Recent Advances in Safety, Optimization, and Control

Ricardo Sanfelice

Department Electrical and Computer Engineering University of California

Duke

CoE Review @ Duke University - December 7, 2023

Outline of Recent Results

1. Safety

Safety Certificates

ACC23a, CDC23a, CDC23b,

TAC (provisionally accepted) w/ Warren Dixon

- Applications of Safety to Security
- 2. Optimization

 Dynamical systems approach ACC23c, Optimization journal (almost ready)

Automatica 2023, ACC23d w/ Matt Hale

Optimization with Computational Constraints

CPSWeek-IoT 23 Workshop

- 3. Motion Planning for Hybrid Systems
 - RRT for feasibility and optimality CDC22, CCTA22b, CDC23c, ADHS24 (work in progress)

Outline of Recent Results

1. Safety

Safety Certificates

ACC23a, CDC23a, CDC23b,

TAC (provisionally accepted) w/ Warren Dixon

- Applications of Safety to Security
- 2. Optimization

 Dynamical systems approach ACC23c, Optimization journal (almost ready)

Automatica 2023, ACC23d w/ Matt Hale

Optimization with Computational Constraints

CPSWeek-IoT 23 Workshop

3. Motion Planning for Hybrid Systems

Juke

New MS student (Ryan Rodriguez) and postdoc (Himadri Basu)

Visited S. Phillips at AFRL/RV

Released new version of Hybrid Equations Toolbox (v3.0) for Matlab

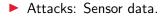
An Observer-based Switching Algorithm for Safety under Sensor Denial-of-Service Attacks

Santiago J. Leudo, Kunal Garg*, Ricardo G. Sanfelice, and Alvaro A. Cardenas

University of California, Santa Cruz, CA *Massachusetts Institute of Technology, Cambridge, MA

CoE Review @ Duke University

December 7, 2023



ĽRI17

- Attacks: Sensor data.
- Attackers can disable the transmission of signals between devices: a Denial of Service (DoS) attack.

- Attacks: Sensor data.
- Attackers can disable the transmission of signals between devices: a Denial of Service (DoS) attack.
- Potential violation of safety requirements.

Goal: Keep a system's trajectories in a safe set even under DoS attacks.

Goal: Keep a system's trajectories in a safe set even under DoS attacks.

Approach: Control scheme to bound the impact of an attack based on the **information available** to guarantee **safety**.

Goal: Keep a system's trajectories in a safe set even under DoS attacks.

Approach: Control scheme to bound the impact of an attack based on the **information available** to guarantee **safety**.

Assumption: Finite duration attacks, succeeded by intervals without attacks.

Safety Definitions

Consider the nonlinear system with state x and output y:

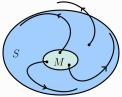
$$\mathcal{F}_n : \begin{cases} \dot{x} &=& F(t,x) \\ y &=& H(t,x) \end{cases}$$

▶ *F* is the *flow map*

► *H* is the *output map*

Consider the nonlinear system with state x and outp

$$\mathcal{F}_n : \begin{cases} \dot{x} &= F(t, x) \\ y &= H(t, x) \end{cases}$$



▶ F is the flow map

H is the output map

Definition: (Conditional invariance)

A closed set $S \subset \mathbb{R}^n$ is said to be *conditionally invariant* for \mathcal{F}_n with respect to $M \subset S$ if, for each $x_0 \in M$, any solution to \mathcal{F}_n from x_0 remains in S.

Safety Definitions

Consider the nonlinear system with state x and output y:

$$\mathcal{F}_n: \begin{cases} \dot{x} &=& F(t,x) \\ y &=& H(t,x) \end{cases}$$

▶ F is the flow map

► *H* is the *output map*

Definition: (Conditional invariance)

A closed set $S \subset \mathbb{R}^n$ is said to be *conditionally invariant* for \mathcal{F}_n with respect to $M \subset S$ if, for each $x_0 \in M$, any solution to \mathcal{F}_n from x_0 remains in S.

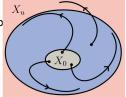
Definition: (Safety)

The system \mathcal{F}_n is said to be *safe* with respect to (X_0, X_u) , with $X_0 \subset \mathbb{R}^n \setminus X_u$, if for each $x_0 \in X_0$, any solution to \mathcal{F}_n from x_0 remains in $\mathbb{R}^n \setminus X_u$.

