization Problem (SIP) in the special case of a **circular swarm trajectory** (eccentricity = 0, exact).
- We assume invariance of swarm optimality under:
 - Rotation of the swarm within a known space of valid rotations;
 - Translation of the swarm within a known space of valid translations;
 - Transposition, or re-labeling of any two satellites.
- Quantization of the orbit into evenly-spaced 'checkpoints'
 - Same number of checkpoints as satellites.
 - Assume no checkpoint is 'special'; i.e., re-orienting global coordinates to set any checkpoint as 'initial' results in an identical problem.
- Construction of formation chains based on geometry alone.
- Assessment of formation chains for compatibility with dynamics.
 - Uses Munkres' Algorithm to identify orbits compatible with geometry.

Swarm-Preserving Operations

uke

- Invariance of swarm optimality under rotation of the swarm within a known space of valid rotations:
 - Example: Planar formations rotated about the normal of their plane.

- Invariance of swarm optimality under translation of the swarm within a known space of valid translations.
 - Complicated by requirement that no one checkpoint is 'special'.
 - Supports two 'modes' of translation:
 - 1. Globally fixed displacement applied to all checkpoints.
 - 2. Swarm fixed displacement normal to axis of swarm rotation.

• Translation by globally fixed displacement vector.

• Translation by swarm fixed displacement vector.

- 1. Perform rotation and shift along displacement vector.
- 2. Parallel transport vector from step 1.
- 3. Perform rotation and shift along displacement vector.
- 4. Parallel transport vectors from steps 1 and 3.
- 5. Perform rotation and shift along displacement vector.

• Invariance of swarm optimality under transposition, or re-labeling of any two satellites.

Index Chains

- A suitable combination of rotation, translation, and re-indexing produces geometry-based formation chains.
- We define **index chains** to determine the path followed by a satellite.
- Index chains separate the notions of satellites and positions in the swarm.
- Consider three checkpoints for a three-satellite formation, shown below:

- For any checkpoint, position A, B, or C may contain satellite 1, 2, or 3.
 - Assume indexing for checkpoint 1 is arbitrary, so we may reduce all six cases down to one: Satellite 1 at position A; 2 at B; and 3 at C.

Index Chains

- We see that for each satellite / position at checkpoint 1, there are three possibilities at checkpoint 2.
- After one satellite has been placed, two possibilities remain for the next.
- After two satellites have been placed, only one possibility remains.
- There are six configurations for three satellites.
 - n! configurations for a general n satellites.

- It can be shown that, under these requirements, the full index chain for each satellite is fully defined by the first two checkpoints.
 - Results in n² index chains for n satellites.
 - Valid assignments must have unique row and column indices.

Inday Chain for 2 Catallitas		Moves to Position Index		
	or 5 Satemites	A	В	С
Satellite Index	1 (at A)	Α, Α, Α	А, В, С	А, С, В
	2 (at B)	B, A, C	B, B, B	B, C, A
	3 (at C)	С, А, В	С, В, А	C, C, C

- Replacing the index chains on the previous table with scalar cost function values, we produce a classic 1-to-1 assignment problem.
 - The Munkres (or Hungarian) Algorithm may be used to identify the highlighted permutations with a suitable choice of cost function \mathcal{K} .

Chain Cast for 2 Satallitas		Moves to Position Index		
	JI 5 Satellites	A	В	С
	1 (at A)	$\mathcal{K}_{1 o A}$	$\mathcal{K}_{1 o B}$	$\mathcal{K}_{1 ightarrow C}$
Satellite Index	2 (at B)	$\mathcal{K}_{2 \to A}$	$\mathcal{K}_{2 \to B}$	$\mathcal{K}_{2 \to C}$
	3 (at C)	$\mathcal{K}_{3 o A}$	$\mathcal{K}_{3 o B}$	$\mathcal{K}_{3 ightarrow C}$

Assessing Chain Cost

Assessing Chain Cost

• Fixed parameters of the chain cost function:

