
Recent Advances
in Deep Learning

Second-Order Heterogeneous Multi-
Agent Target Tracking without

Relative Velocities
Cristian F. Nino, Omkar Sudhir Patil, and Warren E. Dixon

System Dynamics and Objective

• Consider a network composed of N agents, each with dynamics:

�̈�𝑞𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑞𝑞𝑖𝑖 , �̇�𝑞𝑖𝑖 + 𝑢𝑢𝑖𝑖
• Consider a target with model:

�̈�𝑞0 = 𝑔𝑔 𝑞𝑞0, �̇�𝑞0
• Each agent is capable of only measuring relative positions:

𝑑𝑑𝑖𝑖𝑖𝑖 ≜ 𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑖𝑖 and 𝑒𝑒𝑖𝑖 ≜ 𝑞𝑞0 − 𝑞𝑞𝑖𝑖
• Objective is to regulate all agents to the target, i.e.

lim
𝑡𝑡→∞

𝑒𝑒𝑖𝑖 = 0

• Define the relative position error

𝜂𝜂𝑖𝑖 ≜ �
𝑖𝑖∈𝒩𝒩𝑖𝑖

𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑒𝑒𝑖𝑖 ⇒ 𝜂𝜂 = ℋ𝑒𝑒

• Define the relative velocity error

𝜁𝜁𝑖𝑖 ≜ �̇�𝜂𝑖𝑖 ⇒ 𝜁𝜁 = ℋ�̇�𝑒

• ℋ is a matrix which encodes the structure of the network

Simulation Results

Why Deep Learing?

Approximate Optimal Indirect
Herding with a Lyapunov-

Based Deep Neural Network
Wanjiku A. Makumi, Jhyv N. Philor, Zachary I. Bell, and

Warren E. Dixon

Simulations

7

Pursuing agent
Evading agent
Goal location

Approximate Dynamic Programming

8

• How do we optimally facilitate autonomous herding of an unknown
while also providing real-time adaptation?

• Approximate dynamic programming (ADP)
• Optimal control & adaptive control

• Hamilton-Jacobi-Bellman equation
• Optimal value function
• Unknown for nonlinear systems

• Reinforcement learning-based actor-critic framework
• Neural networks (NNs)

• Actor: learns control policy approximation
• Critic: learns value function approximation

• Integral Concurrent Learning (ICL)-based Deep Neural Network (DNN)
• Unknown interaction dynamics between agents must be learned in

real-time

Approximate Optimal Control

9

Control objective: Design a controller 𝝁𝝁 which
minimizes the cost function

Optimal control policy

𝐽𝐽 𝑥𝑥,𝜇𝜇 = �
𝑡𝑡0

∞
𝑄𝑄 𝑥𝑥 + 𝑃𝑃 𝑥𝑥 + 𝜇𝜇𝑇𝑇𝑅𝑅𝜇𝜇

𝑉𝑉∗ 𝑥𝑥,𝜇𝜇 = �
𝑡𝑡

∞
𝑄𝑄 𝑥𝑥 + 𝑃𝑃 𝑥𝑥 + 𝜇𝜇𝑇𝑇𝑅𝑅𝜇𝜇

𝜇𝜇∗ 𝑥𝑥 = −
1
2
𝑅𝑅−1𝐺𝐺 𝑥𝑥 𝑇𝑇∇𝑉𝑉∗ 𝑥𝑥 𝑇𝑇

0 = ∇𝑉𝑉∗ 𝑥𝑥 𝐹𝐹 𝑥𝑥, 𝜃𝜃 + 𝐺𝐺 𝑥𝑥 𝜇𝜇∗ 𝑥𝑥 + 𝑄𝑄 𝑥𝑥 +
𝑃𝑃 𝑥𝑥 + 𝜇𝜇∗𝑇𝑇𝑅𝑅𝜇𝜇∗

Replace optimal values in dynamics and
HJB equation with estimates

Optimal value function (cost-to-go)
Hamilton-Jacobi-Bellman equation

𝜃𝜃,𝑉𝑉∗,∇𝑉𝑉∗, 𝜇𝜇∗ �𝜃𝜃, �𝑉𝑉,∇�𝑉𝑉, �𝜇𝜇

Multi-timescale ICL-Lb-DNN

10

�̇𝜃𝜃 = Γ𝜃𝜃𝜙𝜙 �Φ𝑖𝑖 𝑥𝑥𝑖𝑖 �𝑥𝑥𝑇𝑇 + 𝑘𝑘𝜃𝜃Γ𝜃𝜃�
𝑖𝑖=1

𝑀𝑀

𝜙𝜙 �Φ𝑖𝑖 𝑥𝑥𝑖𝑖 �̇�𝑥𝑖𝑖 − 𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖 𝑢𝑢𝑖𝑖 − �𝜃𝜃𝑇𝑇𝜙𝜙 �Φ𝑖𝑖 𝑥𝑥𝑖𝑖