Safety Definitions

Consider the nonlinear system with state x and outp

$$\mathcal{F}_n : \begin{cases} \dot{x} &= F(t, x) \\ y &= H(t, x) \end{cases}$$



► F is the flow map

H is the output map

Definition: (Conditional invariance)

A closed set $S \subset \mathbb{R}^n$ is said to be *conditionally invariant* for \mathcal{F}_n with respect to $M \subset S$ if, for each $x_0 \in M$, any solution to \mathcal{F}_n from x_0 remains in S.

Definition: (Safety)

The system \mathcal{F}_n is said to be *safe* with respect to (X_0, X_u) , with $X_0 \subset \mathbb{R}^n \setminus X_u$, if for each $x_0 \in X_0$, any solution to \mathcal{F}_n from x_0 remains in $\mathbb{R}^n \setminus X_u$.

Formulation

System Model

Consider the LTI system with state x, input u and output y:

$$\mathcal{F}:\begin{cases} \dot{z} &= Ax + Bu\\ y &= Cx \end{cases}$$

where
$$C = \begin{bmatrix} \tilde{C} \\ \bar{C} \end{bmatrix}$$
.

Formulation

System Model

Consider the LTI system with state x, input u and output y:

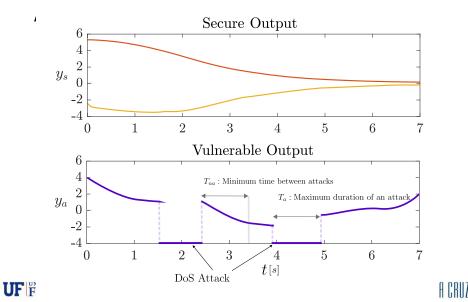
$$\mathcal{F}:\begin{cases} \dot{z} &= Ax + Bu\\ y &= Cx \end{cases}$$

where $C = \begin{bmatrix} \tilde{C} \\ \bar{C} \end{bmatrix}$. **Attack Model** (Denial-of-Service (DoS)) The *measured* output: $\bar{y} = \begin{bmatrix} y_s \\ y_a \end{bmatrix}$, where $y_s = \tilde{C}x$, and, along a solution $t \mapsto x(t)$,

$$y_a(t) = \begin{cases} \bar{C}x(t) & \text{if } t \notin \mathcal{T}_a, \\ Y(t, x(t)) & \text{if } t \in \mathcal{T}_a \end{cases}$$

 $\succ \mathcal{T}_a$: the set of times of attack (known)

Formulation



Problem Statement

Design an algorithm to render the set S conditionally invariant for the system \mathcal{F} with respect to the set X_0 using output measurements only.

Safety Problem

1. Find a set of initial states $X_0 \subset S$, and

Safety Problem

- 1. Find a set of initial states $X_0 \subset S$, and
- 2. Design a control law κ that uses the measured output $ar{y} = (y_s, y_s)$

Safety Problem

- 1. Find a set of initial states $X_0 \subset S$, and
- 2. Design a control law κ that uses the measured output $\bar{y}=(y_s,y_s)$

such that, for each $x_0 \in X_0$, $x(0) = x_0$ implies $x(t) \in S$ for all $t \ge 0$.

Safety Problem

- 1. Find a set of initial states $X_0 \subset S$, and
- 2. Design a control law κ that uses the measured output $\bar{y} = (y_s, y_s)$

such that, for each $x_0 \in X_0$, $x(0) = x_0$ implies $x(t) \in S$ for all $t \ge 0$.

Solution Approach:

Design an observer-based feedback law that induces conditional invariance of S with respect to X_0 using the measured output \bar{y} .

Safety Problem

- 1. Find a set of initial states $X_0 \subset S$, and
- 2. Design a control law κ that uses the measured output $\bar{y} = (y_s, y_s)$

such that, for each $x_0 \in X_0$, $x(0) = x_0$ implies $x(t) \in S$ for all $t \ge 0$.

Solution Approach:

Design an observer-based feedback law that induces conditional invariance of S with respect to X_0 using the measured output \bar{y} .

