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Motivation

Security of a CPS from a Control-Theoretic Perspective

▶ Attacks: Sensor data.

▶ Attackers can disable the transmission of signals between
devices: a Denial of Service (DoS) attack.

▶ Potential violation of safety requirements.

Goal: Keep a system’s trajectories in a safe set even under DoS
attacks.
Approach: Control scheme to bound the impact of an attack based
on the information available to guarantee safety.
Assumption: Finite duration attacks, succeeded by intervals
without attacks.
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Safety Definitions

Consider the nonlinear system with state x and output y:

Fn :

{
ẋ = F (t, x)
y = H(t, x)

▶ F is the flow map ▶ H is the output map

Definition: (Conditional invariance)

A closed set S ⊂ Rn is said to be conditionally invariant for Fn with
respect to M ⊂ S if, for each x0 ∈ M , any solution to Fn from x0
remains in S.

Definition: (Safety)

The system Fn is said to be safe with respect to (X0, Xu), with
X0 ⊂ Rn \Xu, if for each x0 ∈ X0, any solution to Fn from x0 remains in
Rn \Xu.
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Formulation

System Model
Consider the LTI system with state x, input u and output y:

F :

{
ż = Ax+Bu

y = Cx

where C =

[
C̃
C̄

]
.

Attack Model (Denial-of-Service (DoS))



Formulation

System Model
Consider the LTI system with state x, input u and output y:

F :

{
ż = Ax+Bu

y = Cx

where C =

[
C̃
C̄

]
.

Attack Model (Denial-of-Service (DoS))

The measured output: ȳ =

[
ys
ya

]
, where ys = C̃x, and, along a solution

t 7→ x(t),

ya(t) =

{
C̄x(t) if t /∈ Ta,
Y (t, x(t)) if t ∈ Ta

▶ Ta: the set of times of attack (known)



Formulation

Attack Model (Denial-of-Service (DoS))



Problem Statement

Design an algorithm to render the set S conditionally invariant for the
system F with respect to the set X0 using output measurements only.

Safety Problem

1. Find a set of initial states X0 ⊂ S, and

2. Design a control law κ that uses the measured output ȳ = (ys, ys)

such that, for each x0 ∈ X0, x(0) = x0 implies x(t) ∈ S for all t ≥ 0.

Solution Approach:
Design an observer-based feedback law that induces conditional
invariance of S with respect to X0 using the measured output ȳ.

▶ System output under attack → the observer uses the
non-attacked output components.

▶ System output not attacked → the observer uses the complete
output vector.
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Solution Approach

1. Design functions g1 and g2 for the observer

˙̂x =

{
Ax̂+Bu+ g1(Cx,Cx̂) if t /∈ Ta,
Ax̂+Bu+ g2(C̃x, Cx̂) if t ∈ Ta,

2. design functions κ1 and κ2 for the observer-based feedback law

κ(t, x̂, ȳ) =

{
κ1(x̂, ȳ) if t /∈ Ta,
κ2(x̂, ȳ) if t ∈ Ta,

3. and, compute

▶ X0: set of initial states,
▶ X̂0: set of estimates before an attack,
▶ X̃: set of estimates after an attack,

▶ If x(0) ∈ S, x̂(0) ∈ X̃ ⇒ x(t) ∈ S when no attacks and belongs to
X0 at the beginning of the next attack.
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Solution Approach

F

Nominal Observer

Recovery Observer

Attack
Detector

Switching Observer

ya

ys

DoS

Nominal Control

Recovery Control

Switching Controller

x̂

u

Attack detector [Phillips et al - CDC 17]
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Switching Observer Design

Reconstruction of the state with potential unobservable modes when under
attack for feedback control design. The switching observer

˙̂x =

{
Ax̂+Bu+ L(Cx− Cx̂) if t /∈ Ta,
Ax̂+Bu+ L̃(C̃x− C̃x̂) if t ∈ Ta,

Basic Assumptions

▶ The pair (A,B) is controllable and the pair (C,A) is detectable.

