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Updates on Privacy

• Privacy for symbolic systems has appeared
• Bo Chen, Kevin Leahy, Austin Jones, Matthew Hale, “Differential privacy for symbolic 

systems with application to Markov Chains,” Automatica, Volume 152, 2023, 110908.

• Collaboration with Mustafa Karabag, Cyrus Neary, and Ufuk Topcu (UT-Austin)
• Two CDC 2023 papers on private RL and private stochastic matrices
• UAI paper on private multi-agent planning 

• Bo Chen, Calvin Hawkins, Mustafa O. Karabag, Cyrus Neary, Matthew Hale, and Ufuk
Topcu, “Differential privacy in cooperative multiagent planning,” Proceedings of the 
Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI), Vol. 216, 347–
357.

• Privacy for networks has been accepted
• C. Hawkins, B. Chen, K. Yazdani, and M.T. Hale, "Node and edge differential privacy for 

graph Laplacian spectra: Mechanisms and scaling laws”, IEEE Transactions on Network 
Science and Engineering, To appear. 

• Our work will appear in the mainstream privacy literature
• Bo Chen and Matthew Hale, “The Bounded Gaussian Mechanism for Differential Privacy,” 

Journal of Privacy and Confidentiality, To appear. 
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Collaborations with Air Force Colleagues

 In summer 2023: 
 William Warke was at RW with Kevin Brink
 Working on collaborative paper on localization
 Alexander Benvenuti was at RW with Brendan Bialy
 The joint paper “Differentially Private Reward Functions for Multi-Agent Markov Decision 

Processes” is under review
 Gabriel Behrendt was at RW with Zach Bell
 The joint paper “Distributed Asynchronous Discrete-Time Feedback Optimization” is under 

review
 Calvin Hawkins was at RY with Ben Robinson
 Working on collaborative paper on changepoint detection



Gabriel Behrendt, Matthew Longmire (AFRL), 
Zachary Bell (AFRL), Matthew Hale

Mechanical and Aerospace 
Engineering

Distributed Asynchronous Discrete-Time 
Feedback Optimization



Department of Mechanical and Aerospace Engineering

My Experience With AFRL
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[1] G. Behrendt and M. Hale, “A totally asynchronous algorithm for tracking solutions to time-varying convex 
optimization problems,” in Proceedings of the 22nd IFAC World Congress, 2023.

[2] G. Behrendt, A. Soderlund, S. Phillips and M. Hale, “Autonomous Satellite Rendezvous and Proximity 
Operations with Time-Constrained Sub-Optimal Model Predictive Control” in Proceedings of the 22nd IFAC 
World Congress, 2023.

 4th year PhD Candidate at the University of Florida
 A Totally Asynchronous Algorithm for Time-Varying Convex Optimization 

Problems [1]

 Two Internships as an AFRL Summer Scholar
1. Space Vehicles Directorate, Kirtland Air Force Base 

(Albuquerque, NM)
 Local Intelligent Networked Collaborative Satellites (LINCS) Lab, 

Mentor: Dr. Sean Phillips
 Autonomous Satellite Rendezvous and Proximity Operations with Time-

Constrained Sub-Optimal Model Predictive Control [2]
2. Munitions Directorate, Eglin Air Force Base (Fort Walton 

Beach, FL)
 UF Research & Engineering Education Facility (REEF), Mentor: Dr. 

Zachary Bell
 Current work under review at IEEE Transactions on Automatic Control
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Time-Varying Optimization Problems
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 Time-varying convex optimization problems arise in…
 Machine Learning
 Signal Processing
 Robotics
 Power Distribution Systems

 These types of problems can model…
 Time-varying demands in power distribution systems
 Real-time control of autonomous vehicles in uncertain or dynamic 

environments

Often times, controlling these systems requires 
feedback from the dynamic system
We can use feedback to steer the system toward an 

optimal operating point using the time-varying 
optimization framework online
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Feedback Optimization Problems
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 Feedback Optimization utilizes feedback from the 
system to generate timely decisions online to steer 
a system toward an optimal operating point
 Feedback Optimization Process

1. Optimization algorithm makes some progress toward the 
solution to generate a timely decision

2. Decision is applied to the system
3. Data is collected and fed back to the optimization algorithm
4. Repeat

 This is not Model Predictive Control
 Often times, these types of problems are solved 

over a network of agents
 These networks are subject to asynchrony in their 

“operations”

All Online!

