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Updates on Privacy

vepartm

e Privacy for symbolic systems has appeared

e Bo Chen, Kevin Leahy, Austin Jones, Matthew Hale, “Differential privacy for symbolic
systems with application to Markov Chains,” Automatica, Volume 152, 2023, 110908.

e Collaboration with Mustafa Karabag, Cyrus Neary, and Ufuk Topcu (UT-Austin)
e Two CDC 2023 papers on private RL and private stochastic matrices
e UAI paper on private multi-agent planning

e Bo Chen, Calvin Hawkins, Mustafa O. Karabag, Cyrus Neary, Matthew Hale, and Ufuk
Topcu, “Differential privacy in cooperative multiagent planning,” Proceedings of the
Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI),Vol. 216, 347—-
357.

e Privacy for networks has been accepted

e C.Hawkins, B. Chen, K. Yazdani, and M.T. Hale, "Node and edge differential privacy for
graph Laplacian spectra: Mechanisms and scaling laws”, IEEE Transactions on Network
Science and Engineering, To appear.

e Our work will appear in the mainstream privacy literature

e Bo Chen and Matthew Hale, “The Bounded Gaussian Mechanism for Differential Privacy,”
Journal of Privacy and Confidentiality, To appear.
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Collaborations with Air Force Colleagues

= In summer 2023:
= William Warke was at RW with Kevin Brink
= Working on collaborative paper on localization
» Alexander Benvenuti was at RW with Brendan Bialy

= The joint paper “Differentially Private Reward Functions for Multi-Agent Markov Decision
Processes” is under review

= Gabriel Behrendt was at RW with Zach Bell

= The joint paper “Distributed Asynchronous Discrete-Time Feedback Optimization” is under
review

= Calvin Hawkins was at RY with Ben Robinson
= Working on collaborative paper on changepoint detection
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Mechanical and Aerospace
Engineering

Distributed Asynchronous Discrete-Time

Feedback Optimization

Gabriel Behrendt, Matthew Longmire (AFRL),
Zachary Bell (AFRL), Matthew Hale

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
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My Experience With AFRL

= A Totally Asynchronous Algorithm for Time-Varying Convex Optimization
Problems [1]

~ AFRL

%ﬁ%gﬁhm}'@ SCHOLARS PROGRAM

1. Space Vehicles Directorate, Kirtland Air Force Base
(Albuquerque, NM)
= Local Intelligent Networked Collaborative Satellites (LINCS) Lab,
Mentor: Dr. Sean Phillips
= Autonomous Satellite Rendezvous and Proximity Operations with Time-
Constrained Sub-Optimal Model Predictive Control [2]
2. Munitions Directorate, Eglin Air Force Base (Fort Walton
Beach, FL)

» UF Research & Engineering Education Facility (REEF), Mentor: Dr.
Zachary Bell

= Current work under review at IEEE Transactions on Automatic Control

[1] G. Behrendt and M. Hale, “A totally asynchronous algorithm for tracking solutions to time-varying convex
optimization problems,” in Proceedings of the 22nd IFAC World Congress, 2023.

[2] G. Behrendt, A. Soderlund, S. Phillips and M. Hale, “Autonomous Satellite Rendezvous and Proximity
Operations with Time-Constrained Sub-Optimal Model Predictive Control” in Proceedings of the 22nd IFAC
World Congress, 2023. 5
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Time-Varying Optimization Problems

Machine Learning

Signal Processing

Robotics

Power Distribution Systems

Time-varying demands in power distribution systems

Real-time control of autonomous vehicles in uncertain or dynamic
environments
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Feedback Optimization Problems

o Solution changes
= \ _{ over time
= [al 41 7
n 0l
Decision s
1. Optimization algorithm makes some progress toward the S e Data
solution to generate a timely decision freams Streams
2. Decision is applied to the system (Inputs) — (Outputs)
3. Datais collected and fed back to the optimization algorithm Optlmlgatlon
4. Repeat Algorithm

. Feedback Optimization Can Account For...

» Unforeseen Disturbances
m * Dynamic/Unknown Environments
* New Incoming Data
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Multi-Agent Systems are Subject to Asynchrony

= Asynchronous Communications
= Asynchronous Computations

= Asynchronous Output Measurements

Goal: Develop a multi-agent algorithm to
track the solutions of feedback optimization
problems where agents’ operations are
subject to asynchrony
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Problem Statement