ℒ𝑖𝑖+1 𝑡𝑡 =
1
𝑀𝑀
�
𝑖𝑖=1

𝑀𝑀

�̇�𝑥𝑖𝑖 − 𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖 𝑢𝑢𝑖𝑖 − �𝜃𝜃𝑇𝑇𝜙𝜙 �Φ𝑖𝑖 𝑥𝑥𝑖𝑖
2

Output-layer weight updates

Inner-layer feature updates

• Online
• Real-time
• Adaptive
• ICL-based update law

• Concurrent to real-time
• Batch updates
• Optimization
• Loss function

�̇𝑥𝑥 𝑡𝑡 = 𝜙𝜙 Φ 𝑥𝑥 𝜃𝜃 + �𝐺𝐺 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 + 𝜀𝜀 𝑥𝑥 𝑡𝑡
�̇�𝑥𝑥𝑖𝑖 𝑡𝑡 = 𝜙𝜙 �Φ𝑖𝑖 𝑥𝑥 �𝜃𝜃 + �𝐺𝐺 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

DNN agent dynamics representation

Actor-Critic Neural Networks

11

�𝑾𝑾𝒄𝒄: Critic weight estimate
�𝑾𝑾𝒂𝒂: Actor weight estimate

NN Optimal Value Function and NN Optimal Control Policy

𝑉𝑉∗ 𝑥𝑥 = 𝑾𝑾𝑻𝑻𝜎𝜎 𝑥𝑥 + 𝜀𝜀 𝑥𝑥 𝑢𝑢∗ 𝑥𝑥

= −
1
2
𝑅𝑅−1𝑔𝑔 𝑥𝑥 𝑇𝑇 𝛻𝛻𝑥𝑥𝜎𝜎 𝑥𝑥 𝑇𝑇𝑾𝑾 + 𝛻𝛻𝑥𝑥𝜀𝜀 𝑥𝑥 𝑇𝑇

�𝑉𝑉 𝑥𝑥, �𝑊𝑊𝑐𝑐 = �𝑾𝑾𝒄𝒄
𝑻𝑻𝜎𝜎 𝑥𝑥 �𝑢𝑢 𝑥𝑥, �𝑊𝑊𝑎𝑎 = −

1
2
𝑅𝑅−1𝑔𝑔 𝑥𝑥 𝑇𝑇 𝛻𝛻𝑥𝑥𝜎𝜎 𝑥𝑥 𝑇𝑇�𝑾𝑾𝒂𝒂

Optimal Value Function and Optimal Control Policy Approximation

Simulation Results

12

Single-layer neural network

Deep neural network

Obstacle Avoidance Extension

• Avoidance region dynamics

• 𝒔𝒔𝒊𝒊- scheduling function
• 𝑯𝑯 - herding agent state
• 𝜼𝜼 - evading agent state
• 𝒃𝒃𝒊𝒊 - drift dynamics

P. Deptula, H.-Y. Chen, R. Licitra, J. Rosenfeld, and W. E. Dixon, "Approximate Optimal Motion Planning to Avoid Unknown Moving Avoidance Regions," IEEE Transactions
on Robotics, Vol. 36, No. 2, pp. 414-430 (2020).