System output under attack → the observer uses the non-attacked output components.

Safety Problem

- 1. Find a set of initial states $X_0 \subset S$, and
- 2. Design a control law κ that uses the measured output $\bar{y} = (y_s, y_s)$

such that, for each $x_0 \in X_0$, $x(0) = x_0$ implies $x(t) \in S$ for all $t \ge 0$.

Solution Approach:

Design an observer-based feedback law that induces conditional invariance of S with respect to X_0 using the measured output \bar{y} .

- System output under attack → the observer uses the non-attacked output components.
- System output not attacked → the observer uses the complete output vector.

$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + g_1(Cx, C\hat{x}) & \text{if} \quad t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + g_2(\tilde{C}x, C\hat{x}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + g_1(Cx, C\hat{x}) & \text{if} \quad t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + g_2(\tilde{C}x, C\hat{x}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

2. design functions κ_1 and κ_2 for the observer-based feedback law

$$\kappa(t, \hat{x}, \bar{y}) = \begin{cases} \kappa_1(\hat{x}, \bar{y}) & \text{if } t \notin \mathcal{T}_a, \\ \kappa_2(\hat{x}, \bar{y}) & \text{if } t \in \mathcal{T}_a, \end{cases}$$

$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + g_1(Cx, C\hat{x}) & \text{if} \quad t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + g_2(\tilde{C}x, C\hat{x}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

2. design functions κ_1 and κ_2 for the observer-based feedback law

$$\kappa(t, \hat{x}, \bar{y}) = \begin{cases} \kappa_1(\hat{x}, \bar{y}) & \text{if} \quad t \notin \mathcal{T}_a, \\ \kappa_2(\hat{x}, \bar{y}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

- 3. and, compute
 - X₀: set of initial states,
 - \hat{X}_0 : set of estimates before an attack,
 - X
 isst of estimates after an attack,

$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + g_1(Cx, C\hat{x}) & \text{if} \quad t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + g_2(\tilde{C}x, C\hat{x}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

2. design functions κ_1 and κ_2 for the observer-based feedback law

$$\kappa(t, \hat{x}, \bar{y}) = \begin{cases} \kappa_1(\hat{x}, \bar{y}) & \text{if } t \notin \mathcal{T}_a, \\ \kappa_2(\hat{x}, \bar{y}) & \text{if } t \in \mathcal{T}_a, \end{cases}$$

- 3. and, compute
 - ► X₀: set of initial states,
 - \hat{X}_0 : set of estimates before an attack,
- ▶ If $x(0) \in X_0, \hat{x}(0) \in \hat{X}_0(x_0) \Rightarrow x(t) \in S$ during attacks.

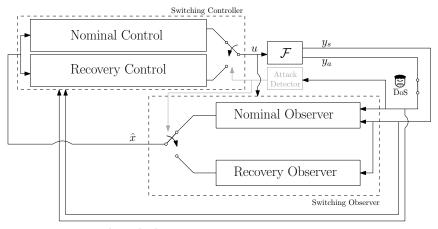
$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + g_1(Cx, C\hat{x}) & \text{if} \quad t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + g_2(\tilde{C}x, C\hat{x}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

2. design functions κ_1 and κ_2 for the observer-based feedback law

$$\kappa(t, \hat{x}, \bar{y}) = \begin{cases} \kappa_1(\hat{x}, \bar{y}) & \text{if} \quad t \notin \mathcal{T}_a, \\ \kappa_2(\hat{x}, \bar{y}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

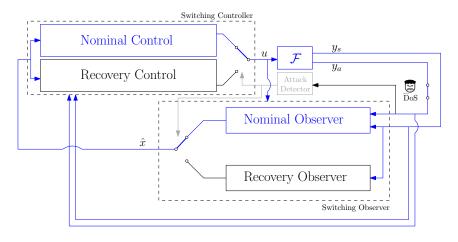
- 3. and, compute
 - X₀: set of initial states,
 - \hat{X}_0 : set of estimates before an attack,

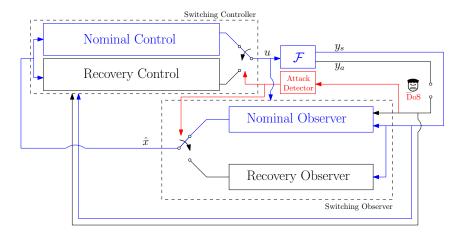
• If $x(0) \in S$, $\hat{x}(0) \in \tilde{X} \Rightarrow x(t) \in S$ when no attacks and belongs to X_0 at the beginning of the next attack.