Problem 1. Given f:R" X N, = R, g: R™ X N, — R, over a network of N agents, indexed over
the set [N] := {1, ..., N},|Jasynchronously|track the solution of

x I

over a time horizon T = {0, ..., T} where C € R™*",

mir;iE%ize J(x,y; to) minierjrclize J(x,y; t1) minirJrClize J(x,y;t5)
. X xXe
x*(ty) == arg min f(x; ty) + g(Cx; ty) x*(ty) = argmin f(x; t;) + g(Cx; t;) x*(t,) = arg min f(x; t,) + g(Cx; t;)
xeX XEX XEX
y*(to) = Cx*(ty) y'(ty) = Cx"(ty) y'(tz) = Cx*(t3)

-t &

to tq tr
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Asynchrony in Networks of Agents

= Agents perform computations and communications at
the same time and at every time step

|
= Agents may compute and measure at different rates
= Communications may be intermittent, delayed, or lost ) ) ) )

|
= If the network has to wait for the slowest agent, then the 1 1 1 1

network is only as fast as its slowest agent | | | | E
- 0 1 2 3
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Asynchronous Settings

= Partially Asynchronous
= Jotally Asynchronous

= .0

= Robust to intermittent operations

= Networks in asynchronous settings do not suffer from the

0 1 2 5
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Asynchronous Settings Summarized

Partially Totally
Synchronous
asynchronous asynchronous
More oSS 00 — Less
Restrictive Restrictive
No delays Bounded delays Finite delays
Lese —— More
Restrictive Restrictive
Many non- Convex + certain Diagonally
convex classes of non- dominant
convex hessian

» We would like to propose an algorithm that is robust to asynchrony while considering wide
class of problems

» Therefore, we propose to use an algorithm in the Partially Asynchronous setting
12
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Example of Bounded Delays

« Operations Delay is upper bounded by B

* The order of the operations does not matter

®
o o O
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Partially Asynchronous Block Coordinate Descent

X,
X2
° x — :
« Each agent i has a local copy of the network’s
decision vector x and output vector Y1 [ XN
- The decision vector x and output vector y are | (V1]
partitioned into blocks and assigned to each Vo
agent X1 y=1:
« Agent i updates its block of the decision y
vector x; and measures its outputs SN
+«—JVN

« Agent i communicates its update of x; and
measurements of y; to other agents in the
V9 D o
network
X2

14
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Formal Algorithm Statement

- Algorithm 1 X1
X — .
ik +1) = x Lk — ]/{7 \7 f(x (k); tp) + €'V, yg(y (k); tg) agent i updates at time k .
X (k) otherwise LV
. (k) agent i receives x) at time k Y1
xj(k+1) = / y
X; (k) otherwise 1 . Y2
y p— .
; _|vi(k)  agentimeasures at time k X1
yi(k+1) = {yll (k) otherwise

yjj (,u; (k)) agent i receives yjjat time k

y;'(k+1)={i

y; (k) otherwise

V2 —>

* Due to asynchrony, updates often times are computed with

outdated information, but delays are bounded

15
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Time-Invariant Convergence Result

Theorem 1. For a fixed ¢y, a step size yg € (0,79 max) < 1,
the sequence {x(k),y(k)}ren, generated by N agents
executing Algorithm 1 satisfies

where ay, by, dy > 0, py € (0,1), and

Takeaway: Our Partially
Asynchronous Block Coordinate
Descent algorithm converges
toward the minimizer linearly for a
time-invariant feedback
optimization problem

S b-optimality Gap

<4 Difference of Agent
gradient updates

G Difference of Agent
measurements

16
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Time-Varying Tracking Result

Theorem 2. Forafixed T € N and fix T = {t,, ..., ty}. Forall t, € T,
and a step size a step size y, € (0,7, max) < 1, the sequence
{x(k), y(k)}ken, generated by N agents executing Algorithm 1
satisfies

where a,, b,,d, > 0, p, € (0,1), and

17
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Time-Varying Tracking Result

Theorem 2. Forafixed T € Nand fix T’ = {t,, ..., ty}. Forall t, € T,
and a step size a step size y, € (0,7, max) < 1, the sequence B
{x(k), y(k)}ken, generated by N agents executing Algorithm 1 ay = ‘a{;_lp;f‘ll ,+‘2ALt ,—I—

satisfies a, / V\

How close the network How far the minimizer
tracked the minimizer has moved from

where a,, b,,d, > 0, p, € (0,1), and

Takeaway: Our Partially
Asynchronous Block Coordinate
Descent algorithm converges
toward the minimizer linearly for a
time-varying feedback optimization
problem for all t, € T.

