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My Current Research on Space 
Systems
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Satellite proximity operations Planning for agile satellites Sensor selection for 
constellations



Benefits of Large Constellations of 
Small Satellites

Cheaper, standardized parts

Redundancy in case of failure

Greater temporal resolution 
through reduced revisit times
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Basics of Submodular Set 
Functions

4

A set function 𝑓: 2𝒳 → ℝ is submodular
if 𝑓 𝒮 ≤ 𝑓(𝒯) for all 𝒮 ⊆ 𝒯 ⊆ 𝒳

The quantity 𝑓𝑗 𝒮 ≜f(𝒮 ∪ {𝑗}) − 𝑓(𝒮) is 

the marginal gain of adding 𝑗 ∈ 𝒳 ∖ 𝒮

The weak submodularity constant of 𝑓 is

𝑤𝑓≜ min
𝒮,𝒯,𝑖 ∈ ෩𝒳

Τ𝑓𝑖(𝒯) 𝑓𝑖(𝒮)



Submodular Maximization and 
the Greedy Algorithm
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max
𝒮⊂𝒳

𝑓(𝒮)

s. t. 𝒮 ≤ 𝑘

𝒮

𝒳

Standard GREEDY algorithm

𝐰𝐡𝐢𝐥𝐞 𝒮 ≤ 𝑘 𝐝𝐨

𝒮 ← ∅

𝐈𝐧𝐩𝐮𝐭: function 𝑓 = , set 𝒳 = { , , … , }, 
cardinality 𝑘

∗∈ argmax
∈𝒳

{ }: , : , … , :

𝒮 ← ∗

𝒳 ← 𝒳 ∖ ∗

Expensive for large 
sensor networks!



Incorporation of Randomization 
into the Greedy Algorithm
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𝒮

𝒳

ℛ(𝑖)

Goal: Provide theoretical high-probability bounds on the performance for budget and 
performance-constrained models

Randomized GREEDY algorithm

𝐰𝐡𝐢𝐥𝐞 𝒮(𝑖) ≤ 𝑘 𝐝𝐨

𝒮 ← ∅, 𝑖 ← 1

𝐈𝐧𝐩𝐮𝐭: function 𝑓 = , set 𝒳 = { , , … , }, 
cardinality 𝑘, subset sample cardinality 𝑟𝑖

∗∈ arg max
∈ℛ(𝑖)

{ }: , : , … , :

𝒮(𝑖) ← ∗

𝒳 ← 𝒳 ∖ ∗

ℛ(𝑖) ← uniform sample of min(ri, 𝒳 )
elements from 𝒳

𝑖 ← 𝑖 + 1



Intuition Behind High-
Probability Bounds
Now, focus on budgeted models, each satellite 𝑠𝑗
has an associated cost 𝑐𝑗, greedy algorithm adds 
satellite with highest marginal-gain-to-cost ratio 

Randomized greedy selects an element a fraction 
𝜂(𝑖) as good as standard greedy, i.e.,

Idea: the sequence 𝜂 1 , 𝜂(2), … forms a martingale, 
use concentration bounds (e.g. Azuma’s inequality)
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𝒮(𝑖)

𝒳

ℛ(𝑖) for standard greedy

𝑓𝑗𝑟𝑔(𝒮
𝑖 )

𝑐𝑗𝑟𝑔
≥ 𝜂 𝑖+1 max

𝑗∈𝒳∖𝒮 𝑖

𝑓𝑗 𝒮 𝑖

𝑐𝑗
= 𝜂(𝑖+1)

𝑓𝑗𝑔(𝒮
𝑖 )

𝑐𝑗𝑔



Modified Randomized Greedy (MRG)
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max
𝒮⊂𝒳

𝑓(𝒮)

s. t. Σ𝑗∈𝑆𝑐𝑗 ≤ 𝐵

Maximize a submodular function subject 
to a budget constraint on the selection

Theorem 1. Let 𝜂 = 𝜂 1 , 𝜂(2), … be a martingale satisfying the conditions of 
Azuma’s inequality with 𝔼 𝜂 ≥ 𝜇, for some 𝜇 ≥ 0. Then, for any confidence 
parameter 0 < 𝛿 < 1, MRG yields a set 𝒮𝑚𝑟𝑔 such that

𝑓(𝒮𝑚𝑟𝑔)

