Reproducing Swarm Dynamics for a Three-Satellite System with Generalized Swarm Optimization

Taryn J. Noone \& Norman G. Fitz-Coy

- We are seeking to solve the Swarm Initialization Problem (SIP) in the special case of a circular swarm trajectory (eccentricity $=0$, exact).
- We assume invariance of swarm optimality under:
- Rotation of the swarm within a known space of valid rotations;
- Translation of the swarm within a known space of valid translations;
- Transposition, or re-labeling of any two satellites.
- Quantization of the orbit into evenly-spaced 'checkpoints'
- Same number of checkpoints as satellites.
- Assume no checkpoint is 'special'; i.e., re-orienting global coordinates to set any checkpoint as 'initial' results in an identical problem.
- Construction of formation chains based on geometry alone.
- Assessment of formation chains for compatibility with dynamics.
- Uses Munkres' Algorithm to identify orbits compatible with geometry.

Swarm-Preserving Operations

Duke
圖TEXAS

Swarm-Preserving Operations

- Invariance of swarm optimality under rotation of the swarm within a known space of valid rotations:
- Example: Planar formations rotated about the normal of their plane.

Duke
圈TEXAS

Swarm-Preserving Operations

- Invariance of swarm optimality under translation of the swarm within a known space of valid translations.
- Complicated by requirement that no one checkpoint is 'special'.
- Supports two 'modes' of translation:

1. Globally fixed displacement applied to all checkpoints.
2. Swarm fixed displacement normal to axis of swarm rotation.

an
Duke
圈TEXAS
©UC SANTA CRUL

Swarm-Preserving Operations

- Translation by globally fixed displacement vector.

Swarm-Preserving Operations

- Translation by swarm fixed displacement vector.

1. Perform rotation and shift along displacement vector.
2. Parallel transport vector from step 1.
3. Perform rotation and shift along displacement vector.
4. Parallel transport vectors from steps 1 and 3.
5. Perform rotation and shift along displacement vector.

Duke

Swarm-Preserving Operations

- Invariance of swarm optimality under transposition, or re-labeling of any two satellites.

圖TEXAS

Index Chains

- A suitable combination of rotation, translation, and re-indexing produces geometry-based formation chains.
- We define index chains to determine the path followed by a satellite.
- Index chains separate the notions of satellites and positions in the swarm.
- Consider three checkpoints for a three-satellite formation, shown below:

Positions: A, B, and C Satellites: 1, 2, and 3

Checkpoint 1

Checkpoint 2

Checkpoint 3

- For any checkpoint, position A, B, or C may contain satellite 1, 2, or 3 .
- Assume indexing for checkpoint 1 is arbitrary, so we may reduce all six cases down to one: Satellite 1 at position A; 2 at B; and 3 at C.

Duke
圈TEXAS

Positions: A, B, and C Satellites: 1, 2, and 3 $\bigcirc=1 \bigcirc=2 \bigcirc=3$

Checkpoint 1

Checkpoint 2

Checkpoint 3

- We see that for each satellite / position at checkpoint 1, there are three possibilities at checkpoint 2.
- After one satellite has been placed, two possibilities remain for the next.
- After two satellites have been placed, only one possibility remains.
- There are six configurations for three satellites.
- n ! configurations for a general n satellites.

Duke
甸TEXAS
© UL SANTH CRUL

Index Chains

- It can be shown that, under these requirements, the full index chain for each satellite is fully defined by the first two checkpoints.
- Results in n^{2} index chains for n satellites.
- Valid assignments must have unique row and column indices.

Index Chain for 3 Satellites		Moves to Position Index		
		A	B	C
Satellite Index	1 (at A)	A, A, A	A, B, C	A, C, B
	2 (at B)	B, A, C	B, B, B	B, C, A
	3 (at C)	C, A, B	C, B, A	C, C, C

Duke

- Replacing the index chains on the previous table with scalar cost function values, we produce a classic 1-to-1 assignment problem.
- The Munkres (or Hungarian) Algorithm may be used to identify the highlighted permutations with a suitable choice of cost function \mathcal{K}.