Description	Symbolic Representation	Degrees of Freedom
Normalized positions (relative to swarm centroid)	$\hat{\rho}_i ~\forall~ i \in \{1, 2, \dots, n\}$	2 <i>n</i>
Radius of swarm envelope	ρ	1
Radius of swarm trajectory	a_0	1
Offset angle of swarm (polygonal swarm shapes)	ϕ	1
Earth-centered coordinate basis of swarm trajectory	$\hat{X}, \hat{Y}, \hat{Z}$	3

Description	Symbolic Representation	Degrees of Freedom
Axis of initial rotation	û	2
Angle of initial rotation	θ	1
Initial displacement	\vec{S}	3
Axis of incremental rotation	\widehat{W}	2
Interrotational displacement	$\Delta \vec{s}$	3

Description	Symbolic Representation	Degrees of Freedom
Semi-major axis	а	1
Orbital eccentricities for each satellite	$e_i ~\forall~ i \in \{1, 2, \dots, n\}$	n
Initial true anomaly ($t = 0$) for each satellite	$\nu_i \ \forall \ i \in \{1, 2, \dots, n\}$	n

• Total degrees of freedom: 4n + 18

Assessing Chain Cost

• Fixed parameters of the chain cost function:

🗶 UC SANTA CRUZ

🗶 UC SANTA CRUZ

• Translation by swarm fixed displacement vector.

- 1. Perform rotation and shift along displacement vector.
- 2. Parallel transport vector from step 1.
- 3. Perform rotation and shift along displacement vector.
- 4. Parallel transport vectors from steps 1 and 3.
- 5. Perform rotation and shift along displacement vector.

Chain Cost for 3 Satellites		Moves to Position Index		
		A (index 1)	B (index 2)	C (index 3)
Satellite Index	1 (at A)	$\mathcal{K}_{1 ightarrow 1}$	$\mathcal{K}_{1 \rightarrow 2}$	$\mathcal{K}_{1 ightarrow 3}$
	2 (at B)	$\mathcal{K}_{2 \rightarrow 1}$	$\mathcal{K}_{2 \rightarrow 2}$	$\mathcal{K}_{2 ightarrow 3}$
	3 (at C)	$\mathcal{K}_{3 ightarrow 1}$	$\mathcal{K}_{3 ightarrow 2}$	$\mathcal{K}_{3 ightarrow 3}$

• We may now define the chain cost function for each element of this matrix:

$$\mathcal{K}_{i_1 \to i_2} = \frac{1}{n} \sum_{j=0}^{n-1} \left\| \vec{r}_{j \mid i_1, i_2}^{\text{geometry}} - \vec{r}_{j \mid i_1, i_2}^{\text{dynamics}} \right\|^2$$

- Process is intended for swarms with any number of satellites.
- Process must produce results of LISA swarm to be considered viable.
- Consider a LISA-like configuration with the following parameters.

Parameter / Variable	Value			
$\hat{ ho}_i$	$\cos((i-1)\cdot 120^\circ)\hat{X} - \sin((i-1)\cdot 120^\circ)\hat{Y}$			
ρ	1,000 km			
a_0	10,000 km			
ϕ	0°			
û	\widehat{Y}			
heta	-60°			
\widehat{W}	$\sin(120^\circ)\hat{X} + \cos(120^\circ)\hat{Z}$			
UF FLORIDA	Duke Entry Example TEXAS UC SANTA CRUZ			

- Dynamic variables can be defined for the three-satellite case by specifying motion as either **right-handed or left-handed** with respect to \hat{w} .
 - Right-handed motion means that each satellite moves clockwise from one checkpoint to the next (i.e., satellite 1 follows path A, B, C).
 - Left-handed motion moves counter-clockwise (i.e., path A, C, B).

Left-handed motion \Rightarrow path A, C, B; right-handed motion \Rightarrow path A, B, C. •

Parameter / Variable	Left-Handed Motion	Right-Handed Motion
\vec{S}	$-(20.14 \text{ km}) \hat{Z}$	(66.62 km) <i>Ź</i>
$\Delta \vec{s}$	$\vec{0}$ km	$\vec{0}$ km
a	10,076 km	10,032 km
e_1	0.0454	0.0508
<i>e</i> ₂	0.0454	0.0508
<i>e</i> ₃	0.0454	0.0508
ν_1	180°	180°
ν_2	305°	65°
ν_3	55°	295°
UF FLORIDA	uke TEXAS	www.uc.santa.cruz

• Path comparison for right-handed motion.