18
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Performance Requirement

*For all t, € T, suppose agents complete r,B iterations where r, = r, track the
minimizer (x*(t,), y*(t,)) within a bounded error ¢» > 0 prior to each objective
function change J(:,;;tp) = J(o, 5 tpeq).

v
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Performance Requirement Result

Theorem 4. Let ¢ > 0. Forafixed T e Nand fix T =
{to, ..., t7}. Suppose N agents are executing Algorithm
1withr,=rforallt, € T and r € N with r > 2. Let
Vmax = {ao, g}ggg Vg} > 0 and pmax = Itrf}ea%( pe € (0,1). If

T+2)(r—1
(fmsg 29
Vmax + ¢
In(pPmax)

then a(ny;ty)) < ¢pforallt, e T.

a(k;tp)

r=>1+

Takeaway: If agents complete enough operations they can track the minimizer within an error bound of ¢ > 0

20
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Simulation #1: Time-Varying Quadratic Programs with Feedback

* 10 agents track the solution of a time-varying quadratic

program Time Index (t;)
o 1 2 3 4 5 6 71 8 9

1204 — i_illltx‘-:k), Yk = (X" (t), y ™ (t)]
100
* The probability of agent i computing an update, .
measuring its output, or communicating is 0.01
* Maximum operation delay B = 5 %0
* The objective function changes every 1000 iterations 40
« The sudden increases in error are due to the change of 204
objective function which changes the minimizer from
0 2000 4000 6000 8000 10000

Iterations (k)

21
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Simulation #1: Theorem 2 Values

Time Index (t;)
0 1 2 3 4 5 9] 7 8 9

Lo | — alkity) —— Bk} — 6(k)

\\K\\'\[\\\
Difference of Agent

gradient updates 10 4
1073 -

Difference of Agent \%
measurements 1075 -

1077

Sub-optimality Gap

101 .

—

0 2000 4000 6000 8000 10000
Iterations (k)
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Effect of Maximum Operations Delay B

Time Index (t;)
6

A S S S A S
. — B=5 —— B=25 —— B=50
102_
a(k;ty) =J(x(k),y(k);te) = J(x™ (L), y* (te)i tp) 5
&-..
T 10
109 4
ll_' EUIUB 4DIDD EDIDD EDIDD ll]lEJUD

Ilterations (k)
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Simulation #2: Aircraft Altitude Tracking

Xi = [Uilﬁi; Di, (pi;fi] € RS
Vi = [1'71',51'] € RZ

= p; — velocity = ¢; — pitch angle
= ; = acceleration = ¢; — pitch rate
= 9; = angle of attack = & — altitude

yi = Cix;

horizontal axis

C. = —0.0133 —7.53269 -—-3.17 -1.1965 0.0001]
;=

0 0 0 0 1

24
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Simulation #2: Problem Formulation

. D(t,) ]
1. Track a time-varying desired altitude, ®(t,) € R * Y (t{’)
. . : : ) — . 16
2. Track a time-varying desired acceleration, ¥;(t,) € R,Vi =1, ...,8 * @(t{)) — : e R
3. Maintain a desired altitude separation w; € R,Vi =1, ..., 8 * (I)(tg)
" W (te)
. . . 1 T 1 T 1 ~ T ~
minimize [=x' Qx|H= (y - @(t{;)) P(y — @(t{»)) +|= (cf - a)) P(f — a))
XEX 2 2 2
Input Cost ~ Altitude + Acceleration Altitude Separation Cost

Tracking Cost
subjectto y = Cx

[ C, - O]

C =

25
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Simulation #2: Tracking Results

 Altitude Tracking * Acceleration Tracking

t.1 0.1 I
®(t,) = 15,000 + 1500 sin Wi(ty) = —| @(t,) — Nz §i(Me)
j=1

24 L
Time Index (t;) .

0 1 2 3 4 5 6 7 8 9 1011121314151617 1819 20 Time Index (&)
"""""""" 01 2 3 45 6 7 8 91011121531415161718 1920

22000 4 Actual |||||||||||||||||||||
-==- Optimal
20000 - 20
18000 ,G;
— 10 A
g g
~ 16000 -
w 5
° 5= 0
—_ ra
=2 14000 1 o I
= @ :
< o i
12000 S -10 :
Lem
10000 - i
=207 —— Actual | I
— —
--- Optimal [ -d
8000 -

0 2000 4000 6000 8000 10000

0 2000 4000 6000 8000 10000 .
Ilterations (k)

lterations (k)
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Future Work: Asynchronous Objective Sampling

Over a network of N agents, track the solution of flx;ty)

« Agent i computes updates to x; asynchronously

« Agent i communicates updates to x;
asynchronously

« Agenti samples f(:; t) asynchronously
* Agent 1 minimizes f(x;t;)
« Agent 2 minimizes f(x; t,) f(x;ty)
« Agent 3 minimizes f(x;t3)

 Application: Agents have differing beliefs of the
target position

27
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Simulation #2: Aircraft Altitude Tracking

Time Index (t;)
01 23456 7 8 91011121314151617 181920
&
5 4000
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