Chain Cost for 3 Satellites		Moves to Position Index		
		A	B	C
Satellite Index	1 (at A)	$\mathcal{K}_{1 \rightarrow A}$	$\mathcal{K}_{1 \rightarrow B}$	$\mathcal{K}_{1 \rightarrow C}$
	2 (at B)	$\mathcal{K}_{2 \rightarrow A}$	$\mathcal{K}_{2 \rightarrow B}$	$\mathcal{K}_{2 \rightarrow C}$
	3 (at C)	$\mathcal{K}_{3 \rightarrow A}$	$\mathcal{K}_{3 \rightarrow B}$	$\mathcal{K}_{3 \rightarrow C}$

Duke

Assessing Chain Cost

Duke
图TEXAS

Assessing Chain Cost

Checkpoint 3

Checkpoint 3

Assessing Chain Cost

- Fixed parameters of the chain cost function:

Description

Symbolic Representation
Degrees of Freedom
Normalized positions(relative to swarm centroid)
$\hat{\rho}_{i} \forall i \in\{1,2, \ldots, n\}$ $2 n$
Radius of swarm envelope ρ 1
Radius of swarm trajectory a_{0} 1
Offset angle of swarm (polygonal swarm shapes) ϕ 1
Earth-centered coordinate basis of swarm trajectory 3

Duke
图TEXAS
The University of Texas at Austin
© ILS SHITI CRIVI

Assessing Chain Cost

- Geometric variables incorporated in the chain cost function:

Description

Symbolic Representation
Degrees of Freedom
Axis of initial rotation \widehat{u} 2
Angle of initial rotation θ 1
Initial displacement \vec{S} 3
Axis of incremental rotation \widehat{w} 2
Interrotational displacement $\Delta \vec{S}$ 3

Duke

Assessing Chain Cost

- Dynamical variables incorporated in the chain cost function:

Description

Symbolic Representation
Degrees of Freedom
Semi-major axis aOrbital eccentricities foreach satellite

$$
e_{i} \forall i \in\{1,2, \ldots, n\}
$$$n$

Initial true anomaly $(t=0)$ for each satellite

$$
v_{i} \forall i \in\{1,2, \ldots, n\}
$$$n$

- Total degrees of freedom: $4 n+18$

Duke

Assessing Chain Cost

- Fixed parameters of the chain cost function:

Assessing Chain Cost

- Geometric variables incorporated in the chain cost function:

圁TEXAS
© ULC SANTH RKUL

- Geometric variables incorporated in the chain cost function:

- Geometric variables incorporated in the chain cost function:

Swarm-Preserving Operations

- Translation by swarm fixed displacement vector.

1. Perform rotation and shift along displacement vector.
2. Parallel transport vector from step 1.
3. Perform rotation and shift along displacement vector.
4. Parallel transport vectors from steps 1 and 3.
5. Perform rotation and shift along displacement vector.

Duke

Assessing Chain Cost

		Moves to Position Index		
Chain Cost for 3 Satellites		A (index 1)	B (index 2)	
Satellite Index (index 3)				
	2 (at A)	$\mathcal{K}_{1 \rightarrow 1}$	$\mathcal{K}_{1 \rightarrow 2}$	
	(at	$\mathcal{K}_{2 \rightarrow 1}$	$\mathcal{K}_{2 \rightarrow 2}$	
$\mathcal{K}_{2 \rightarrow 3}$				
	3 (at C)	$\mathcal{K}_{3 \rightarrow 1}$	$\mathcal{K}_{3 \rightarrow 2}$	
$\mathcal{K}_{3 \rightarrow 3}$				

- We may now define the chain cost function for each element of this matrix:

$$
\mathcal{K}_{i_{1} \rightarrow i_{2}}=\frac{1}{n} \sum_{j=0}^{n-1}\left\|\vec{r}_{j \mid i_{1}, i_{2}}^{\text {geometry }}-\vec{r}_{j \mid i_{1}, i_{2}}^{\text {dynamics }}\right\|^{2}
$$

Duke

Reproducing LISA

Reproducing LISA

- Process is intended for swarms with any number of satellites.
- Process must produce results of LISA swarm to be considered viable.
- Consider a LISA-like configuration with the following parameters.