▶ We design L so that A− LC has all its eigenvalues in the open left-half
plane.

▶ We design L̃ so that A− L̃C̃ has as many eigenvalues (but not
necessarily all of them) as possible in the open left-half plane.

Define the estimation error as e = x− x̂ with

ė =

{
(A− LC)e if t /∈ Ta,
(A− L̃C̃)e if t ∈ Ta.
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Estimation Error Bounds

Lemma 1. Under No Attacks

For given Tna, ē0 > 0, if at the end of an attack the norm of the
estimation error e = x− x̂ is bounded by ē0, then

|e(t)| ≤ γ1(t)ē0 ∀t ∈ [0, Tna]

where γ1(t) := c1 exp
(
−λ̄1t

)
with c1, λ̄1 > 0.
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Estimation Error Bounds

Lemma 2. Under Attacks

For given Ta, ē0 > 0, if at the beginning of an attack the norm of the
estimation error e is bounded by ē0, then

|e(t)| ≤ γ2(Ta)ē0 ∀t ∈ [0, Ta]

where γ2(Ta) := max
t∈[0,Ta]

ĉ1 exp
(
−λ̂1t

)
+ ĉ2 exp

(
λ̂2t

)
with ĉ1, λ̂1, ĉ2, λ̂2 > 0.
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For given Ta, ē0 > 0, if at the beginning of an attack the norm of the
estimation error e is bounded by ē0, then
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Global Bound on Estimation Error

Theorem 1.

Given Ē, Tna, Ta > 0, if the initial estimation error e(0) satisfies
|e(0)| ≤ Ē and γ1(Tna)γ2(Ta) ≤ 1, then

|e(t)| ≤ γ1(0)γ2(Ta)Ē ∀t ≥ 0

Using the proposed observer, the norm of the error always remains
bounded.
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Using the proposed observer, the norm of the error always remains
bounded.



Global Bound on Estimation Error

Theorem 1.
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Switched Observer

F

˙̂x = Ax̂+Bu+ L(ȳ − Cx̂)

˙̂x = Ax̂+Bu+ L̃(ys − C̃x̂)
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Observer-based Feedback Law Design

Construction of Sets of Initial Conditions
Pick ε > (1 + γ1(0)γ2(Ta))Ē

▶ Set of initial states: X0 := S \ (∂S + εB)
▶ Set of initial estimates: X̂0(x0) := x0 + ĒB

▶ Allowed initial estimates: X̃ := X0 + ĒB

Lemma 3

With bounded estimation error and x(0) ∈ X0, x̂(0) ∈ X̂0(x0):

If x̂(t) ∈ X̃ for all t ≥ 0, then x(t) ∈ S for all t ≥ 0.

▶ The sets X0 and X̂0 are defined such that the |e(0)| ≤ Ē.

▶ Forward invariance of X̃ for the observer implies conditional
invariance of the set S for F with respect to X0.
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▶ Allowed initial estimates: X̃ := X0 + ĒB
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Observer-based Feedback Law Design

QP-based Feedback Law Synthesis
Control barrier function (CBF)-based approach for control design.

Control Objective

Enforce the estimate x̂ in the set X̃ to guarantee safety of S.

Zero sublevel set representation of a set X̄ based on function h : Rn → R

X̄ := {x̂ | h(x̂) ≤ 0} ⊂ X̃

Sufficient: Design an observer-based feedback law κ such that for each
x̂(0) ∈ X̄, the estimate x̂(t) ∈ X̄ ⊂ X̃, for all t ≥ 0.

CBF Conditions

Under no attacks:
∂
∂x̂

h(x̂(t)) (Ax̂(t) +Bκ1(x̂(t), ȳ(t)) + L(ȳ(t)− Cx̂(t))) ≤ α1(−h(x̂(t))),
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)
≤ α2(−h(x̂(t))).



Observer-based Feedback Law Design

QP-based Feedback Law Synthesis
Control barrier function (CBF)-based approach for control design.

Control Objective

Enforce the estimate x̂ in the set X̃ to guarantee safety of S.

