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On the Feasibility and Continuity of Feedback Controllers Defined

by Multiple Control Barrier Functions

Axton Isaly, Masoumeh Ghanbarpour, Ricardo G. Sanfelice, Warren E. Dixon

Abstract—Control barrier functions are a popular method

for encoding safety specifications for dynamical systems. In this

paper, a notion of control barrier function is defined that permits

vector-valued barrier functions and flow constraints involving

both the state and the control input. Control barrier functions

induce constraints on the control input that, when satisfied,

guarantee the forward invariance of a safe set of states. The

constraints are enforced using a pointwise-optimal feedback

controller, and sufficient conditions for the continuity of the

controller are given. The existence of a control barrier function is

defined to be equivalent to the feasibility of the optimal feedback

controller. Polynomial optimization problems based on sums of

squares are formulated that can be used to certify that a given

function is a control barrier function. Examples of the control

barrier function design procedure are presented illustrating the

process of formulation, verification, and synthesis.

I. INTRODUCTION

The use of control barrier functions (CBF) to synthesize
feedback controllers that render sets of states forward invariant
has recently gained significant interest because of the tight
relationship between forward invariance and safety [1]–[4].
The CBF literature has focused on complex safety specifica-
tions defined by multiple, sometimes conflicting requirements
such as obstacle avoidance, shifting goal locations, dynamic
constraints, and control input limitations. In practice, these
control objectives are often described using multiple CBFs
(e.g., [3] and [1, Sec. V]), whereas the majority of theoretical
results are developed for scalar barrier functions. While it is
possible to combine multiple barrier functions into a scalar
one using max and min operations, as in works like [3] and
[5], the resulting functions are generally nonsmooth, leading to
discontinuous controllers. A framework for studying forward
invariance with multiple barrier functions was developed in [6]
in the context of uncontrolled systems. For controlled systems,
the conditions therein can be interpreted as constraints on
the control input that can be enforced using optimization-
based controllers; see [7, Ch. 11]. The constraints define a
set of safety-ensuring control inputs. Enforcing multiple input
constraints defined by multiple continuously differentiable
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CBF candidates is a promising way to obtain control laws
that are continuous functions of the state.

A. Feasibility

Traditionally, a CBF is defined to guarantee that a safety-
ensuring controller exists, meaning that all objectives in the
safety specification can be met simultaneously. However, tools
for verifying that a given function is a CBF are not fully devel-
oped. While analytical conditions exist to determine whether
a scalar-valued function is a CBF (cf. [8], [9, Prop. 1]), the
problem is significantly more challenging in the presence of
multiple CBFs. In general, a CBF candidate defines a set of
constraints in the decision variable (control input) that vary
with an external parameter (the state of the dynamical system),
and it must be verified that control inputs satisfying the
constraints exist for all states in a given set. This verification
should be done during the design phase, so that controllers
are certified as feasible before deployment. The authors of
[10] leverage a tool for checking that multiple constraints
have at least one feasible solution at a particular point in
the state space, but it it not clear how to verify this property
on a given (uncountable) set of states. One method to ensure
feasibility is by adding slack variables or similar relaxations to
the optimization problem at the cost of losing safety guarantees
[2]. The authors in [11] use slack variables to ensure feasibility
only on the interior of the safe set, while still enforcing
conditions on the boundary of the safe set that guarantee
forward invariance. However, the slack variable method does
not constrain the control input at points in the interior of the
safe set, which permits trajectories to approach the boundary
of the safe set with high velocity. Aggressive control action
must then be used to prevent the trajectory from exiting the
safe set. A more gradual transition to an invariance-ensuring
control can be designed by removing slack variables and
adding a user-prescribed performance function that constrains
the control input at points in the interior of the set, although
the feasibility problem becomes more challenging.

To address the feasibility problem, we use sum of squares
(SoS) programming, which requires the more restrictive as-
sumptions that the constraints defining the feasible set are
polynomials and affine in the control input. SoS programming
can be used to verify that given polynomials are nonnegative
on a subset of their domain [12], [13]. Our technique verifies
feasibility on level-sets of a given function (typically the CBF
candidate), which is useful for safe synthesis and computa-
tionally simpler than techniques that search simultaneously
for a controller and CBF (or control Lyapunov function) as in
[14] and [15]. In [15], an iterative procedure was developed
to search for a scalar CBF defining a safe set that was



Basic Setting

Consider the system

ẋ = f(x) x ∈ X ⊂ R
n

and the sets

Xo ⊂ X the initial set,

Xu ⊂ X\Xo the unsafe set.