Parameter / Variable

Value

$\hat{\rho}_{i}$	$\cos \left((i-1) \cdot 120^{\circ}\right) \hat{X}-\sin \left((i-1) \cdot 120^{\circ}\right) \hat{Y}$
ρ	$1,000 \mathrm{~km}$
a_{0}	$10,000 \mathrm{~km}$
ϕ	0°
\hat{u}	\hat{Y}
θ	-60°
\widehat{w}	$\sin \left(120^{\circ}\right) \hat{X}+\cos \left(120^{\circ}\right) \hat{Z}$

Reproducing LISA

- Dynamic variables can be defined for the three-satellite case by specifying motion as either right-handed or left-handed with respect to \widehat{w}.
- Right-handed motion means that each satellite moves clockwise from one checkpoint to the next (i.e., satellite 1 follows path A, B, C).
- Left-handed motion moves counter-clockwise (i.e., path A, C, B).

Left-handed motion

Right-handed motion
(2)

Duke
圆TEXAS

Reproducing LISA

- Left-handed motion \Rightarrow path A, C, B; right-handed motion \Rightarrow path A, B, C.

Parameter / Variable
Left-Handed Motion

\vec{s}	$-(20.14 \mathrm{~km}) \hat{Z}$	$(66.62 \mathrm{~km}) \hat{Z}$
$\Delta \vec{s}$	$\overrightarrow{0} \mathrm{~km}$	$\overrightarrow{0} \mathrm{~km}$
a	$10,076 \mathrm{~km}$	$10,032 \mathrm{~km}$
e_{1}	0.0454	0.0508
e_{2}	0.0454	0.0508
e_{3}	0.0454	0.0508
v_{1}	180°	180°
v_{2}	305°	65°
v_{3}	55°	295°

© ULS SHINI CRHIL

Reproducing LISA

- Path comparison for right-handed motion.

Duke
圈TEXAS
© ULS SANTH CHIUL

Reproducing LISA

- Path comparison for right-handed motion.

Reproducing LISA

- Path comparison for left-handed motion.

Duke
圈TEXAS
© ULS SANTH CHIUL

Conclusions

Conclusions

- The difference in timing between left- and right-handed motion is the result of uneven spacing between checkpoints 2 and 3 .
- Left-handed motion squeezes together the positions near periapse.
- Comparing the periapse leg of the orbit to the apoapse legs, we see that traversal in the same amount of time is physically impossible.

Left-handed motion

Right-handed motion
(2)

Duke
1
回TEXAS

©UC SANTH CKUL

Conclusions

- The difference in timing between left- and right-handed motion is the result of uneven spacing between checkpoints 2 and 3 .
- Left-handed motion squeezes together the positions near periapse.
- Comparing the periapse leg of the orbit to the apoapse legs, we see that traversal in the same amount of time is physically impossible.

Left-handed motion

Right-handed motion
UF FIMRIDA

Duke
圈TEXAS

©UL SANTH RKUZ

- Substituting parameter and variable values into the chain cost function, we apply the Munkres algorithm to the resulting cost matrix.

Chain Cost for 3 Satellites (root mean-squared error)		Moves to Position Index		
		A	B	C
Satellite Index	1 (at A)	1,328 km	30	1,443 km
	2 (at B)	969 km	1,286 km	46
	3 (at C)	6	969 km	1,286 km

- Average cost of right-handed motion: 41 kilometers.

Duke
*in

- Summary:
- Demonstrated that 'formation chain' framework produces accurate results for known swarm configurations.
- Provided a rigorous, mathematical basis for swarm initialization.
- Gained insight into relationship between dynamics and geometry.
- Next Steps:
- Publish formation chain framework as a solution to the swarm initialization problem.
- Apply formation chain framework to different swarm configurations.
- Explore additional methods to refine swarm optimality in general.

