Resiliency of Nonlinear Control Systems Against
Stealthy Attacks

Amir Khazraei Miroslav Pajic

CPSL@Duke

Department of Electrical and Computer Engineering

Duke Pratt School of Engineering

Duke University

PRATT SCHOOL o
ENGINEERING


Presenter Notes
Presentation Notes
Hi, My name is Amir Khazraei and I’m a PhD student at Duke university. This is work I did it with my supervisor, Dr. Miroslav Pajic. 

The focus of this work is to find the vulnerability of LTI control systems with batch process estimators to stealthy attacks. This vulnerability is called PA.
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How to design resilient control systems? ey  Physica

Communication
Network

Feedback
Controller

* Authenticating all the transmitted data

Yt

* Intermittently authenticating the transmitted data

We need to know which class of systems are vulnerable to cyber attacks
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Introduction

What is the impact of stealthy adversarial attacks on
nonlinear control systems?

= \We model the sensor attacks on nonlinear control h
systems and formalize the attacker’s goal

= We consider the notion of stealthiness independent | T M

=
of any existing intrusion detector 1
Observation
= \We derive the condition for the existence of %

impactful yet stealthy attacks

N

" IMU, GPS,
| Radar
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- Roplay Attack [1] Zero Dynamic Attack [3] False Data Injection Attack [4]

* Covert Attack [2]

 The previous works only consider systems with LTI model

* The notion of stealthiness is only limited to a specific class of intrusion detectors

[1] Y. Mo and B. Sinopoli, “Secure control against replay attacks”. In 2009 47th Annual Allerton Conference on Communication, Control, and Computing.

[2] R. S. Smith, "Covert misappropriation of networked control systems: Presenting a feedback structure." IEEE Control Systems Magazine

[3] A. Teixeira, |. Shames, H. Sandberg, and K. H. Johansson. Revealing stealthy attacks in control systems. In 2012 50th Annual Allerton Conference on Communication,
Control, and Computing.

[4] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in First Workshop on Secure Control Systems, 2010
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Controller: ¥t = Je(Xe-270) . Detector ),
= hc()(t,yf ) Control Unit
X = [x] W = [W] U — [u] X;+1 = F(X;,,W,) Closed-loop dynamic
X1’ vl’ w

Xeyq1 = [u(xe, Up) Open-loop dynamic
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Intrusion Detector

* Hy: Normal condition (the ID receives Y = Y_,: Y; with distribution P) Y, = yf]
c,a

* H;: Abnormal behavior (the ID receives Y = Y2, Y§: Y2 with distribution Q) Y¢ = [yta ]
t

Intrusion Detector: D(Y) - {0,1}

Stealthy
Attack

erator

p" =P(D(Y) = 1|Y~P)

p'? =P(D(Y) =1Y~Q)

Intrusion
Detector

It is desired for the system: pf4 < p™P CtIUt
ontrol uni
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xt+1=f(xt,dt) xtEXan, th]D)ng, tZO

/Definition 1: The system is incrementally exponentially stable (IES) in the set\
X € R" if there exist k > 1 and A > 1 such that

Ix(t, &1, d) — x(t, &, DIl < k& — &I
holds for all &;, &, € X and d; € D and t = 0. When X = R", the system is

\referred to as globally incrementally exponentially stable. /

Definition 2: The system is incrementally unstable (IU) in the set X € R" if for all
¢, € Xand any d; € D there exists a &, such that forany M > 0
1x(t, &1, d) — x(t, 85, DI = M

hold for all t > t’ for some t’ > 0.

$1
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Attack Model

* The attacker has full knowledge of the system, its = Stealthy
. . Attack
dynamics and the states x/ and the input uf. Generator

___________________

* The attacker has the required computation power to Controller

calculate suitable attack signals to inject a subset of , 1 7
sensors, while planning ahead as needed i [ Intrusion
' Detector

~ Control Unit

e The attacker can also compromise the sensor
measurements

v, =yi 4+ a,
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Definition 3: An attack sequence A

- is strictly stealthy if there exists no detector that satisfies pf4 < pI?, forany t > 0,

* is e-stealthy if for a given € > 0, there exists no detector such that pf4 < pI? — eforany t > 0.
(& /
Gheorem 1: An attack sequence

- is strictly stealthy if and only if KL(Q(Y=3, Y¢: Y)||P(Y_:Y;)) = 0 forany t > 0,

- is e-stealthy if it satisfies KL(Q(Y=L, Y&: Y)||IP(Yo0: ¥})) < 108(1_162) forany t > 0.

- /
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Formalizing the Attacker’s Goal

o

Definition 4: Attack sequence {a, a4, ... } is an (e, a)-successful attack if there exists t’ > 0 such

that ||x|| = a for all t = ¢’ and the attack is e-stealthy for all t > 0. When such a sequence exists

for a system, the system is called (¢, a)-attackable.

A

(& J
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Theorem 2: The system is (€, @)-attackable for arbitrarily large a and arbitrarily small ¢, if the closed-loop
dynamics is incrementally exponentially stable (IES) in the set S and the open loop dynamics is incrementally
unstable in the set S.
- J
B c,a a _ a
Sev1 = fxt ug) — f(xf —spuf) V. =y +a;=h(xt —s)+ v
a; = h(x} —s; ) — h(x? A
f a xt
X; =X — S¢ Xf:[a )
X x]

Xt \
incrementally \/‘\
exponentially stability — ”X{c _ Xt” < K||SO||)l_t

of closed-loop system

v
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Vulnerability Analysis of Nonlinear Control Systems

incremental

exponentially stability — ”X{ _ Xt” < K|so||A~¢
of closed-loop system

Kllsoll
1— A2

KL(QY&: Y ||IP(Yy: Yy)) < AmaxEwD) + LpdmaxE5 1)

incremental instability — ”x? _ xf” > M
of open-loop system t

x| = M — kllsoll — R
| |

a
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Attack on LTl Systems

Xt+1 =Axt+But+Wt, Ve = Cxt +vt

Xt = Acxe—1 + Beys, Uy = Ce Xy

Corollary 1: The LTI system is (€, a@)-attackable for arbitrarily large a and arbitrarily small ¢, if the closed-
loop dynamics is asymptotically stable and the matrix A is unstable.

Sev1 = fOxg uf) — fxf —spup) = Axg + Bug — A(xt' — s¢) — Bui = As,

ar = h(x¢" —s¢) —h(xf) = Clxt —s¢) = C(x¢) = =Csy
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Case Study : Inverted Pendulum

— 6 0.1754+ —— Residue norm

Rad

—4 > 0 2 4 —4 —2 0 2 4
Time (sec) Time (sec)

The angle of the pendulum of pod The norm of the residue
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Averaged Alarm Rate for Learning-based Detector
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Case Study: UAV Quadrotor — Landing on a moving vehicle
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Conclusion

* We considered the resiliency under sensing attacks for nonlinear control systems.

* We introduced the notion of € -stealthiness in a general form.

* We derived sufficient conditions for an effective yet e-stealthy attack sequence to
exists.
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