Safety with respect to (Xo,Xu) ⇔ reach(Xo) ∩Xu = ∅

reach(Xo) := {x ∈ R
n : x = φ(t;xo),with φ a solution from xo ∈ Xo

and t ∈ domφ} ← the infinite reach set

A solution to ẋ = f(x) is denoted t !→ φ(t), and when starts at xo as t !→ φ(t; xo)



Sufficient Conditions for Safety when X = Rn

Consider X = Rn and let the
function B satisfy

B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo
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Sufficient Conditions for Safety when X = Rn

Consider X = Rn and let the
function B satisfy

B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo

and
the set Ke is “forward invariant” for ẋ = f(x)

where
Ke := {x ∈ Rn : B(x) ≤ 0} ← the zero-sublevel set of B

It follows that the system ẋ = f(x) is safe w.r.t. (Xo,Xu)



Motivation

Figure: Motion planning for quadrotors to avoid obstacles without
bounce prediction.
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Motivation
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Figure: Motion planning for quadrotors to avoid obstacles with bounce
prediction.
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Obstacle Model
A bouncing ball obstacle with state

x := (p, v) 2 R6

can be modeled as

ẋ = (v, (0, 0,��))
x
+ = (px, py, 0, vx, vy,��vz)

where p is the position, v is the velocity, � is the
acceleration due to gravity, and � is the restitution
coe�cient.

The set containing all possible linear velocity changes
from the expected angular velocities of the ball is
⌃ 2 R

x
+ 2 {px}⇥{py}⇥{0}⇥{vx+⌃}⇥{vy+⌃}⇥{��vz}

University of California, Santa Cruz - 6/16



The Motion Planning Algorithm
Algorithm 0: Motion planning algorithm with input (T, ⌧p, ⌧e, ⇠a, ⇠o,Ha,Hoi)

1: 0  0, r0  0, xa  ⇠a, xo  ⇠o

2: for k = 1, 2, . . . do
3: M  ;, U  ;, MS  ;
4: for all r̂ 2 ⌦p, r̂(0) = rk�1(⌧e) do
5: The solution �a of Ha is simulated from xa for reference r̂ for [0, ⌧p] seconds of flow
6: M  M [ {(r̂,�a)}
7: end for
8: for i 2 {1, 2, . . . , N} do
9: The solution �oi of Hoi is simulated from xoi for [0, ⌧p] seconds of flow

10: U  U [ {�oi(t, j) : 8(t, j) 2 dom �oi [ ([0, ⌧p]⇥ N)}
11: end for
12: for all (r̂,�a) 2M do
13: for all �o 2 U do
14: if dist(p�a(t, ja), p�o(t, jo) � ku, for all (t, ja) 2 dom �a and all (t, jo) 2 dom �o then
15: MS  MS [ {(r̂,�a)}
16: end if
17: end for
18: end for
19: (rk,�) is the lowest cost reference, solution pair in MS

20: k  (rk,�, rk�1,k�1)
21: Execute rk for ⌧e seconds.
22: Update xa and xo

23: end for

University of California, Santa Cruz - 11/16



Simulation & Experiments: System Architecture
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Figure: Diagram of the hybrid feedback loop.
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Simulation & Experiments: Simulation Results

Figure: Simulation avoiding two obstacles using a dynamical quadrotor model. The target set is the sphere
with radius 0.3m centered at (0, 0, 2). Initial quadrotor state is (0, 1, 2, 0,�0.5, 0, I3⇥3, 0, 0, 0) with initial
obstacle states (�0.16,�0.2, 2, 0, 1,�8) and (0.03, 1, 2, 0,�0.5, 0). Planning period was 0.3 seconds,
execute period 0.05s, and obstacle radius of 0.05m.
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Simulation & Experiments: Experiment Set-ups

I Windows 10 computer with a 3.20GHz
dual core processor with 8GB of memory

I Eight motion capture cameras running at
120Hz

I Crazyflie 2.0 controlled over 2.4GHz radio
though the Crazyflie client

I Wi✏e ball with 0.08m diameter wrapped
in retro-reflective tape with � = 0.65 and
⌃ = [�0.02, 0.02]m/s.

I The motion planner and controller are
implemented in Matlab.

I The motion planner using ⌧p = 0.3s,
⌧e = 0.28s, and ku = 0.2m.

University of California, Santa Cruz - 14/16



Simulation & Experiments: Experiment Results
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Simulation & Experiments: Experiment Results
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Figure: Plot of distance between quadrotor and the closest of two obstacles over time for three experiment runs.
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Hysteresis-Based RL: Robustifying Reinforcement 
Learning-based Control Policies via Hybrid Control

Jan de Priester1, Ricardo G. Sanfelice1, Nathan van de Wouw2
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2Eindhoven University of Technology, The Netherlands



Motivation
• Policies obtained from RL methods 

may lack robustness guarantees.
• Solutions evolve in opposite 

directions for a small change in the 
state.
• A small amount of measurement 

noise can cause the system to fail.