Decision 
Streams
(Inputs)

Data 
Streams
(Outputs)

Feedback Optimization Can Account For…
• Unforeseen Disturbances
• Dynamic/Unknown Environments
• New Incoming Data

Solution changes 
over time



Department of Mechanical and Aerospace Engineering

Multi-Agent Systems are Subject to Asynchrony
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Many multi-agent systems face asynchrony in 
agents’ operations
 “Operations” = communications, computations, 

output measurements
 Asynchronous Communications
 Asynchronous Computations
 Asynchronous Output Measurements

 As a result, agents may generate, measure, 
and share information with unpredictable timing

Goal: Develop a multi-agent algorithm to 
track the solutions of feedback optimization 

problems where agents’ operations are 
subject to asynchrony
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Problem 1. Given 𝑓𝑓:ℝ𝑛𝑛 × ℕ0 → ℝ, 𝑔𝑔:ℝ𝑚𝑚 × ℕ0 → ℝ, over a network of 𝑁𝑁 agents, indexed over 
the set 𝑁𝑁 ≔ 1, … ,𝑁𝑁 , asynchronously track the solution of

over a time horizon 𝒯𝒯 = 0, … ,𝑇𝑇 where 𝐶𝐶 ∈ ℝ𝑚𝑚×𝑛𝑛.

Problem Statement

9

minimize
𝑥𝑥∈𝒳𝒳

𝐽𝐽 𝑥𝑥,𝑦𝑦; 𝑡𝑡ℓ ≔ 𝑓𝑓 𝑥𝑥; 𝑡𝑡ℓ + 𝑔𝑔 𝑦𝑦; 𝑡𝑡ℓ
subject to 𝑦𝑦 = 𝐶𝐶𝑥𝑥,

𝑡𝑡1

minimize
𝑥𝑥∈𝒳𝒳

𝐽𝐽 𝑥𝑥, 𝑦𝑦; 𝑡𝑡0
𝑥𝑥∗ 𝑡𝑡0 ≔ arg min

𝑥𝑥∈𝒳𝒳
𝑓𝑓 𝑥𝑥; 𝑡𝑡0 + 𝑔𝑔 𝐶𝐶𝐶𝐶; 𝑡𝑡0

𝑦𝑦∗ 𝑡𝑡0 ≔ 𝐶𝐶𝑥𝑥∗ 𝑡𝑡0

minimize
𝑥𝑥∈𝒳𝒳

𝐽𝐽 𝑥𝑥,𝑦𝑦; 𝑡𝑡2
𝑥𝑥∗ 𝑡𝑡2 ≔ arg min

𝑥𝑥∈𝒳𝒳
𝑓𝑓 𝑥𝑥; 𝑡𝑡2 + 𝑔𝑔 𝐶𝐶𝐶𝐶; 𝑡𝑡2

𝑦𝑦∗ 𝑡𝑡2 ≔ 𝐶𝐶𝑥𝑥∗ 𝑡𝑡2

minimize
𝑥𝑥∈𝒳𝒳

𝐽𝐽 𝑥𝑥,𝑦𝑦; 𝑡𝑡1
𝑥𝑥∗ 𝑡𝑡1 ≔ arg min

𝑥𝑥∈𝒳𝒳
𝑓𝑓 𝑥𝑥; 𝑡𝑡1 + 𝑔𝑔 𝐶𝐶𝐶𝐶; 𝑡𝑡1

𝑦𝑦∗ 𝑡𝑡1 ≔ 𝐶𝐶𝑥𝑥∗ 𝑡𝑡1

𝑘𝑘
𝑡𝑡2𝑡𝑡0
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Asynchrony in Networks of Agents
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 Ideally want Synchronous setting
 Agents perform computations and communications at 

the same time and at every time step

 Not always the case
 Agents may compute and measure at different rates
 Communications may be intermittent, delayed, or lost

 Can lead to a straggler penalty
 If the network has to wait for the slowest agent, then the 

network is only as fast as its slowest agent

 Has led to interest in asynchronous settings
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Asynchronous Settings
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 Two types asynchronous settings
 Partially Asynchronous
 Totally Asynchronous

