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Personnel & Collaborations with CoE PIs

• New lab alumni:

• Ongoing collaboration with Dawn Hustig-Schultz and Ricardo Sanfelice (UCSC)
• Developed hybrid model of decentralized non-convex optimization
• Paper at CDC ’21
• One under review at ACC ‘23
• Journal paper in preparation

• Ongoing collaboration with Ufuk Topcu (UT-Austin)
• Looking at privacy in symbolic systems
• Combining our privacy mechanisms with their multi-agent algorithms

Dr. Kasra Yazdani
Now at Samsung

Dr. Katherine Hendrickson
Now at EpiSci



Collaborations with Air Force Colleagues

• Applied optimization work to weapon-target assignment (WTA) problems
• K. Hendrickson, P. Ganesh, K. Volle, P. Buzaud, K. Brink, and M.T. Hale, 

"Decentralized Weapon-Target Assignment under Asynchronous 
Communications”. 

• Accepted to Journal of Guidance, Control, and Dynamics
• Ongoing collaboration with Kevin Brink (RW) on discrete optimization

• Joint paper at AIAA SciTech with USAFA based on senior capstone
• A. Broshkevitch, A. Hancock, A. Peters, M. Kim, M. Anderson,  et al., "An 

Autonomous System for the Rapid Airfield Damage Repair Mission”

• Working with Zach Bell (RW) on feedback optimization
• Working with Ben Robinson (RY) on anomaly detection in multi-armed bandits
• Collaborating on MPC with Sean Phillips and Alex Soderlund (RV)

• Currently focused on satellite docking
• IFAC World Congress paper in preparation

• Engaging with AFRL every summer
• William Warke went to RW for summer 2022 with Kevin Brink
• Gabriel Behrendt went to RV for summer 2022 with Sean Phillips
• Alexander Benvenuti went to RW for summer 2022 with Scott Nivison



Differential Privacy for 
Network Design and 

Analysis
Calvin Hawkins & Matthew Hale

Department of Mechanical and Aerospace 
Engineering University of Florida

1. “Differentially Private Formation Control: Privacy and Network Co-Design” Under 
review. https://arxiv.org/abs/2205.13406

2. “Node and Edge Differential Privacy for Graph Laplacian Spectra: Mechanisms and 
Scaling Laws” Under review. https://arxiv.org/abs/2104.00654



Motivation

• Allow agents to collaborate while protecting their sensitive information.

• Examples:

• Autonomous vehicles sharing location data

• Social Networks sharing personal information

• Data-driven control sharing sensitive state information

• Graph analyses may reveal sensitive information about individuals.

Two goals:
1. Develop tools to design networks sharing 

private information. (Part 1)
2. Develop tools for the private analysis of 

networks. (Part 2)



Part 1:
Privacy and Network

Co-Design



Formation Control Background

• In this talk, formation control.

• Consider N agents where agent 𝑖𝑖 has 
state 𝑥𝑥𝑖𝑖 𝑘𝑘 ∈ ℝ𝑑𝑑. 

• Network is modeled by a weighted, 
undirected graph 𝐺𝐺.

• If agents 𝑖𝑖 and 𝑗𝑗 communicate, 
maintain a distance of Δ𝑖𝑖𝑖𝑖 ∈ ℝ𝑑𝑑.

• Without privacy, this is achieved by 
the formation control protocol. -25 -20 -15 -10 -5 0 5 10 15 20

-25

-20

-15

-10

-5

0

5

10

15

20

25

1

2

3

4

𝑥𝑥𝑖𝑖 𝑘𝑘 + 1 = 𝑥𝑥𝑖𝑖 𝑘𝑘 + 𝛾𝛾 �
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• Statistical notion of privacy that originated in the computer science 
literature.

• Immune to post processing and robust to side information.

• Used by Apple, Google, Uber, and the 2020 Census.

• Agents can share trajectory data while protecting itself from other agents 
and eavesdroppers.

Differential Privacy Background

Private 
Algorithm

Private 
Algorithm

}
Adversary



Differential Privacy Masks Differences

𝑏𝑏𝑖𝑖

• Goal of Differential Privacy: Make “similar” pieces of data appear 
“approximately indistinguishable.”