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control

2

Autonomous vehicle obstacle avoidance. The vehicle has to steer left or right past the 
obstacle. In red, the area for which, due to measurement nose, the vehicle can crash into 
the obstacle.

Simulation of the autonomous vehicle example. A small 
amount of noise causes the vehicle to crash into the obstacle.

Jan de Priester1, Ricardo G. Sanfelice1, Nathan van de Wouw2

1University of California, Santa Cruz, USA
2Eindhoven University of Technology, The Netherlands



Reinforcement Learning (RL) Methods

The agent (controller) learns how to 
control the system via direct 
interactions:

The agent aims to maximize the 
expected discounted return

𝐺! ≔#
"#$

%

𝛾"𝑅!&"&'.

Colloquially, the agent aims to find the 
policy that maximizes the episodic 
reward. 

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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PPO and DQN

• Proximal Policy Optimization (PPO)
• Policy-based continuous control method
• Actor-critic approach to find a stochastic control policy 𝜋!: 𝒮×𝒜 → 0,1 , 

which maps a state-actions pair to a probability
• Control policy is found by sampling from 𝜋!

• Deep Q-Network (DQN)
• Action-value based discrete control method
• The action-value function 𝑄: 𝒮×𝒜 → ℝ, which maps a state-action pair to a 

real number, that is, the expected discounted return given the state-action 
pair
• Control policy is obtained by maximizing 𝑄, i.e., 𝜋∗ 𝑠 = arg#∈𝒜max𝑄(𝑠, 𝑢)

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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A Challenge to RL

• Optimal control policies generate trajectories 
evolving in opposite directions from some region 
of the state space for a small change in the state. 
• Arises when environmental rewards are “symmetric”.

• Examples of such systems:
• Unit circle problem
• Obstacle avoidance problem
• General systems on manifolds

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Hybrid feedback control 
can overcome this 

problem!

Hybrid Reinforcement Learning



Example: Unit Circle

• Dynamics:
̇𝜉 = 𝑓 𝜉, 𝑢 = 𝑢 0 −1

1 0 𝜉 𝜉 =
𝑥
𝑦 ∈ 𝒮'

𝒮' ≔ {𝜉 ∈ ℝ( ∣ 𝜉 = 1}
• Goal: stabilize the set-point 𝜉∗ = (1,0)
• Observation vector: 𝑜 𝜉 = 𝜉
• Reward function:
𝑅 𝑥, 𝑦 = − '

*
| arctan2 𝑦, 𝑥 |

• Symmetric in the sense that 𝑅 𝑥, 𝑦 = 𝑅(𝑥,−𝑦)

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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• Optimal policy is found using PPO:
• Move clockwise if 𝑦 > 0
• Move counterclockwise if 𝑦 < 0
• Policy parameterization is continuous, hence 

there exists a point 𝜉& ≠ 𝜉∗ for which 
𝜋∗ 𝜉& = 0

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Control policy found by PPO..

Example: Unit Circle



• Optimal policy is found using PPO:
• Move clockwise if 𝑦 > 0
• Move counterclockwise if 𝑦 < 0
• Policy parameterization is continuous, hence 

there exists a point 𝜉& ≠ 𝜉∗ for which 
𝜋∗ 𝜉& = 0

• Small amount of noise cause the system to 
get stuck at the critical point 𝜉+ = −1, 0 :
• Noise is added to the angle of the state: 
∠𝜉'()*#)+(, = ∠𝜉 + 𝜖
• System lacks robustness against small 

measurement noise of magnitude 𝜖 = 0.1

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Control policy found by PPO..

Simulations of the control policy for various initial 
conditions in the presence of small measurement 
noise of magnitude  𝜖 = 0.1.. 

Example: Unit Circle



10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Example: Unit Circle



Example: Obstacle Avoidance
• Dynamics:
̇𝜉 = 𝑓 𝑢 = 1

𝑢 𝜉 =
𝑥
𝑦 ∈ 𝒮

• Goal: 
Drive past the obstacle and reach the set-point 𝜉∗ = (3,0).
• Observation vector: 𝑜 𝜉 = 𝑑,- , 𝑑./, 𝑦

0
:

• Shortest distance to the obstacle 𝑑-+;
• Shortest distance to the set-point 𝑑!';
• Vertical position 𝑦.

• Reward function:
𝑅 𝜉 = max −𝑑./ 𝜉 − 0.1( 𝑑,- − 2𝑟,- (−ln(𝑑,-)) + 3.5, 0

• Symmetric in the sense that 𝑅 𝑑-+, 𝑑!', 𝑦 = 𝑅(𝑑-+, 𝑑!', −𝑦).