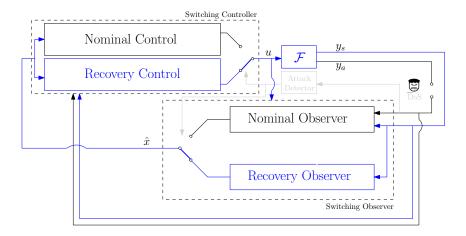


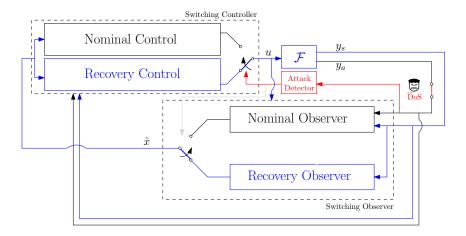
Attack detector [Phillips et al - CDC 17]

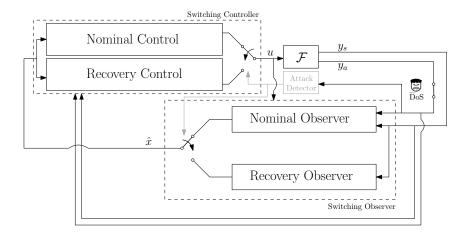
Duke











Reconstruction of the state with potential unobservable modes when under attack for feedback control design. The switching observer

$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + L(Cx - C\hat{x}) & \text{if } t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + \tilde{\underline{L}}(\tilde{C}x - \tilde{C}\hat{x}) & \text{if } t \in \mathcal{T}_a, \end{cases}$$

Reconstruction of the state with potential unobservable modes when under attack for feedback control design. The switching observer

$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + L(Cx - C\hat{x}) & \text{if} \quad t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + \tilde{L}(\tilde{C}x - \tilde{C}\hat{x}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

Basic Assumptions

- The pair (A, B) is controllable and the pair (C, A) is detectable.
- We design L so that A LC has all its eigenvalues in the open left-half plane.
- ▶ We design L̃ so that A L̃C̃ has as many eigenvalues (but not necessarily all of them) as possible in the open left-half plane.

Reconstruction of the state with potential unobservable modes when under attack for feedback control design. The switching observer

$$\dot{\hat{x}} = \begin{cases} A\hat{x} + Bu + L(Cx - C\hat{x}) & \text{if} \quad t \notin \mathcal{T}_a, \\ A\hat{x} + Bu + \tilde{L}(\tilde{C}x - \tilde{C}\hat{x}) & \text{if} \quad t \in \mathcal{T}_a, \end{cases}$$

Basic Assumptions

- The pair (A, B) is controllable and the pair (C, A) is detectable.
- We design L so that A LC has all its eigenvalues in the open left-half plane.
- ▶ We design L̃ so that A L̃C̃ has as many eigenvalues (but not necessarily all of them) as possible in the open left-half plane.

Define the estimation error as $e = x - \hat{x}$ with

$$\dot{e} = \begin{cases} (A - LC)e & \text{if} \quad t \notin \mathcal{T}_a, \\ (A - \tilde{L}\tilde{C})e & \text{if} \quad t \in \mathcal{T}_a. \end{cases}$$

Estimation Error Bounds

Lemma 1. Under No Attacks

For given $T_{na}, \bar{e}_0 > 0$, if at the end of an attack the norm of **the** estimation error $e = x - \hat{x}$ is bounded by \bar{e}_0 , then

 $|e(t)| \le \gamma_1(t)\bar{e}_0 \qquad \forall t \in [0, T_{na}]$

where $\gamma_1(t) \coloneqq c_1 \exp\left(-\bar{\lambda}_1 t\right)$ with $c_1, \bar{\lambda}_1 > 0$.