• Adjacency defines when pieces of data are similar.
• For trajectories 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′ ∈ ℓ𝑝𝑝

Definition (Differential Privacy): Let 𝜖𝜖𝑖𝑖 > 0 and 𝛿𝛿𝑖𝑖 ∈ 0, 1
2

. A randomized mechanism 𝑀𝑀 is 
𝜖𝜖𝑖𝑖 , 𝛿𝛿𝑖𝑖 −differentially private for agent 𝑖𝑖 if, for all adjacent 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′, we have

𝑃𝑃 𝑀𝑀 𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑖𝑖𝑃𝑃 𝑀𝑀 𝑥𝑥𝑖𝑖′ ∈ 𝑆𝑆 + 𝛿𝛿𝑖𝑖.

Privacy mechanism
tuned by 𝜖𝜖𝑖𝑖 , 𝛿𝛿𝑖𝑖

Sensitive 
data

Private 
data

𝑥𝑥𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′ = �
1, 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′ ℓ𝑝𝑝 ≤ 𝑏𝑏𝑖𝑖
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Typical values:
𝜖𝜖𝑖𝑖 ≤ 3, 𝛿𝛿𝑖𝑖 ≤ 0.05



Implementing Privacy

•Agent 𝑖𝑖 must send 𝑥𝑥𝑖𝑖(𝑘𝑘) to its neighborhood 𝑁𝑁 𝑖𝑖 at each 𝑘𝑘.

•Instead, agent 𝑖𝑖 will send a private version of its state to 𝑁𝑁 𝑖𝑖 ; �𝑥𝑥𝑖𝑖(𝑘𝑘).

•Differential privacy is implemented with the Gaussian Mechanism:

�𝑥𝑥𝑗𝑗 𝑘𝑘 = 𝑥𝑥𝑗𝑗 𝑘𝑘 + 𝑣𝑣𝑗𝑗 𝑘𝑘 ,
𝑣𝑣𝑗𝑗 𝑘𝑘 ∼ 𝒩𝒩 0,𝜎𝜎𝑗𝑗2𝐼𝐼𝑑𝑑 .

Lemma: The Gaussian mechanism is 
𝜖𝜖𝑖𝑖 , 𝛿𝛿𝑖𝑖 −differentially private for agent 𝑖𝑖 if 

𝜎𝜎𝑖𝑖 ≥ 𝜅𝜅 𝜖𝜖𝑖𝑖 , 𝛿𝛿𝑖𝑖 𝑏𝑏𝑖𝑖, where

𝜅𝜅 𝛿𝛿𝑖𝑖 , 𝜖𝜖𝑖𝑖 = 1
2𝜖𝜖𝑖𝑖

𝐾𝐾𝛿𝛿𝑖𝑖 + 𝐾𝐾𝛿𝛿𝑖𝑖
2 + 2𝜖𝜖𝑖𝑖 ,

and 𝐾𝐾𝛿𝛿𝑖𝑖 = 𝑄𝑄−1(𝛿𝛿𝑖𝑖).



Quantifying Performance

•With privacy the formation control protocol becomes

𝑥𝑥𝑖𝑖 𝑘𝑘 + 1 = 𝑥𝑥𝑖𝑖 𝑘𝑘 + 𝛾𝛾 ∑𝑗𝑗∈𝑁𝑁 𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 𝑘𝑘 + 𝑣𝑣𝑗𝑗(𝑘𝑘) − 𝑥𝑥𝑖𝑖 𝑘𝑘 − Δ𝑖𝑖𝑖𝑖) + 𝑛𝑛𝑖𝑖(𝑘𝑘).

•Let 𝑒𝑒𝑖𝑖(𝑘𝑘) = 𝑥𝑥𝑖𝑖 𝑘𝑘 − 𝛽𝛽𝑖𝑖(𝑘𝑘), where 𝛽𝛽(𝑘𝑘) is the state the non-private 
protocol converges to with initial condition 𝑥𝑥 𝑘𝑘 .