 Totally Asynchronous settings have no bound on 
operation delays (but delays are finite)
 Partially Asynchronous settings require bounded 

delays in agents’ operations
 Advantages
 Robust to intermittent operations
 Networks in asynchronous settings do not suffer from the 

straggler penalty
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Asynchronous Settings Summarized

12

 We would like to propose an algorithm that is robust to asynchrony while considering wide 
class of problems
 Therefore, we propose to use an algorithm in the Partially Asynchronous setting

Synchronous Partially 
asynchronous

Totally 
asynchronous

No delays Finite delaysBounded delays

Less 
Restrictive

More 
Restrictive

More 
Restrictive

Less 
Restrictive

Many non-
convex

Convex + certain 
classes of non-

convex

Diagonally 
dominant 
hessian
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Example of Bounded Delays

13

• Operations Delay is upper bounded by 𝐵𝐵
• Computations – 3,6
• Communications – 1,4
• Measurements – 8,9

• The order of the operations does not matter

𝑘𝑘
0 𝐵𝐵 = 91 32 54 6 7 8 10

1 2
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• Block Coordinate Descent
• Each agent 𝑖𝑖 has a local copy of the network’s 

decision vector 𝑥𝑥𝑖𝑖 and output vector 𝑦𝑦𝑖𝑖

• The decision vector 𝑥𝑥 and output vector 𝑦𝑦 are 
partitioned into blocks and assigned to each 
agent

• Agent 𝑖𝑖 updates its block of the decision 
vector 𝑥𝑥𝑖𝑖 and measures its outputs 𝑦𝑦𝑖𝑖

• Agent 𝑖𝑖 communicates its update of 𝑥𝑥𝑖𝑖 and 
measurements of 𝑦𝑦𝑖𝑖 to other agents in the 
network

Partially Asynchronous Block Coordinate Descent

14

𝑥𝑥1

𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑥𝑥 =

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑁𝑁

𝑦𝑦 =

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑁𝑁

𝑦𝑦2

𝑦𝑦1

𝑦𝑦𝑁𝑁𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁𝑥𝑥2,𝑦𝑦2

𝑥𝑥1, 𝑦𝑦1
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• Algorithm 1
• Update Law

𝑥𝑥𝑖𝑖𝑖𝑖 𝑘𝑘 + 1 = �
Π𝒳𝒳𝑖𝑖 𝑥𝑥𝑖𝑖

𝑖𝑖 𝑘𝑘 − 𝛾𝛾ℓ 𝛻𝛻𝑥𝑥𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖 𝑘𝑘 ; 𝑡𝑡ℓ + 𝐶𝐶𝑖𝑖𝑇𝑇𝛻𝛻𝑦𝑦𝑔𝑔 𝑦𝑦𝑖𝑖 𝑘𝑘 ; 𝑡𝑡ℓ agent 𝑖𝑖 updates at time 𝑘𝑘

𝑥𝑥𝑖𝑖𝑖𝑖 𝑘𝑘 otherwise

𝑥𝑥𝑗𝑗𝑖𝑖(𝑘𝑘 + 1) = �
𝑥𝑥𝑗𝑗
𝑗𝑗 𝜏𝜏𝑗𝑗𝑖𝑖(𝑘𝑘) agent 𝑖𝑖 receives 𝑥𝑥𝑗𝑗

𝑗𝑗at time 𝑘𝑘

𝑥𝑥𝑗𝑗𝑖𝑖 𝑘𝑘 otherwise

• Measurement Law

𝑦𝑦𝑖𝑖𝑖𝑖 𝑘𝑘 + 1 = �
𝑦𝑦𝑖𝑖 𝑘𝑘 agent 𝑖𝑖 measures at time 𝑘𝑘
𝑦𝑦𝑖𝑖𝑖𝑖 𝑘𝑘 otherwise

𝑦𝑦𝑗𝑗𝑖𝑖(𝑘𝑘 + 1) = �
𝑦𝑦𝑗𝑗
𝑗𝑗 𝜇𝜇𝑗𝑗𝑖𝑖 (𝑘𝑘) agent 𝑖𝑖 receives 𝑦𝑦𝑗𝑗

𝑗𝑗at time 𝑘𝑘

𝑦𝑦𝑗𝑗𝑖𝑖 𝑘𝑘 otherwise

• Due to asynchrony, updates often times are computed with 
outdated information, but delays are bounded