Zero sublevel set representation of a set X̄ based on function h : Rn → R

X̄ := {x̂ | h(x̂) ≤ 0} ⊂ X̃

Sufficient: Design an observer-based feedback law κ such that for each
x̂(0) ∈ X̄, the estimate x̂(t) ∈ X̄ ⊂ X̃, for all t ≥ 0.

CBF Conditions

Under no attacks:
∂
∂x̂
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Observer-based Feedback Law Design

QP-based Feedback Law Synthesis
Control barrier function (CBF)-based approach for control design.

Quadratic Programming (QP) Formulation to Compute Input u

Synthesize the control input via solving:

▶ For each x̂ ∈ X̄ and ȳ such that x ∈ S when there is no attack:

min
(v,η)

1

2
|v −Kx̂|2+1

2
η2

s.t.
∂

∂x̂
h(x̂) (Ax̂+Bv + L(ȳ − Cx̂)) ≤− ηh(x̂),

▶ For each x̂ ∈ X̄ and ys = C̃x such that x ∈ S when under attack:

min
(vs,ζ)

1

2
|vs −Kx̂|2+1

2
ζ2

s.t.
∂

∂x̂
h(x̂)

(
Ax̂+Bvs + L̃(ys − C̃x̂)

)
≤− ζh(x̂).

where K is the optimal LQR gain for the pair (A,B).



Observer-based Feedback Law Design

QP-based Feedback Law Synthesis
Control barrier function (CBF)-based approach for control design.

Theorem 2. Main Result

Under feasible QPs for all x̂ ∈ X̃:

For each x0 ∈ X0 and x̂0 ∈ X̄ ∩ X̂0(x0),

x̂(t) ∈ X̄ and x(t) ∈ S for all t ≥ 0.

▶ Feasibility of the QPs with proper state initialization renders the
estimate x̂(t) ∈ X̄ at all times.

▶ Then the state x remains in S at all times.
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Solution Scheme

F

˙̂x = Ax̂+Bu+ L(ȳ − Cx̂)

˙̂x = Ax̂+Bu+ L̃(ys − C̃x̂)

Attack
Detector

Switching Observer

ya

ys

DoS

argmin(v,η)
1
2 |v −Kx̂|2 + 1

2η
2

s.t. ∂
∂x̂h(x̂) (Ax̂+Bv + L(ȳ − Cx̂)) ≤ −ηh(x̂)

argmin(vs,ζ)
1
2 |vs −Kx̂|2 + 1

2ζ
2

s.t. ∂
∂x̂h(x̂)

(
Ax̂+Bvs + L̃(ys − C̃x̂)

)
≤ −ζh(x̂)

Switching Controller

x̂

u



Numerical Example

Integrator with Nondetectable Modes under Attack
System F with state x = (x1, x2) ∈ R2, input u ∈ R, and dynamics

ẋ1 =
x1

2
+ x2

ẋ2 = u

y = (x1, x2)

▶ ya = x1 is only available when there are no attacks.

▶ Attacks of max. Ta = 1.6s. No attacks for min. Tna = 0.05s.
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ẋ1 =
x1

2
+ x2
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ẋ1 =
x1

2
+ x2

ẋ2 = u

y = (x1, x2)



Numerical Example

Integrator with Nondetectable Modes under Attack
System F with state x = (x1, x2) ∈ R2, input u ∈ R, and dynamics

ẋ1 =
x1

2
+ x2

ẋ2 = u

y = (x1, x2)

Since γ1(Tna)γ2(Ta) ≤ 1 then the error is bounded at all times.

The QPs render x̂(t) ∈ X̄ for all t, then x(t) ∈ S for all t.



Conclusion

▶ Switched controller design with a switched observer that
ensures a LTI system to recover safely from finite-time DoS
attacks in some of the system outputs.

▶ Conditional invariance of a set with respect to a subset of
initial conditions by employing a barrier function approach
and bounding the estimation error at all times.

Future Work

▶ Finite-time observer and tighter bound to relax the
conservatism.
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