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My Current Research on Space

Systems

Satellite proximity operations

Planning for agile satellites

Sensor selection for
constellations




Benefits of Large Constellations of
Small Satellites

Cheaper, standardized parts

Redundancy in case of failure

Greater temporal resolution
through reduced revisit times

Nasa TROPICS



Basics of Submodular Set

-unctions
A set function f:2* — Ris submodular %‘
if f(S) < f(@)forallS €T CX A M‘%\

The quantity f;(S)2f(S U {j}) — f(S) s
the marginal gain of addingj € X'\ &

The weak submodularity constant of f is

w2 min _fi(T) /fi(sﬂ

(8, T,i))ex




Submodular Maximization and
the Greedy Algorithm

max
ScX

S. L.

f(S)
S| <k

Standard GREEDY algorithm

Input: function f =, set X = {0, ..., .,
cardinality k

S0

while |§| < k do

Sx€ argsn‘lea%{ Sid, e, ., Y

S W)
X <« X\

Expensive for large
sensor networks!




Incorporation of Randomization
into the Greedy Algorithm

Randomized GREEDY algorithm

Input: function f =, set X = {™>,, ..., ™},
cardinality k, subset sample cardinality 7;

S«0Q,i«1
while [S®| < k do

R® « uniform sample of min(r;, | X])
elements from X

N*E arg‘\rggé{xu,%:t yory ™ITY

X e X\
l<i1+1

RO

performance-constrained models

(Goal: Provide theoretical high-probability bounds on the performance for budget andJ




Intuition Behind High-
Probability Bounds

Now, focus on budgeted models, each satellite S
has an associated cost ¢;, greedy algorithm adds
satellite with highest marginal-gain-to-cost ratio

Randomized greedy selects an element a fraction
n() as good as standard greedy, i.e.,

. (S@ (s - (S@
oG | ) e 5E) a5
erg jex\s® Cj ng

R® for standard greed
Idea: the sequence n™, n@), .. forms a martingale, sreedy

use concentration bounds (e.g. Azuma’s inequality)



Modified Randomized Greedy (MRG)

max f(5) o | |
SCX Maximize a submodular function subject
S. t. ZjESCj < B to a budget constraint on the selection

Theorem 1. Letn = n(l), n(z), ... be a martingale satisfying the conditions of
Azuma’s inequality with E[n] = u, for some u = 0. Then, for any confidence
parameter 0 < 6 < 1, MRG yields a set Sy, such that

f(gmrg) > 1-—- exp( - 1/Wf (.u - Cmax/B\/U/2 log 1/5)
f& 2w
holds with probability at least 1 — 8, in which U is the smallest integer such that
&ﬂc_j > B, where ¢c; < ¢, < -+ is the collection of ordered observation costs




Reductions of Bound for MRG

f(Smrg) > 1- exp(— 1/Wf (.u_ Cmax/B\/U/ZIOgl/a)
f8) 2w?

If CpaxVU < B, then the bound reduces to

f(gmrg) = 1 — exp( _.U/Wf)
S © 2w

If f is submodular and r; = |X|, the bound further reduces to




Dual Randomized Greedy (DRG)

min ZjESCj L , ,
scX Minimize the selection cost subject to a

S.t f(g) > A performance constraint

Theorem 2. Letn = 17(1), 77(2), ... be a martingale satisfying the conditions of
Azuma’s inequality with E[n] = u, for some u = 0. Then, for any confidence
parameter 0 < 6 < 1, DRG yields a set 54,4 such that

c(Sarg) _W \/1/2 log1/8 c?(Sarg)
c(S*) ~ u uc(s™)

Holds with probability at least 1 — &, where L < | X'| is the number of iterations
required by DRG and c*(Sarg) £ Zjesy,Cf-
-

[1 + (L — 1) logwy + logM/m] =+




Reductions of Bound for DRG

1/21log1/6 c?(Szrq)
C(Sdrg) Wy \/ "
L—1)1 log M
S = [1+( ) logws + log /m| + D)
If r; = |X|, then the bound reduces to
c(S
(c(?jg) < f[l + (L — 1) logwy + logM/m]

If f is submodular, the bound further reduces to

C(Sdrg)
c(S)

<[1+logM/m]




Applying MRG: Atmospheric

Sensing Estimation
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Reduce computation

wA ™~ time with minimal

0 60 80 100 performance change
Time step
B=25] B=50 ] B=75| B=100
r; = 60 1.52 1.59 1.59 1.58
7 = 120 2.93 2.95 3.03 3.01
: s i = 180 3.96 3.96 3.98 3.96
Randomly sample 25 points, model conditions =240 133 133 139 131

at each by chaotic Lorenz-63 system




Applying DRG: Ground
Coverage

Enforce a minimum coverage fraction (CF) must be obtained at each time step

Randomization reduces computation time with minimal change in budget

Average budget cost Average computation time
CF=05|CF=07]| CF=09 CF=05|CF=07]| CF=0.9
r; = 60 63.08 99.29 161.74 r; = 60 0.53 0.86 1.37
r; = 120 62.64 99.30 161.47 7, = 120 1.08 1.67 2.64
r; = 180 62.69 99.24 161.34 r; = 180 1.60 2.50 3.64
r; = 240 62.89 99.10 161.24 r; = 240 2.00 2.80 3.96

|

Ground coverage at time step 50 for varying minimum coverage areas, 1; = 120



Conclusion

Studied randomized greedy algorithms for budget and performance-
constrained submodular optimization problems

Provided theoretical high-probability bounds on their performance,
showed how to recover non-randomized versions

Future work will extend these results to robust submodular
optimization problems

Thank youl!



