
Characterizing and Protecting 
Multi-Agent Computation



Protecting Information

• How to ensure that data communicated by autonomous agents 
stays secure and private?
• Communication privacy:

• TLS – the default for secure communication
• Differential privacy, PIR, ORAM

• Computation privacy:
• Partial and fully homomorphic encryption (PHE/FHE)
• Secure multiparty computation (SMC) for 2 or more parties
• Hardware assistance through trusted execution environments (TEEs)

• What is efficient and practical for real-world agents given the 
constraints of space environments? 



Multi-Agent Communication

• How do agents characterize their surroundings? 
• Can adversaries understand the agent’s conceptual model 

without access to their reasoning? 
• How can agents learn and resolve concepts without human-in-

the loop feedback?

“Receiver” Agent

Task information

Reward Signal

“Sender” Agent
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Project Overview 

Demonstrate feasibility secure multiparty computation (SMC), a method of operating on 
encrypted data, allowing collision avoidance (CA) to be conducted between mutually-distrustful 
agents without revealing location or trajectory data

• Determined software toolkit/library to implement SMC into a standard CA algorithm

• Constructed hardware setup with embedded processors that survive a space environment, 
tested simple algorithms and networking setup

• Developed version of CA algorithm to test, determining which parameters need security

• Testing CA program on boards both with and without SMC and benchmark results

General goal: ensure data on autonomous agents remains secure and 
private during computation



Motivation: Security on Satellites

Problem: How can we prevent collisions without revealing exact locations of strategic satellites?

Difficulties:
• need for satellites to share location/trajectory data to prevent collision, poses security risk for 

satellite owner
• cybersecurity measures to protect data are often computationally expensive and slow
• space, contested and harsh environment, limiting electronics used on satellites

A solution: 
à Privacy-preserving computation (PPC)
• allows for data to remain encrypted during computation
• protects both physical integrity of satellite (allowing collision analysis) and data privacy 

(preventing unencrypted data from being shared)
• secure multiparty computation (SMC) – promising, most-developed method of PPC



Background: What is SMC?

Secure Multiparty Computation (SMC):

• cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a 
function on their inputs, without revealing any information about the inputs; enables privacy-
preserving computation.

• uses a) garbled circuits (2 parties) or b) linear secret sharing (>2 parties) 

• advance trustworthy machine learning and data mining, helping data privacy in medicine, 
finance, etc.

Linear Secret Sharing (LSS) scheme:

• keyless distributed encryption process.

• divides the “secret” (inputs) into randomly-generated shares 
and distributes to independent computing parties.



Background: What is SMC?

Secret Sharing
Distribute secret (input) among n parties, i.e. location data of 2 
satellites. Predefined qualified subsets of n can reconstruct secret 
and return to user

Threshold Secret Sharing
• k-out-of-n scheme
• secret S divided into n shares: S = (s1,…,sn)

• S = element of finite field 
• shares = mapping to S + several random elements

• compromise of k-1 shares gives no info about S

Secret Sharing
• Donors/data users = satellites participating in collision 

avoidance
• Miners = 3 computation servers

DOI 10.1007/s10207-014-0271-8



Methodology: how it works

Hardware: emulate satellite cluster
• 3 NVIDIA TX2 boards with ARM processors

• ethernet connections, ssh to each other to share data

Software: integrate SMC into collision avoidance
• Sharemind MPC platform

o 3-party linear secret sharing

o provides hosts for SMC operations

o System of libraries compatible with C/C++

• Testing algorithms

o Simple vector multiplication

o Collision avoidance

Hardware setup

Press Release, 2020. https://www.he360.com/hawkeye-360-completes-milestone-in-preparation-to-launch-second-cluster/

Hawkeye 360 satellite cluster



Collision Avoidance

Collision Avoidance algorithm

o Artificial Potential Function (APF) 
o On-board trajectory operation and replanning

o Rendezvous and proximity operations (RPO) in 
guidance navigation and control (GNC) unit of satellite

o Linear (relative) equations of motion

GNC

APF

subsystem inputs
(vehicle dynamics)

control parameters
(static table)

human control
(on-board flexibility) encrypted values

Keep-out zone potential
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Methodology: how it works

Sharemind test program: vector multiplication 
- C++ and SecreC working together

SecreC program

C++ program



Conclusions and Future Work

Preliminary results:

• Rewrote CA algorithm in C++ for 
Sharemind implementation

• Waiting on data set from AFRL (~2 
weeks)

• Simple programs in C++ and SecreC
working in sharemind virtual server 
environment

• Setting up hardware to test on

• Embedded autonomous 
development boards

• UAVs via Docker containers

Future work:

• Test different algorithms

• Look into efficiency improvements

o parallelization to increase efficiency

o SIMD vectorization to improve scalability

• Explore other privacy-preserving methods, e.g.
partial/fully homomorphic encryption (PHE/FHE)

• Testing on autonomous aerial vehicles

• Testing on other mobile systems 
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