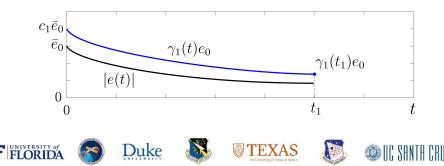
Estimation Error Bounds

Lemma 1. Under No Attacks

For given $T_{na}, \bar{e}_0 > 0$, if at the end of an attack the norm of **the** estimation error $e = x - \hat{x}$ is bounded by \bar{e}_0 , then

 $|e(t)| \le \gamma_1(t)\bar{e}_0 \qquad \forall t \in [0, T_{na}]$

where $\gamma_1(t) \coloneqq c_1 \exp\left(-\bar{\lambda}_1 t\right)$ with $c_1, \bar{\lambda}_1 > 0$.



Lemma 2. Under Attacks

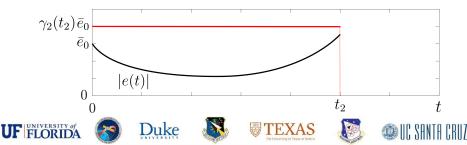
For given $T_a, \bar{e}_0 > 0$, if at the beginning of an attack the norm of **the** estimation error e is bounded by \bar{e}_0 , then

$$\begin{split} |e(t)| &\leq \gamma_2(T_a)\bar{e}_0 \qquad \forall t \in [0, T_a] \\ \text{where } \gamma_2(T_a) \coloneqq \max_{t \in [0, T_a]} \hat{c}_1 \exp\left(-\hat{\lambda}_1 t\right) + \hat{c}_2 \exp\left(\hat{\lambda}_2 t\right) \\ \text{with } \hat{c}_1, \hat{\lambda}_1, \hat{c}_2, \hat{\lambda}_2 > 0. \end{split}$$

Lemma 2. Under Attacks

For given $T_a, \bar{e}_0 > 0$, if at the beginning of an attack the norm of **the** estimation error e is bounded by \bar{e}_0 , then

$$\begin{split} |e(t)| &\leq \gamma_2(T_a)\bar{e}_0 \qquad \forall t \in [0, T_a] \end{split}$$
 where $\gamma_2(T_a) \coloneqq \max_{t \in [0, T_a]} \hat{c}_1 \exp\left(-\hat{\lambda}_1 t\right) + \hat{c}_2 \exp\left(\hat{\lambda}_2 t\right)$ with $\hat{c}_1, \hat{\lambda}_1, \hat{c}_2, \hat{\lambda}_2 > 0.$



Theorem 1.

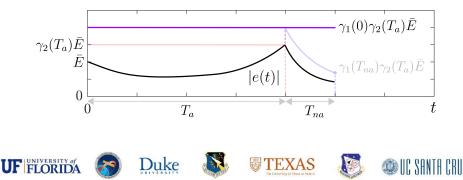
Given $\bar{E}, T_{na}, T_a > 0$, if the initial estimation error e(0) satisfies $|e(0)| \leq \bar{E}$ and $\gamma_1(T_{na})\gamma_2(T_a) \leq 1$, then

 $|e(t)| \le \gamma_1(0)\gamma_2(T_a)\bar{E} \qquad \forall t \ge 0$

Theorem 1.

Given $\bar{E}, T_{na}, T_a > 0$, if the initial estimation error e(0) satisfies $|e(0)| \leq \bar{E}$ and $\gamma_1(T_{na})\gamma_2(T_a) \leq 1$, then

 $|e(t)| \le \gamma_1(0)\gamma_2(T_a)\bar{E} \qquad \forall t \ge 0$

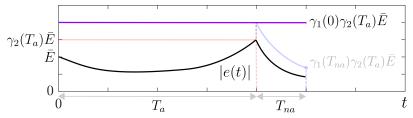


Theorem 1.

FLORIDA

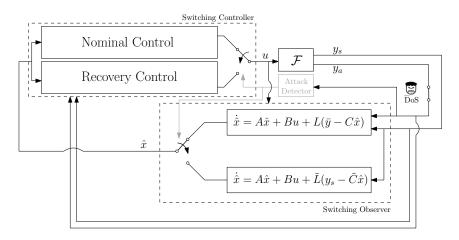
Given $\bar{E}, T_{na}, T_a > 0$, if the initial estimation error e(0) satisfies $|e(0)| \leq \bar{E}$ and $\gamma_1(T_{na})\gamma_2(T_a) \leq 1$, then

 $|e(t)| \le \gamma_1(0)\gamma_2(T_a)\bar{E} \qquad \forall t \ge 0$



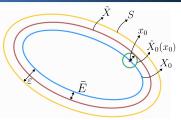
Using the proposed observer, **the norm of the error always remains bounded**.