•To quantify performance at the network level, let

𝑒𝑒𝑠𝑠𝑠𝑠 = lim sup
𝑘𝑘→∞

1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝐸𝐸[𝑒𝑒𝑖𝑖 𝑘𝑘 2].
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Quantifying Performance

Theorem 1: Bounds on Steady-State 
Error

A network of 𝑁𝑁 agents running the controller 
𝑥𝑥𝑖𝑖 𝑘𝑘 + 1 = 𝑥𝑥𝑖𝑖 𝑘𝑘 + 𝛾𝛾 �

𝑗𝑗∈𝑁𝑁 𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖( �𝑥𝑥𝑗𝑗 𝑘𝑘 − �𝑥𝑥𝑖𝑖 𝑘𝑘 − Δ𝑖𝑖𝑖𝑖)

is differentially private and has 𝑒𝑒𝑠𝑠𝑠𝑠 upper 
bounded by

𝑒𝑒𝑠𝑠𝑠𝑠 ≤
𝛾𝛾𝑑𝑑 ∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝑤𝑤𝑖𝑖𝑖𝑖

2 − deg 𝑖𝑖 2

𝑁𝑁 𝜅𝜅 𝜖𝜖𝑖𝑖 , 𝛿𝛿𝑖𝑖 2𝑏𝑏𝑖𝑖2

𝑁𝑁 𝜆𝜆2 𝐺𝐺 (2 − 𝛾𝛾𝜆𝜆2 𝐺𝐺 )

“Differentially Private Formation Control: Privacy and Network Co-Design” Under review. https://arxiv.org/abs/2205.13406



Privacy and Network Co-Design

•Goal: Formulate an optimization problem to design the communication 
topology and privacy parameters subject to constraints.

•Input: Design constraints and initial undirected, unweighted 
communication topology.

•Decision variables: 𝐿𝐿 𝐺𝐺 , 𝜖𝜖𝑖𝑖.



Privacy and Network Co-Design

•Objective function
• Dense graph costs more: T𝑟𝑟(𝐿𝐿 𝐺𝐺 ).
• Agents want to be as private as possible: ∑𝑖𝑖∈[𝑁𝑁] 𝜖𝜖𝑖𝑖2.

• Minimize Γ 𝜖𝜖𝑖𝑖 𝑖𝑖∈ 𝑁𝑁 , 𝐿𝐿 𝐺𝐺 = 𝜗𝜗𝜗𝜗𝜗𝜗 𝐿𝐿 𝐺𝐺 + ∑𝑖𝑖∈[𝑁𝑁] 𝜖𝜖𝑖𝑖2.

•Constraints

• Performance: 𝑒𝑒𝑠𝑠𝑠𝑠 ≤ 𝑒𝑒𝑅𝑅 →
𝛾𝛾2𝑇𝑇𝑇𝑇(𝐿𝐿 𝐺𝐺 ΣvL G )
𝑁𝑁 𝜆𝜆2 𝐺𝐺 (2−𝛾𝛾𝜆𝜆2 𝐺𝐺 )

≤ 𝑒𝑒𝑅𝑅.

• Connectivity: 𝜆𝜆2 𝐺𝐺 ≥ 𝜆𝜆2𝐿𝐿.

• Minimum level of privacy: 𝜖𝜖𝑖𝑖 ≤ 𝜖𝜖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

Smaller 𝜖𝜖𝑖𝑖 → Stronger privacy



Privacy and Network Co-Design

Problem 1: Privacy and Network Co-Design



Co-Design Example

Input:

•Fix the input unweighted graph over 𝑁𝑁 = 10 agents.

•A smaller a node is drawn, the more private it is. (Smaller 
epsilon)

•The thicker an edge is drawn, the more edge weight it has.

•Fix everything other than the required performance.

Sample output:



Co-Design Example: Tuning 
Performance

Fix 𝛾𝛾 = 1
2𝑛𝑛

,𝜗𝜗 = 10, 𝜆𝜆2𝐿𝐿 = 0.2,𝛿𝛿𝑖𝑖 = 0.05,𝑏𝑏𝑖𝑖 = 1.
◦ 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = [0.4, 0.9, 0.55, 0.35, 0.8, 0.45, 0.7, 0.5, 0.52, 0.58].
◦ Let 𝑒𝑒𝑅𝑅 ∈ {2, 8, 64}.