𝑓(𝒮)
≥
1 − exp( − Τ1 𝑤𝑓 (𝜇 − Τ𝑐𝑚𝑎𝑥 𝐵 Τ𝑈 2 log Τ1 𝛿 )

2𝑤𝑓
2

holds with probability at least 1 − 𝛿, in which 𝑈 is the smallest integer such that 

Σ𝑗=1
𝑈 ҧ𝑐𝑗 ≥ 𝐵, where ҧ𝑐1 ≤ ҧ𝑐2 ≤ ⋯ is the collection of ordered observation costs



Reductions of Bound for MRG
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𝑓(𝒮𝑚𝑟𝑔)

𝑓(𝒮)
≥
1 − exp( − Τ1 𝑤𝑓 (𝜇 − Τ𝑐𝑚𝑎𝑥 𝐵 Τ𝑈 2 log Τ1 𝛿 )

2𝑤𝑓
2

If 𝑐𝑚𝑎𝑥 𝑈 ≪ 𝐵, then the bound reduces to

𝑓(𝒮𝑚𝑟𝑔)

𝑓(𝒮)
≥
1 − exp( − Τ𝜇 𝑤𝑓)

2𝑤𝑓
2

If 𝑓 is submodular and 𝑟𝑖 = |𝒳|, the bound further reduces to

𝑓(𝒮𝑚𝑟𝑔)

𝑓(𝒮)
≥
1

2
(1 − 𝑒−1)



Dual Randomized Greedy (DRG)
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min
𝒮⊂𝒳

Σ𝑗∈𝒮𝑐𝑗

s. t. 𝑓 𝒮 ≥ 𝐴

Minimize the selection cost subject to a 
performance constraint

Theorem 2. Let 𝜂 = 𝜂 1 , 𝜂(2), … be a martingale satisfying the conditions of 
Azuma’s inequality with 𝔼 𝜂 ≥ 𝜇, for some 𝜇 ≥ 0. Then, for any confidence 
parameter 0 < 𝛿 < 1, DRG yields a set 𝒮𝑑𝑟𝑔 such that

𝑐(𝒮𝑑𝑟𝑔)

𝑐(𝒮∗)
≤
𝑤𝑓

𝜇
1 + 𝐿 − 1 log𝑤𝑓 + log Τ𝑀 𝑚 +

Τ1 2 log Τ1 𝛿 𝑐2(𝒮𝑑𝑟𝑔)

𝜇𝑐(𝒮∗)

Holds with probability at least 1 − 𝛿, where 𝐿 ≤ |𝒳| is the number of iterations 

required by DRG and 𝑐2(𝒮𝑑𝑟𝑔) ≜ Σ𝑗∈𝒮𝑑𝑟𝑔𝑐𝑗
2.



Reductions of Bound for DRG
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If 𝑟𝑖 = |𝒳|, then the bound reduces to

If 𝑓 is submodular, the bound further reduces to

𝑐(𝒮𝑑𝑟𝑔)

𝑐(𝒮)
≤
𝑤𝑓

𝜇
1 + 𝐿 − 1 log𝑤𝑓 + log Τ𝑀 𝑚 +

Τ1 2 log Τ1 𝛿 𝑐2(𝒮𝑑𝑟𝑔)

𝜇𝑐(𝒮∗)

𝑐(𝒮𝑑𝑟𝑔)

𝑐(𝒮)
≤ 𝑤𝑓 1 + 𝐿 − 1 log𝑤𝑓 + log Τ𝑀 𝑚

𝑐(𝒮𝑑𝑟𝑔)

𝑐(𝒮)
≤ 1 + log Τ𝑀 𝑚



Applying MRG: Atmospheric 
Sensing Estimation
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Randomly sample 25 points, model conditions 
at each by chaotic Lorenz-63 system

Reduce computation 
time with minimal 
performance change



Applying DRG: Ground 
Coverage
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Ground coverage at time step 50 for varying minimum coverage areas, 𝑟𝑖 = 120

Enforce a minimum coverage fraction (CF) must be obtained at each time step  

Average budget cost Average computation time

Randomization reduces computation time with minimal change in budget



Conclusion
Studied randomized greedy algorithms for budget and performance-
constrained submodular optimization problems

Provided theoretical high-probability bounds on their performance, 
showed how to recover non-randomized versions

Future work will extend these results to robust submodular 
optimization problems

14

Thank you!