Duke



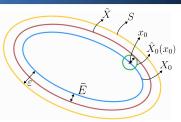
Construction of Sets of Initial Conditions Pick $\varepsilon > (1+\gamma_1(0)\gamma_2(T_a))\bar{E}$

- Set of initial states: $X_0 \coloneqq S \setminus (\partial S + \varepsilon \mathbb{B})$
- Set of initial estimates: $\hat{X}_0(x_0) \coloneqq x_0 + \bar{E}$
- ▶ Allowed initial estimates: $\tilde{X} := X_0 + \bar{E}\mathbb{B}$



Construction of Sets of Initial Conditions ${\rm Pick}\ \varepsilon > (1+\gamma_1(0)\gamma_2(T_a))\bar{E}$

- Set of initial states: $X_0 \coloneqq S \setminus (\partial S + \varepsilon \mathbb{B})$
- Set of initial estimates: $\hat{X}_0(x_0) \coloneqq x_0 + \bar{E}$
- Allowed initial estimates: $\tilde{X} := X_0 + \bar{E}\mathbb{B}$

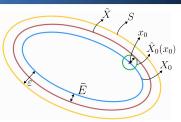


Lemma 3

With bounded estimation error and $x(0) \in X_0, \hat{x}(0) \in \hat{X}_0(x_0)$:

Construction of Sets of Initial Conditions ${\rm Pick}\ \varepsilon > (1+\gamma_1(0)\gamma_2(T_a))\bar{E}$

- Set of initial states: $X_0 \coloneqq S \setminus (\partial S + \varepsilon \mathbb{B})$
- Set of initial estimates: $\hat{X}_0(x_0) \coloneqq x_0 + \bar{E}$
- Allowed initial estimates: $\tilde{X} := X_0 + \bar{E}\mathbb{B}$



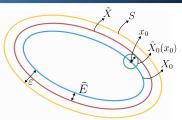
Lemma 3

With bounded estimation error and $x(0) \in X_0, \hat{x}(0) \in \hat{X}_0(x_0)$:

If $\hat{x}(t) \in \tilde{X}$ for all $t \ge 0$, then $x(t) \in S$ for all $t \ge 0$.

Construction of Sets of Initial Conditions ${\rm Pick}\ \varepsilon > (1+\gamma_1(0)\gamma_2(T_a))\bar{E}$

- Set of initial states: $X_0 \coloneqq S \setminus (\partial S + \varepsilon \mathbb{B})$
- Set of initial estimates: $\hat{X}_0(x_0) \coloneqq x_0 + \bar{E}$
- Allowed initial estimates: $\tilde{X} := X_0 + \bar{E}\mathbb{B}$



Lemma 3

With bounded estimation error and $x(0) \in X_0, \hat{x}(0) \in \hat{X}_0(x_0)$:

If $\hat{x}(t) \in \tilde{X}$ for all $t \ge 0$, then $x(t) \in S$ for all $t \ge 0$.

- ▶ The sets X_0 and \hat{X}_0 are defined such that the $|e(0)| \leq \overline{E}$.
- ► Forward invariance of X for the observer implies conditional invariance of the set S for F with respect to X₀.

QP-based Feedback Law Synthesis

Control barrier function (CBF)-based approach for control design.

Control Objective

Enforce the estimate \hat{x} in the set \tilde{X} to guarantee safety of S.

QP-based Feedback Law Synthesis

Control barrier function (CBF)-based approach for control design.

Control Objective

Enforce the estimate \hat{x} in the set \tilde{X} to guarantee safety of S.

Zero sublevel set representation of a set \bar{X} based on function $h:\mathbb{R}^n\to\mathbb{R}$

 $\bar{X}\coloneqq \{\hat{x}\mid h(\hat{x})\leq 0\}\subset \tilde{X}$

Control barrier function (CBF)-based approach for control design.