Formal Algorithm Statement

15

𝑥𝑥 =

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑁𝑁

𝑦𝑦 =

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑁𝑁
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Time-Invariant Convergence Result
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Theorem 1. For a fixed 𝑡𝑡0, a step size 𝛾𝛾0 ∈ 0, 𝛾𝛾0,max < 1, 
the sequence 𝑥𝑥 𝑘𝑘 ,𝑦𝑦(𝑘𝑘) 𝑘𝑘∈ℕ0 generated by 𝑁𝑁 agents 
executing Algorithm 1 satisfies

where 𝑎𝑎0, 𝑏𝑏0,𝑑𝑑0 > 0, 𝜌𝜌0 ∈ 0,1 , and

Takeaway: Our Partially 
Asynchronous Block Coordinate 
Descent algorithm converges 
toward the minimizer linearly for a 
time-invariant feedback 
optimization problem

𝛼𝛼 𝑟𝑟0𝐵𝐵; 𝑡𝑡0 ≤ 𝑎𝑎0𝜌𝜌0
𝑟𝑟0−1

𝛽𝛽 𝑟𝑟0𝐵𝐵 ≤ 𝑏𝑏0𝜌𝜌0
𝑟𝑟0−1

𝛿𝛿 𝑟𝑟0𝐵𝐵 ≤ 𝑑𝑑0𝜌𝜌0
𝑟𝑟0−1

𝛼𝛼 𝑘𝑘; 𝑡𝑡0 ≔ 𝐽𝐽 𝑥𝑥 𝑘𝑘 ,𝑦𝑦 𝑘𝑘 ; 𝑡𝑡0 − 𝐽𝐽 𝑥𝑥∗ 𝑡𝑡0 ,𝑦𝑦∗ 𝑡𝑡0 ; 𝑡𝑡0

𝛽𝛽 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵

𝑘𝑘−1

𝑠𝑠 𝜏𝜏 2

𝛿𝛿 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵

𝑘𝑘−1

𝑞𝑞 𝜏𝜏 2

Sub-optimality Gap

Difference of Agent 
gradient updates

Difference of Agent 
measurements
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Time-Varying Tracking Result
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Theorem 2. For a fixed 𝑇𝑇 ∈ ℕ and fix 𝒯𝒯 = 𝑡𝑡0, … , 𝑡𝑡𝑇𝑇 . For all 𝑡𝑡ℓ ∈ 𝒯𝒯, 
and a step size  a step size 𝛾𝛾ℓ ∈ 0, 𝛾𝛾ℓ,max < 1, the sequence 
𝑥𝑥 𝑘𝑘 ,𝑦𝑦(𝑘𝑘) 𝑘𝑘∈ℕ0 generated by 𝑁𝑁 agents executing Algorithm 1 

satisfies

where 𝑎𝑎ℓ, 𝑏𝑏ℓ,𝑑𝑑ℓ > 0, 𝜌𝜌ℓ ∈ 0,1 , and

𝛼𝛼 𝜂𝜂ℓ−1 + 𝑟𝑟ℓ𝐵𝐵; 𝑡𝑡ℓ ≤ 𝑎𝑎ℓ𝜌𝜌ℓ
𝑟𝑟ℓ−1

𝛽𝛽 𝜂𝜂ℓ−1 + 𝑟𝑟ℓ𝐵𝐵 ≤ 𝑏𝑏ℓ𝜌𝜌ℓ
𝑟𝑟ℓ−1

𝛿𝛿 𝜂𝜂ℓ−1 + 𝑟𝑟ℓ𝐵𝐵 ≤ 𝑑𝑑ℓ𝜌𝜌ℓ
𝑟𝑟ℓ−1

𝛼𝛼 𝑘𝑘; 𝑡𝑡ℓ ≔ 𝐽𝐽 𝑥𝑥 𝑘𝑘 ,𝑦𝑦 𝑘𝑘 ; 𝑡𝑡ℓ − 𝐽𝐽 𝑥𝑥∗ 𝑡𝑡ℓ ,𝑦𝑦∗ 𝑡𝑡ℓ ; 𝑡𝑡ℓ

𝛽𝛽 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵ℓ

𝑘𝑘−1

𝑠𝑠 𝜏𝜏 2

𝛿𝛿 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵ℓ

𝑘𝑘−1

𝑞𝑞 𝜏𝜏 2

What’s the difference?
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Time-Varying Tracking Result
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Theorem 2. For a fixed 𝑇𝑇 ∈ ℕ and fix 𝒯𝒯 = 𝑡𝑡0, … , 𝑡𝑡𝑇𝑇 . For all 𝑡𝑡ℓ ∈ 𝒯𝒯, 
and a step size  a step size 𝛾𝛾ℓ ∈ 0, 𝛾𝛾ℓ,max < 1, the sequence 
𝑥𝑥 𝑘𝑘 ,𝑦𝑦(𝑘𝑘) 𝑘𝑘∈ℕ0 generated by 𝑁𝑁 agents executing Algorithm 1 