• Path comparison for right-handed motion.

Path comparison for left-handed motion. • 2000 1000 0 -1000 -2000 1 0.5 $imes 10^4$ 0 0.5 $imes 10^4$ -0.5 0 -0.5 -1 UF FLORIDA 👁 UC SANTA CRUZ The University of Texas at Austir

Conclusions

- The difference in timing between left- and right-handed motion is the result of uneven spacing between checkpoints 2 and 3.
 - Left-handed motion squeezes together the positions near periapse.
 - Comparing the periapse leg of the orbit to the apoapse legs, we see that traversal in the same amount of time is physically impossible.

- The difference in timing between left- and right-handed motion is the result of uneven spacing between checkpoints 2 and 3.
 - Left-handed motion squeezes together the positions near periapse.
 - Comparing the periapse leg of the orbit to the apoapse legs, we see that traversal in the same amount of time is physically impossible.

- Conclusions
- Substituting parameter and variable values into the chain cost function, we apply the Munkres algorithm to the resulting cost matrix.

Chain Cost for 3 Satellites		Moves to Position Index		
(root mean-squared error)		А	В	С
Satellite Index	1 (at A)	1,328 km	30 km	1,443 km
	2 (at B)	969 km	1,286 km	46 km
	3 (at C)	46 km	969 km	1,286 km

• Average cost of right-handed motion: 41 kilometers.

- Summary:
 - Demonstrated that 'formation chain' framework produces accurate results for known swarm configurations.
 - Provided a rigorous, mathematical basis for swarm initialization.
 - Gained insight into relationship between dynamics and geometry.
- Next Steps:
 - Publish formation chain framework as a solution to the swarm initialization problem.
 - Apply formation chain framework to different swarm configurations.
 - Explore additional methods to refine swarm optimality in general.

Questions

Index Chains

• Consider the case in which satellite 1 moves from position A to position C:

Bonus (Index Chains)

• Because no checkpoint can be 'special', the satellite at A must *always* move to C from one checkpoint to the next.

• Consequently, satellite 3 must have arrived at position C from position A:

Bonus (Index Chains)

• Next, since satellite 1 must arrive at A after three successive motions, the satellite at C cannot move to position A; the satellite at B must move to A.

Assessing Chain Cost

👁 UC SANTA CRUZ

n rotations for *n* satellites \Rightarrow angle of rotation = $m\Delta$ where $\Delta = 2\pi/n$.

UC SANTA CRUZ

Chain Cost for 3 Satellites		Moves to Position Index		
		A (index 1)	B (index 2)	C (index 3)
Satellite Index	1 (at A)	$\mathcal{K}_{1 \rightarrow 1,m}$	$\mathcal{K}_{1 \rightarrow 2,m}$	$\mathcal{K}_{1 \rightarrow 3, m}$
	2 (at B)	$\mathcal{K}_{2 ightarrow 1,m}$	$\mathcal{K}_{2 \rightarrow 2,m}$	$\mathcal{K}_{2 \rightarrow 3,m}$
	3 (at C)	$\mathcal{K}_{3 ightarrow 1,m}$	$\mathcal{K}_{3 ightarrow 2,m}$	$\mathcal{K}_{3 ightarrow 3,m}$

- Must perform assignment analysis for each *m* value from 0 to n 1.
- We may now define the chain cost function for each element of this matrix:

$$\mathcal{K}_{i_1 \to i_2, m} = \frac{1}{n} \sum_{j=0}^{n-1} \left\| \vec{r}_{j \mid i_1, i_2, m}^{\text{geometry}} - \vec{r}_{j \mid i_1, i_2, m}^{\text{dynamics}} \right\|^2$$

• The exact value of the dynamical variables in the three-satellite case can be determined by defining the following vectors:

Bonus (Reproducing LISA)

• Path comparison for right-handed motion.

Bonus (Reproducing LISA)

• Path comparison for left-handed motion.