Control Objective

Enforce the estimate \hat{x} in the set \tilde{X} to guarantee safety of S.

Zero sublevel set representation of a set \bar{X} based on function $h:\mathbb{R}^n\to\mathbb{R}$

$$\bar{X}\coloneqq \{\hat{x}\mid h(\hat{x})\leq 0\}\subset \tilde{X}$$

Sufficient: Design an observer-based feedback law κ such that for each $\hat{x}(0) \in \overline{X}$, the estimate $\hat{x}(t) \in \overline{X} \subset \widetilde{X}$, for all $t \ge 0$.

Control barrier function (CBF)-based approach for control design.

Control Objective

Enforce the estimate \hat{x} in the set \tilde{X} to guarantee safety of S.

Zero sublevel set representation of a set \bar{X} based on function $h:\mathbb{R}^n\to\mathbb{R}$

$$\bar{X}\coloneqq \{\hat{x}\mid h(\hat{x})\leq 0\}\subset \tilde{X}$$

Sufficient: Design an observer-based feedback law κ such that for each $\hat{x}(0) \in \overline{X}$, the estimate $\hat{x}(t) \in \overline{X} \subset \widetilde{X}$, for all $t \ge 0$.

CBF Conditions

Under no attacks:

$$\begin{split} &\frac{\partial}{\partial \hat{x}}h(\hat{x}(t))\left(A\hat{x}(t)+B\kappa_{1}(\hat{x}(t),\bar{y}(t))+L(\bar{y}(t)-C\hat{x}(t))\right)\leq\alpha_{1}(-h(\hat{x}(t))),\\ &\text{Under attack:}\\ &\frac{\partial}{\partial \hat{x}}h(\hat{x}(t))\left(A\hat{x}(t)+B\kappa_{2}(\hat{x}(t),\bar{y}(t))+\tilde{L}(\bar{y}_{s}(t)-\tilde{C}\hat{x}(t))\right)\leq\alpha_{2}(-h(\hat{x}(t))). \end{split}$$

Juke

QP-based Feedback Law Synthesis

Control barrier function (CBF)-based approach for control design.

Quadratic Programming (QP) Formulation to Compute Input u

Synthesize the control input via solving:

▶ For each $\hat{x} \in \bar{X}$ and \bar{y} such that $x \in S$ when there is no attack:

$$\begin{split} \min_{(v,\eta)} & \frac{1}{2}|v - K\hat{x}|^2 + \frac{1}{2}\eta^2\\ \text{s.t.} & \frac{\partial}{\partial\hat{x}}h(\hat{x})\left(A\hat{x} + Bv + L(\bar{y} - C\hat{x})\right) \leq -\eta h(\hat{x}) \end{split}$$

▶ For each $\hat{x} \in \bar{X}$ and $y_s = \tilde{C}x$ such that $x \in S$ when under attack:

$$\begin{split} \min_{\substack{(\boldsymbol{v}_s,\zeta)}} & \frac{1}{2}|\boldsymbol{v}_s - K\hat{x}|^2 + \frac{1}{2}\zeta^2\\ \text{s.t.} & \frac{\partial}{\partial\hat{x}}h(\hat{x})\left(A\hat{x} + B\boldsymbol{v}_s + \tilde{L}(y_s - \tilde{C}\hat{x})\right) \leq -\zeta h(\hat{x}) \end{split}$$

where K is the optimal LQR gain for the pair (A, B).

)11ke

Control barrier function (CBF)-based approach for control design.

Theorem 2. Main Result Under feasible QPs for all $\hat{x} \in \tilde{X}$:

Duke

Control barrier function (CBF)-based approach for control design.

Theorem 2. Main Result Under feasible QPs for all $\hat{x} \in \tilde{X}$:

For each $x_0 \in X_0$ and $\hat{x}_0 \in \overline{X} \cap \hat{X}_0(x_0)$,

 $\hat{x}(t)\in \bar{X} \text{ and } x(t)\in S \text{ for all } t\geq 0.$

Control barrier function (CBF)-based approach for control design.