Duke
圈TEXAS
© UL SANTH CRUL

Questions

Index Chains

- Consider the case in which satellite 1 moves from position A to position C:

Positions: A, B, and C Satellites: 1, 2, and 3

$$
\bigcirc=1 \bigcirc=2 \bigcirc=3
$$

Checkpoint 1

Checkpoint 2

Checkpoint 3

- Because no checkpoint can be 'special', the satellite at A must always move to C from one checkpoint to the next.

Positions: A, B, and C Satellites: 1, 2, and 3 $\bigcirc=1 \bigcirc=2 \bigcirc=3$

Duke
圁TEXAS
© UL SANTH CRUL

- Consequently, satellite 3 must have arrived at position C from position A:

Positions: A, B, and C Satellites: 1, 2, and 3

$$
\bigcirc=1 \bigcirc=2 \bigcirc=3
$$

Checkpoint 1

Checkpoint 2

Checkpoint 3

- Next, since satellite 1 must arrive at A after three successive motions, the satellite at C cannot move to position A; the satellite at B must move to A.

Positions: A, B, and C Satellites: 1, 2, and 3 $\bigcirc=1 \bigcirc=2 \bigcirc=3$

Duke
图TEXAS

Assessing Chain Cost

UF Fi'Loridí
Duke

圈TEXAS
(x)
© IUS SATIT CRULI

- Geometric variables incorporated in the chain cost function:

- Geometric variables incorporated in the chain cost function:

n rotations for n satellites \Rightarrow angle of rotation $=m \Delta$ where $\Delta=2 \pi / n$.

Duke
包TEXAS
© ILC SHNTH CRULI

- Geometric variables incorporated in the chain cost function:

Assessing Chain Cost

Chain Cost for 3 Satellites		Moves to Position Index		
		A (index 1)	B (index 2)	C (index 3)
Satellite Index	1 (at A)	$\mathcal{K}_{1 \rightarrow 1, m}$	$\mathcal{K}_{1 \rightarrow 2, m}$	$\mathcal{K}_{1 \rightarrow 3, m}$
	2 (at B)	$\mathcal{K}_{2 \rightarrow 1, m}$	$\mathcal{K}_{2 \rightarrow 2, m}$	$\mathcal{K}_{2 \rightarrow 3, m}$
	3 (at C)	$\mathcal{K}_{3 \rightarrow 1, m}$	$\mathcal{K}_{3 \rightarrow 2, m}$	$\mathcal{K}_{3 \rightarrow 3, m}$

- Must perform assignment analysis for each m value from 0 to $n-1$.
- We may now define the chain cost function for each element of this matrix:

$$
\mathcal{K}_{i_{1} \rightarrow i_{2}, m}=\frac{1}{n} \sum_{j=0}^{n-1}\left\|\vec{r}_{j \mid i_{1}, i_{2}, m}^{\text {geometry }}-\vec{r}_{j \mid i_{1}, i_{2}, m}^{\text {dynamics }}\right\|^{2}
$$

Reproducing LISA

Bonus (Reproducing LISA)

Bonus (Reproducing LISA)

Bonus (Reproducing LISA)

Bonus (Reproducing LISA)

- The exact value of the dynamical variables in the three-satellite case can be determined by defining the following vectors:

$\vec{r}_{1}=$ position of satellite 1
at checkpoint 1.
$\vec{r}_{2}=$ position of satellite 1 at checkpoint 2.
$\begin{aligned} \vec{r}_{3}= & \text { position of satellite } 1 \\ & \text { at checkpoint } 3 .\end{aligned}$

1) 包TEXAS
© UL SANTH CRUL

Bonus (Reproducing LISA)

- Path comparison for right-handed motion.

Bonus (Reproducing LISA)

- Path comparison for left-handed motion.