satisfies

where 𝑎𝑎ℓ, 𝑏𝑏ℓ,𝑑𝑑ℓ > 0, 𝜌𝜌ℓ ∈ 0,1 , and

𝛼𝛼 𝜂𝜂ℓ−1 + 𝑟𝑟ℓ𝐵𝐵; 𝑡𝑡ℓ ≤ 𝑎𝑎ℓ𝜌𝜌ℓ
𝑟𝑟ℓ−1

𝛽𝛽 𝜂𝜂ℓ−1 + 𝑟𝑟ℓ𝐵𝐵 ≤ 𝑏𝑏ℓ𝜌𝜌ℓ
𝑟𝑟ℓ−1

𝛿𝛿 𝜂𝜂ℓ−1 + 𝑟𝑟ℓ𝐵𝐵 ≤ 𝑑𝑑ℓ𝜌𝜌ℓ
𝑟𝑟ℓ−1

𝛼𝛼 𝑘𝑘; 𝑡𝑡ℓ ≔ 𝐽𝐽 𝑥𝑥 𝑘𝑘 ,𝑦𝑦 𝑘𝑘 ; 𝑡𝑡ℓ − 𝐽𝐽 𝑥𝑥∗ 𝑡𝑡ℓ ,𝑦𝑦∗ 𝑡𝑡ℓ ; 𝑡𝑡ℓ

𝛽𝛽 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵ℓ

𝑘𝑘−1

𝑠𝑠 𝜏𝜏 2

𝛿𝛿 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵ℓ

𝑘𝑘−1

𝑞𝑞 𝜏𝜏 2

Takeaway: Our Partially 
Asynchronous Block Coordinate 
Descent algorithm converges 
toward the minimizer linearly for a 
time-varying feedback optimization 
problem for all 𝑡𝑡ℓ ∈ 𝒯𝒯.

What’s the difference?

𝑎𝑎ℓ = 𝑎𝑎ℓ−1𝜌𝜌ℓ−1
𝑟𝑟ℓ−1−1 + 2Δ𝐿𝐿𝑡𝑡 + ⋯

How close the network 
tracked the minimizer 

at 𝑡𝑡ℓ−1

How far the minimizer 
has moved from 

𝑡𝑡ℓ−1 → 𝑡𝑡ℓ
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Performance Requirement
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For all 𝑡𝑡ℓ ∈ 𝒯𝒯, suppose agents complete 𝑟𝑟ℓ𝐵𝐵 iterations where 𝑟𝑟ℓ ≡ 𝑟𝑟, track the 
minimizer 𝑥𝑥∗ 𝑡𝑡ℓ ,𝑦𝑦∗ 𝑡𝑡ℓ within a bounded error 𝜙𝜙 > 0 prior to each objective 
function change 𝐽𝐽 ⋅,⋅; 𝑡𝑡ℓ → 𝐽𝐽 ⋅,⋅; 𝑡𝑡ℓ+1 .

𝑡𝑡0 𝑡𝑡𝑇𝑇𝑡𝑡1 𝑡𝑡2

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝜙𝜙
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Performance Requirement Result
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Theorem 4. Let 𝜙𝜙 > 0. For a fixed 𝑇𝑇 ∈ ℕ and fix 𝒯𝒯 =
𝑡𝑡0, … , 𝑡𝑡𝑇𝑇 . Suppose 𝑁𝑁 agents are executing Algorithm 

1 with 𝑟𝑟ℓ ≡ 𝑟𝑟 for all 𝑡𝑡ℓ ∈ 𝒯𝒯 and 𝑟𝑟 ∈ ℕ with 𝑟𝑟 ≥ 2. Let 
𝑉𝑉max = 𝑎𝑎0, max

𝑡𝑡ℓ∈𝒯𝒯
𝑉𝑉ℓ > 0 and 𝜌𝜌max ≔ max

𝑡𝑡ℓ∈𝒯𝒯
𝜌𝜌ℓ ∈ (0,1). If

then 𝛼𝛼 𝜂𝜂ℓ; 𝑡𝑡ℓ ≤ 𝜙𝜙 for all 𝑡𝑡ℓ ∈ 𝒯𝒯.