𝑒𝑒𝑅𝑅 = 2 𝑒𝑒𝑅𝑅 = 8 𝑒𝑒𝑅𝑅 = 64

1. C. Hawkins and M. Hale “Differentially Private Formation Control: Privacy 
and Network Co-Design,” Under review: https://arxiv.org/pdf/2205.13406.pdf

Performance requirements weaken.



Part 2:
Private Network 

Analysis



Background

•Graph analyses may reveal sensitive information about individuals.

•Numerous scalar-valued graph properties pose known privacy threats.
• Counts of triangles.
• Counts of subgraphs.
• Lots more.

•In this talk, we will focus on the privacy of the spectrum of the graph 
Laplacian.

𝜆𝜆1 𝐿𝐿(𝐺𝐺) , … , 𝜆𝜆𝑛𝑛(𝐿𝐿(𝐺𝐺))

𝐺𝐺: Need privacy in these calculations!



•“Similar” pieces of data appear “approximately indistinguishable.”

•Similarity is defined over the edge set. Adjacency parameter 𝐴𝐴.

•Each eigenvalue is bounded on [0,𝑛𝑛].

•We use the bounded Laplace mechanism[1].

Implementing Privacy (Adjacency)

Adjacent

Edge Privacy:
𝐴𝐴 = 1 Definition (Edge Privacy): 

Let 𝜖𝜖 > 0 and 𝛿𝛿 ∈ 0, 1
2

. A randomized 
mechanism 𝑀𝑀 is 𝜖𝜖, 𝛿𝛿 −differentially 
private for agent 𝑖𝑖 if, for all adjacent 
𝐺𝐺,𝐺𝐺𝐺, we have

𝑃𝑃 𝑀𝑀 𝐺𝐺 ∈ 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑃𝑃 𝑀𝑀 𝐺𝐺𝐺 ∈ 𝑆𝑆 + 𝛿𝛿

𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺,𝐺𝐺𝐺 = �1, |𝐸𝐸 𝐺𝐺 ΔE G′ | ≤ 𝐴𝐴
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

1. Holohan, Naoise, et al. "The bounded laplace
mechanism in differential privacy." arXiv preprint 
arXiv:1808.10410 (2018).



Privacy Mechanism

𝜆𝜆2 = 2, 𝑏𝑏 = 2,𝑛𝑛 = 10

Definition (Bounded Laplace mechanism for 𝝀𝝀𝒊𝒊[1]). Let 𝑏𝑏 > 0 and 𝐷𝐷 = [0,𝑛𝑛]. Then the 
bounded Laplace mechanism 𝑊𝑊𝜆𝜆𝑖𝑖 is given by its probability density function 𝑓𝑓𝑊𝑊𝜆𝜆𝑖𝑖

as

𝑓𝑓𝑊𝑊𝜆𝜆𝑖𝑖
𝑥𝑥 = �

0, 𝑥𝑥 ∉ 𝐷𝐷
1

𝐶𝐶 𝜆𝜆𝑖𝑖 , 𝑏𝑏
1

2𝑏𝑏
𝑒𝑒−

𝑥𝑥−𝜆𝜆𝑖𝑖
𝑏𝑏 , 𝑥𝑥 ∈ 𝐷𝐷

Where 𝐶𝐶 𝜆𝜆𝑖𝑖 , 𝑏𝑏 is a normalizing term.

Theorem 2: Let 𝜀𝜀 > 0, 𝛿𝛿 ∈ 0,1 and adjacency 
parameter 𝐴𝐴. The bounded Laplace mechanism is (𝜀𝜀, 𝛿𝛿)-
differentially private if 

𝑏𝑏 ≥
2𝐴𝐴

𝜀𝜀 − log
1 − 1

2 𝑒𝑒
−2𝐴𝐴𝑏𝑏 1 + 𝑒𝑒−

𝑛𝑛
𝑏𝑏−1

1 − 1
2 1 + 𝑒𝑒−

𝑛𝑛
𝑏𝑏

−log(1 − 𝛿𝛿)



Private Analysis: Accuracy

•Fix a graph 𝐺𝐺 on 50 nodes, 𝜖𝜖 = 0.6, 𝛿𝛿 = 0.05,𝐴𝐴 = 2.