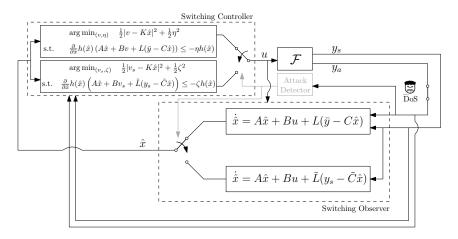
Theorem 2. Main Result Under feasible QPs for all $\hat{x} \in \tilde{X}$:

For each $x_0 \in X_0$ and $\hat{x}_0 \in \overline{X} \cap \hat{X}_0(x_0)$,

 $\hat{x}(t) \in \bar{X}$ and $x(t) \in S$ for all $t \ge 0$.

- Feasibility of the QPs with proper state initialization renders the estimate $\hat{x}(t) \in \bar{X}$ at all times.
- ▶ Then the state x remains in S at all times.

Solution Scheme



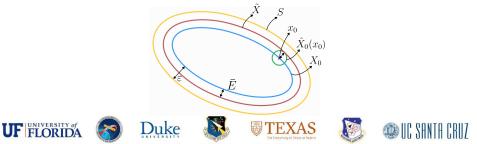
$$\dot{x}_1 = \frac{x_1}{2} + x_2$$
$$\dot{x}_2 = u$$
$$y = (x_1, x_2)$$

Integrator with Nondetectable Modes under Attack System \mathcal{F} with state $x = (x_1, x_2) \in \mathbb{R}^2$, input $u \in \mathbb{R}$, and dynamics

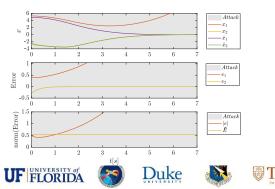
$$\dot{x}_1 = \frac{x_1}{2} + x_2$$
$$\dot{x}_2 = u$$
$$y = (x_1, x_2)$$

• $y_a = x_1$ is only available when there are no attacks.

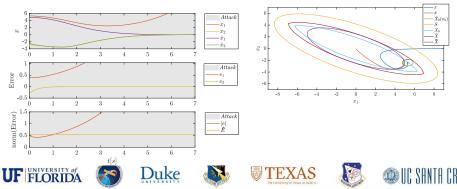
• Attacks of max. $T_a = 1.6$ s. No attacks for min. $T_{na} = 0.05$ s.



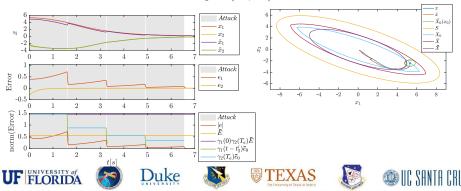
$$\dot{x}_1 = \frac{x_1}{2} + x_2$$
$$\dot{x}_2 = u$$
$$y = (x_1, x_2)$$

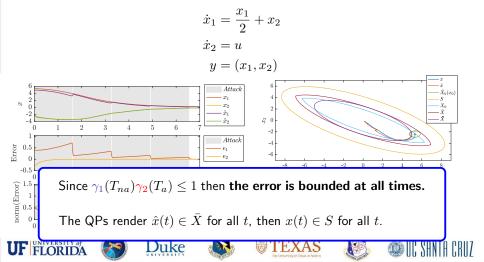


$$\dot{x}_1 = \frac{x_1}{2} + x_2$$
$$\dot{x}_2 = u$$
$$y = (x_1, x_2)$$



$$\dot{x}_1 = \frac{x_1}{2} + x_2$$
$$\dot{x}_2 = u$$
$$y = (x_1, x_2)$$





- Switched controller design with a switched observer that ensures a LTI system to recover safely from finite-time DoS attacks in some of the system outputs.
- Conditional invariance of a set with respect to a subset of initial conditions by employing a barrier function approach and bounding the estimation error at all times.

- Switched controller design with a switched observer that ensures a LTI system to recover safely from finite-time DoS attacks in some of the system outputs.
- Conditional invariance of a set with respect to a subset of initial conditions by employing a barrier function approach and bounding the estimation error at all times.

Future Work

 Finite-time observer and tighter bound to relax the conservatism.

Aknowledgements This research has been partially supported by the Air Force Office of Scientific Research under Grant no. FA9550-19-1-0169