𝑟𝑟 ≥ 1 +
ln

𝑉𝑉max𝜌𝜌max
(𝑇𝑇+2)(𝑟𝑟−1) + 𝜙𝜙
𝑉𝑉max + 𝜙𝜙

ln 𝜌𝜌max

𝛼𝛼 𝑘𝑘; 𝑡𝑡ℓ

𝑡𝑡ℓ

𝜙𝜙

𝑡𝑡1 𝑡𝑡2 𝑡𝑡3

𝑟𝑟0 = 𝑟𝑟1 = 𝑟𝑟2 = 𝑟𝑟

Takeaway: If agents complete enough operations they can track the minimizer within an error bound of 𝜙𝜙 > 0
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Simulation #1: Time-Varying Quadratic Programs with Feedback
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• 10 agents track the solution of a time-varying quadratic 
program 

• The probability of agent 𝑖𝑖 computing an update, 
measuring its output, or communicating is 0.01

• Maximum operation delay 𝐵𝐵 = 5
• The objective function changes every 1000 iterations
• The sudden increases in error are due to the change of 

objective function which changes the minimizer from

minimize
𝑥𝑥∈𝒳𝒳

1
2
𝑥𝑥𝑇𝑇𝑄𝑄 𝑡𝑡ℓ 𝑥𝑥 + 𝑞𝑞 𝑡𝑡ℓ 𝑇𝑇𝑥𝑥 +

1
2
𝑦𝑦𝑇𝑇𝑃𝑃 𝑡𝑡ℓ 𝑦𝑦 + 𝑝𝑝 𝑡𝑡ℓ 𝑇𝑇𝑦𝑦

subject to 𝑦𝑦 = 𝐶𝐶𝐶𝐶

𝑥𝑥∗ 𝑡𝑡ℓ ,𝑦𝑦∗ 𝑡𝑡ℓ → 𝑥𝑥∗ 𝑡𝑡ℓ+1 ,𝑦𝑦∗ 𝑡𝑡ℓ+1
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Simulation #1: Theorem 2 Values 
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Sub-optimality Gap

Difference of Agent 
gradient updates

Difference of Agent 
measurements

𝛼𝛼 𝑘𝑘; 𝑡𝑡ℓ ≔ 𝐽𝐽 𝑥𝑥 𝑘𝑘 ,𝑦𝑦 𝑘𝑘 ; 𝑡𝑡ℓ
−𝐽𝐽 𝑥𝑥∗ 𝑡𝑡ℓ ,𝑦𝑦∗ 𝑡𝑡ℓ ; 𝑡𝑡ℓ

𝛽𝛽 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵ℓ

𝑘𝑘−1

𝑠𝑠 𝜏𝜏 2

𝛿𝛿 𝑘𝑘 ≔ �
𝜏𝜏=𝑘𝑘−𝐵𝐵ℓ

𝑘𝑘−1

𝑞𝑞 𝜏𝜏 2
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Effect of Maximum Operations Delay 𝑩𝑩
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𝛼𝛼 𝑘𝑘; 𝑡𝑡ℓ ≔ 𝐽𝐽 𝑥𝑥 𝑘𝑘 ,𝑦𝑦 𝑘𝑘 ; 𝑡𝑡ℓ − 𝐽𝐽 𝑥𝑥∗ 𝑡𝑡ℓ ,𝑦𝑦∗ 𝑡𝑡ℓ ; 𝑡𝑡ℓ
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Simulation #2: Aircraft Altitude Tracking
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 We consider the longitudinal dynamics of 8 F16-XL 
aircraft 
 Agent input and output vectors