•Generate 104 private 𝜆̃𝜆𝑖𝑖 for 𝑖𝑖 ∈ {2, … , 5}.

Theorem 3:

𝐸𝐸 𝜆̃𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖 = 1
2𝐶𝐶(𝜆𝜆𝑖𝑖,𝑏𝑏)

2𝜆𝜆𝑖𝑖 + 𝑏𝑏𝑒𝑒−
𝜆𝜆𝑖𝑖
𝑏𝑏 − 𝑛𝑛 + 𝑏𝑏 𝑒𝑒−

𝑛𝑛−𝜆𝜆𝑖𝑖
𝑏𝑏 − 𝜆𝜆𝑖𝑖



Private Analysis: Trace

•𝑇𝑇𝑇𝑇 𝐿𝐿 𝐺𝐺 = ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖 𝐿𝐿 𝐺𝐺 .

•Fix a graph 𝐺𝐺, 𝜖𝜖 = 0.4, 𝛿𝛿 = 0.05,𝐴𝐴 = 2.

•Generate 104 private spectra 𝜆̃𝜆𝑖𝑖 𝑖𝑖=1
𝑛𝑛

.

•Estimate the trace as �𝑇𝑇𝑇𝑇 𝐿𝐿 𝐺𝐺 = ∑𝑖𝑖=1𝑛𝑛 𝜆̃𝜆𝑖𝑖 𝐿𝐿 𝐺𝐺 .

True Value: 𝑇𝑇𝑇𝑇 𝐿𝐿 𝐺𝐺 = 736
Average error: 3.97%



Private Analysis: Kemeny’s Consant

•Kemeny’s constant = expected time steps from state 𝑖𝑖 to a random state 
sampled from the stationary distribution of a Markov chain.

•In network control, discrete time consensus is governed by 𝑃𝑃 = 𝐼𝐼 − 𝛾𝛾𝛾𝛾 𝐺𝐺

•𝑃𝑃 can be analyzed as the transition matrix of Markov chain.
• Error of consensus is in terms of the Kemeny constant.

•Estimate with the private spectrum 𝜆̃𝜆𝑖𝑖 𝑖𝑖=1
𝑛𝑛

.

•Kemeny’s consant: 𝐾𝐾 𝑃𝑃 = ∑𝑖𝑖=2𝑛𝑛 1
1−𝜆𝜆𝑖𝑖(𝑃𝑃)

• 𝐾𝐾 𝑃𝑃 = 1
𝛾𝛾
∑𝑖𝑖=2𝑛𝑛 1

𝜆𝜆𝑖𝑖(𝐿𝐿(𝐺𝐺))

• Private estimate �𝐾𝐾 𝑃𝑃 = 1
𝛾𝛾
∑𝑖𝑖=2𝑛𝑛 1

�𝜆𝜆𝑖𝑖(𝐿𝐿(𝐺𝐺))



Private Analysis: Kemeny’s Consant

•Fix a graph 𝐺𝐺, 𝜖𝜖 = 1.0, 𝛿𝛿 = 0.05,𝐴𝐴 = 2, 𝛾𝛾 = 1
𝑛𝑛

.

•Generate 104 private spectra 𝜆̃𝜆𝑖𝑖 𝑖𝑖=1
𝑛𝑛

•Estimate Kemeny’s constant as �𝐾𝐾 𝑃𝑃 = 1
𝛾𝛾
∑𝑖𝑖=2𝑛𝑛 1

�𝜆𝜆𝑖𝑖(𝐿𝐿(𝐺𝐺))

True Value: 𝐾𝐾 𝑃𝑃 = 102.70
Average error: 0.55%



Future Work

𝜆𝜆𝑖𝑖 Private 
Algorithm

𝜆̃𝜆𝑖𝑖

Analyst
Less noise!

Better accuracy!

•The development of new privacy mechanisms for other graph properties.

•Applications to basic reproduction number of an epidemic model.

•Privacy in multi-agent MDPs and reinforcement learning.



Thank you
calvin.hawkins@ufl.edu
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