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o ¥4 ¥ Protecting Information

« How to ensure that data communicated by autonomous agents
stays secure and private?

« Communication privacy:

* TLS — the default for secure communication
» Differential privacy, PIR, ORAM

« Computation privacy:
« Partial and fully homomorphic encryption (PHE/FHE)
 Secure multiparty computation (SMC) for 2 or more parties
» Hardware assistance through trusted execution environments (TEESs)

» What is efficient and practical for real-world agents given the
constraints of space environments?
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o 94 Yy Iti-Agent Communication

« How do agents characterize their surroundings?

 Can adversaries understand the agent’s conceptual model
without access to their reasoning?

« How can agents learn and resolve concepts without human-in-
the loop feedback?
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Securing Satellite Collision Avoidance
using Secure Multiparty Computation
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General goal: ensure data on autonomous agents remains secure and
private during computation

Demonstrate feasibility secure multiparty computation (SMC), a method of operating on
encrypted data, allowing collision avoidance (CA) to be conducted between mutually-distrustful
agents without revealing location or trajectory data

* Determined software toolkit/library to implement SMC into a standard CA algorithm

e Constructed hardware setup with embedded processors that survive a space environment,
tested simple algorithms and networking setup

* Developed version of CA algorithm to test, determining which parameters need security

e Testing CA program on boards both with and without SMC and benchmark results
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Problem: How can we prevent collisions without revealing exact locations of strategic satellites?

Difficulties:

* need for satellites to share location/trajectory data to prevent collision, poses security risk for
satellite owner

* cybersecurity measures to protect data are often computationally expensive and slow

* space, contested and harsh environment, limiting electronics used on satellites

A solution:

- Privacy-preserving computation (PPC)

* allows for data to remain encrypted during computation

* protects both physical integrity of satellite (allowing collision analysis) and data privacy
(preventing unencrypted data from being shared)

* secure multiparty computation (SMC) — promising, most-developed method of PPC
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Secure Multiparty Computation (SMC):

* cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a
function on their inputs, without revealing any information about the inputs; enables privacy-
preserving computation.

* uses a) garbled circuits (2 parties) or b) linear secret sharing (>2 parties)

* advance trustworthy machine learning and data mining, helping data privacy in medicine,
finance, etc.

Linear Secret Sharing (LSS) scheme:
* keyless distributed encryption process.

e divides the “secret” (inputs) into randomly-generated shares
and distributes to independent computing parties.
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Secret Sharing Donors
Distribute secret (input) among n parties, i.e. location data of 2
satellites. Predefined qualified subsets of n can reconstruct secret S'i‘:x:f
and return to user
Miners
Threshold Secret Sharing
* k-out-of-n scheme
* secret Sdivided into n shares: S=(s,,...,s,) Input
* S=-element of finite field " — o g us =

* shares = mapping to S + several random elements

* compromise of k-1 shares gives no info about S Output
W=uQv ¢—— W

W W3
Secret Sharing
* Donors/data users = satellites participating in collision Miners $ § $
avoidance ] u B

* Miners = 3 computation servers
Data user
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Hardware: emulate satellite cluster
* 3 NVIDIA TX2 boards with ARM processors

* ethernet connections, ssh to each other to share data

Software: integrate SMC into collision avoidance
* Sharemind MPC platform

o 3-party linear secret sharing

o provides hosts for SMC operations

o System of libraries compatible with C/C++
* Testing algorithms

o Simple vector multiplication

o Collision avoidance

A

Hawkeye 360 satellite cluster

Press Release, 2020. https://www.he360.com/hawkeye-360-completes-milestone-in-preparation-to-launch-second-cluster/
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Collision Avoidance algorithm
o Artificial Potential Function (APF)

o On-board trajectory operation and replanning

o Rendezvous and proximity operations (RPO) in
guidance navigation and control (GNC) unit of satellite

o Linear (relative) equations of motion
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35 namespace sm = sharemind;

Sharemind test program: vector multiplication 36
. 37 inline std::shared_ptr<void> newGlobalBuffer(std::size_t const size) {
- C++ and SecreC Work|ng together 38 auto * const b = size ? ::operator new(size) : nullptr;
39 try {
40 return std::shared_ptr<void>(b, sm::GlobalDeleter());
41 } catch (...) {
19  import stdlib; 42 ::operator delete(b);
20  import shared3p; 43 throw;
21 44 }
. 45 }
22 domain pd_shared3p shared3p; 16
23 47  inline std::shared_ptr<void> newGlobalBuffer(void const x const data,
24 48 std::size_t const size)
25  void main() { 49 A
. . Hoin . 50 auto r(newGlobalBuffer(size));
26 pd_shared3p uint64 ai = argument("ai"); 51 std::memcpy(r.get(), data, size);
27 pd_shared3p uint64 bi = argument("bi"); 52 return r;
28 pd_shared3p uint64 ci = argument('ci"); 53}
29 54
30 pd_shared3p uint64 product = ai % bi % ci; :: struct ExtraIndentExceptionFormatter {
31 57 template <typename OutStream>
32 publish("product", product); 58 void operator()(std::size_t const exceptionNumber,
33 1 59 std::size_t const totalExceptions,
60 std::exception_ptr e,
SecreC program 61 OutStream out) noexcept
62 {

C++ program
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Preliminary results: Future work:

* Rewrote CA algorithm in C++ for * Test different algorithms
Sharemind implementation

Look into efficiency improvements
* Waiting on data set from AFRL (~2

o parallelization to increase efficiency
weeks)

_ _ o SIMD vectorization to improve scalability

* Simple programs in C++ and SecreC

working in sharemind virtual server
environment

Explore other privacy-preserving methods, e.g.
partial/fully homomorphic encryption (PHE/FHE)

. Setting up hardware to test on Testing on autonomous aerial vehicles

e  Embedded autonomous Testing on other mobile systems

development boards

* UAVs via Docker containers
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