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Simulation of the DQN policy for various initial 
conditions in presence of noise signal of magnitude 
𝜖 = 0.1 on 𝑦. The vehicle crashes into the obstacle 
due to the noise.

• Optimal policy is found using DQN:
• Move above the obstacle if 𝑦 > 0;
• Move below the obstacle if 𝑦 < 0.

• Small amount of noise cause the vehicle 
to crash.
• Noise is added to the vertical position 𝑦: 
𝑦'()*#)+(, = 𝑦 + 𝜖.
• System lacks robustness against small 

measurement noise of magnitude 𝜖 = 0.1. 

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control

The policy found by DQN: solutions evolve in 
opposite directions for a small change in y.

Example: Obstacle Avoidance



Lack of Robustness: Obstacle Avoidance

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control



Overview: A Hybrid RL (HyRL) Algorithm

• Goal: 
Obtain robustness against measurement noise
• Steps:
• The environment is split up into two overlapping sets where the intersection 

is the set of critical points.
• The overlapping sets are extended.
• The RL method of choice is used to find two new control policies for each of 

the extended overlapping sets.
• A hybrid system is built that incorporates a hysteresis switching effect 

between the two newly found control policies.

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Walkthrough HyRL Algorithm

1. Run an RL algorithm to find a control policy.
2. Determine the set of critical points.
3. Split up the environment.
4. Extend the overlapping sets.
5. Find two new policies for each extended set.
6. Build the hybrid system.

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Step 1) The policy found by DQN: solutions evolve 
in opposite directions for a small change in y.

Obstacle Avoidance Example
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Step 2) Finding the critical points. More details on 
github.com/HybridSystemsLab/ObstacleAvoidanceHyRL.

Obstacle Avoidance Example



Walkthrough HyRL Algorithm

1. Run an RL algorithm to find a control policy.
2. Determine the set of critical points.
3. Split up the environment.
4. Extend the overlapping sets.
5. Find two new policies for each extended set.
6. Build the hybrid system.

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control

18

Step 3) In yellow, the splitted set.

Obstacle Avoidance Example

Step 3) In yellow, the splitted set.
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Step 4) In yellow, the extended set.

Obstacle Avoidance Example

Step 4) In yellow, the extended set.



Walkthrough HyRL Algorithm

1. Run an RL algorithm to find a control policy.
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Step 5) The new policy 𝜋!∗.

Obstacle Avoidance Example

Step 5) The new policy 𝜋#∗.



Walkthrough HyRL Algorithm

6. Build the hybrid system ℋ = (𝐶, 𝐹, 𝐷, 𝐺):
• Hybrid state 𝑧 = 𝜉, 𝑞 ∈ 𝒮×{0,1}

• Flow map  
̇𝜉
𝑞̇ = 𝐹 𝑧 ≔ 𝑓(𝜉, 𝜋.∗(𝑜 𝜉 )

0
𝑧 ∈ 𝐶,

• Flow set     𝐶 ≔ ⋃.∈ /,1 ℳ.
(2*× 𝑞

• Jump map 
𝜉3

𝑞3 = 𝐺 𝑧 ≔
𝜉

Q1 if 𝑞 = 1
0 if 𝑞 = 0

𝑧 ∈ 𝐷,

• Jump set    D ≔ ⋃.∈ /,1 (𝒮 ∖ℳ.
(2*)× 𝑞

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Step 6) The policy when 𝑧 ∈ ℳ!
$%&×{0].

Obstacle Avoidance Example

Step 6) The policy when 𝑧 ∈ ℳ#
$%&×{1].



Robustness for Unit Circle
• HyRL vs DQN in presence of the same noise signal of 𝜖 = 0.1

• Hybrid basic conditions are satisfied
• The overlapping region is larger than 𝜖, hence the closed-loop hybrid system is 

robust against the measurement noise of magnitude 𝜖

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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Initialized with 𝑞! = 0. Initialized with 𝑞! = 1.



Robustness for Obstacle Avoidance
• HyRL vs DQN in presence of the same noise signal of 𝜖 = 0.1

• Hybrid basic conditions are satisfied
• The overlapping region is larger than 𝜖, hence the closed-loop hybrid 

system is robust against the measurement noise of magnitude 𝜖
10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 

Policies via Hybrid Control
23

Initialized with 𝑞! = 0. Initialized with 𝑞! = 1.



Future Work

• Formal proofs:
• (Global) asymptotic stability;
• Robustness.

• Safe learning:
• Guaranteed stable and robust behavioral policy during training.

• Algorithm improvements:
• Finding the set of critical points;
• Inflating the overlapping sets ℳ/ andℳ1.

• Hybrid policy parameterization. 

10/12/2022 HyRL: Robustifying Reinforcement Learning-based Control 
Policies via Hybrid Control
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