 Linearized Input-Output Map

𝑥𝑥𝑖𝑖 = 𝑣𝑣𝑖𝑖 ,𝜗𝜗𝑖𝑖 ,𝜑𝜑𝑖𝑖 , 𝜑̇𝜑𝑖𝑖 , 𝜉𝜉𝑖𝑖 ∈ ℝ5

𝑦𝑦𝑖𝑖 = 𝑣̇𝑣𝑖𝑖 , 𝜉𝜉𝑖𝑖 ∈ ℝ2

 𝜑𝜑𝑖𝑖 → pitch angle
 𝜑̇𝜑𝑖𝑖 → pitch rate
 𝜉𝜉𝑖𝑖 → altitude

 𝑣𝑣𝑖𝑖 → velocity
 𝑣̇𝑣𝑖𝑖 → acceleration
 𝜗𝜗𝑖𝑖 → angle of attack

𝐶𝐶𝑖𝑖 = −0.0133 −7.53269 −3.17 −1.1965 0.0001
0 0 0 0 1

𝑦𝑦𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑥𝑥𝑖𝑖
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Simulation #2: Problem Formulation
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 The aircraft are tasked with the following goals
1. Track a time-varying desired altitude, Φ 𝑡𝑡ℓ ∈ ℝ
2. Track a time-varying desired acceleration, Ψ𝑖𝑖 𝑡𝑡ℓ ∈ ℝ,∀𝑖𝑖 = 1, … , 8
3. Maintain a desired altitude separation 𝜔𝜔𝑖𝑖 ∈ ℝ,∀𝑖𝑖 = 1, … , 8
 Problem Formulation

minimize
𝑥𝑥∈𝒳𝒳

1
2 𝑥𝑥

𝑇𝑇𝑄𝑄𝑄𝑄 +
1
2 𝑦𝑦 − Θ 𝑡𝑡ℓ

𝑇𝑇𝑃𝑃 𝑦𝑦 − Θ 𝑡𝑡ℓ +
1
2 𝜉𝜉 − 𝜔𝜔 𝑇𝑇𝑃𝑃 𝜉𝜉 − 𝜔𝜔

subject to 𝑦𝑦 = 𝐶𝐶𝐶𝐶

Input Cost

𝐶𝐶 =
𝐶𝐶1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐶𝐶8

Altitude + Acceleration 
Tracking Cost

Altitude Separation Cost

Θ 𝑡𝑡ℓ =

Φ 𝑡𝑡ℓ
Ψ1 𝑡𝑡ℓ
⋮

Φ 𝑡𝑡ℓ
Ψ8 𝑡𝑡ℓ

∈ ℝ16
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Simulation #2: Tracking Results
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• Altitude Tracking

Φ 𝑡𝑡ℓ = 15,000 + 1500 sin
𝑡𝑡ℓ𝑡𝑡𝑠𝑠𝜋𝜋

24

• Acceleration Tracking

Ψ𝑖𝑖 𝑡𝑡ℓ =
0.1
𝑡𝑡𝑠𝑠

Φ 𝑡𝑡ℓ −
1
𝑁𝑁�𝑗𝑗=1

𝑁𝑁
𝜉𝜉𝑗𝑗𝑖𝑖 𝜂𝜂ℓ
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Over a network of 𝑁𝑁 agents, track the solution of

• Agent 𝑖𝑖 computes updates to 𝑥𝑥𝑖𝑖 asynchronously
• Agent 𝑖𝑖 communicates updates to 𝑥𝑥𝑖𝑖

asynchronously
• Agent 𝑖𝑖 samples 𝑓𝑓 ⋅; 𝑡𝑡 asynchronously

• Agent 1 minimizes 𝑓𝑓 𝑥𝑥; 𝑡𝑡1
• Agent 2 minimizes 𝑓𝑓 𝑥𝑥; 𝑡𝑡2
• Agent 3 minimizes 𝑓𝑓 𝑥𝑥; 𝑡𝑡3

• Application: Agents have differing beliefs of the 
target position

Future Work: Asynchronous Objective Sampling

27

minimize
𝑥𝑥∈𝒳𝒳

≔ 𝑓𝑓 𝑥𝑥; 𝑡𝑡ℓ

1𝑥𝑥1

𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑓𝑓 𝑥𝑥; 𝑡𝑡2

𝑓𝑓 𝑥𝑥; 𝑡𝑡1

𝑓𝑓 𝑥𝑥; 𝑡𝑡3𝑁𝑁2

𝑥𝑥 =

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑁𝑁
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Thank you
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Simulation #2: Aircraft Altitude Tracking
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