𝜁𝜁 = 𝑥𝑥𝑇𝑇 , 𝑧𝑧1𝑇𝑇 ⋯ , 𝑧𝑧𝑀𝑀𝑇𝑇
𝑇𝑇

𝐹𝐹 𝜁𝜁 =

𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡𝑥𝑥𝑥𝑥𝑔𝑔 𝐹𝐹
𝑥𝑥1∗𝑏𝑏1 𝑧𝑧1

⋮
𝑥𝑥𝑀𝑀∗ 𝑏𝑏𝑀𝑀 𝑧𝑧𝑀𝑀

𝐺𝐺 𝜁𝜁 =
𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡𝑥𝑥𝑥𝑥𝑔𝑔 𝐺𝐺

0𝑀𝑀𝑀𝑀×𝑚𝑚𝐻𝐻 0𝑀𝑀𝑀𝑀×𝑀𝑀

𝑇𝑇

�̇�𝐻 = 𝑓𝑓 𝐻𝐻, η 𝑔𝑔 𝐻𝐻 𝑢𝑢

Herder dynamics

η̇ = 𝑤𝑤 𝐻𝐻, η + �
𝑖𝑖=1

𝑀𝑀

𝑎𝑎𝑖𝑖 𝑧𝑧𝑖𝑖 , η

Evader dynamics

�̇�𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 𝐻𝐻, η, 𝑧𝑧𝑖𝑖 𝑏𝑏𝑖𝑖 𝑧𝑧𝑖𝑖

Additions from the no-obstacle problem

https://ncr.mae.ufl.edu/papers/tro2020.pdf

Obstacle Avoidance Cost Function

• Cost function

• 𝑸𝑸𝒙𝒙 - penalty on the error states
• 𝑸𝑸𝒛𝒛 - penalty on sensed obstacles
• Ψ - penalty on control inputs
• 𝑷𝑷𝒂𝒂 - penalty on avoidance regions

𝐽𝐽 𝜁𝜁,𝜇𝜇 = �
0

∞
�
𝑖𝑖=1

𝑀𝑀

𝑥𝑥𝑖𝑖𝑄𝑄𝑧𝑧 𝑧𝑧𝑖𝑖 𝜏𝜏 + 𝑄𝑄𝑥𝑥 𝑥𝑥 𝜏𝜏 + Ψ 𝜇𝜇 𝜏𝜏 + �
𝑖𝑖=1

𝑀𝑀

𝑃𝑃𝑎𝑎 𝐻𝐻, 𝑧𝑧𝑖𝑖 𝑑𝑑𝜏𝜏

Lyapunov-Based
Dropout Deep Neural
Network Controller

Saiedeh Akbari, Emily J. Griffis, Omkar Sudhir Patil, and Warren E.
Dixon

Dropout Deep Neural Network

Challenges of DNNs

Overfitting

• Significantly degraded performance

Co-Adaptation

• Multiple neurons/layers become overly reliant
on each other

• Decrease in generalization and DNN
performance

Dropout Deep Neural Network

Dropout DNN (DDNN) Architecture
• Stochastically dropping out neurons during training
• Setting the activation of certain individual weights to zero

• Induces sparse representation in the network
• Reduces co-dependency in neurons

• Can be viewed as training of ensembles of multiple DNNs
with similar width that are trained independently

Dropout Deep Neural Network

Dropout DNN (DDNN) Architecture

Randomization matrices

Dropout Deep Neural Network

Dropout Deep Neural Network

38.2% improvement

53.7% improvement

Lyapunov-Based Long-Short Term
Memory (Lb-LSTM) Neural

Network-Based Adaptive Observer
Emily J. Griffis, Omkar Sudhir Patil, Rebecca G. Hart, and Warren E. Dixon

System Dynamics and Objective

• Consider a second order nonlinear system
�̇�𝑥1 = 𝑥𝑥2

�̇�𝑥2 = 𝑔𝑔(𝑥𝑥,𝑢𝑢)
• Design estimation error

�𝑥𝑥1 ≜ 𝑥𝑥1 − �𝑥𝑥1
𝑟𝑟 ≜ �̇𝑥𝑥1 + 𝛼𝛼 �𝑥𝑥1 + 𝜂𝜂

• Dynamic filter
𝜂𝜂 ≜ 𝑝𝑝 − 𝛼𝛼 + 𝑘𝑘𝑟𝑟 �𝑥𝑥1

�̇�𝑝 ≜ − 𝑘𝑘𝑟𝑟 + 2𝛼𝛼 𝑝𝑝 − 𝜈𝜈 + 𝛼𝛼 + 𝑘𝑘𝑟𝑟 2 + 1 �𝑥𝑥1
�̇�𝜈 ≜ 𝑝𝑝 − 𝛼𝛼𝜈𝜈 − 𝛼𝛼 + 𝑘𝑘𝑟𝑟 �𝑥𝑥1

𝑥𝑥1 known
𝑥𝑥2 unknown

Use LSTM to
adaptively estimate
system dynamics

LSTM Model

Gate Outputs Cell State and Hidden State Dynamics

𝑓𝑓 𝑧𝑧,𝑊𝑊𝑓𝑓 = 𝜎𝜎𝑔𝑔 ∘ 𝑊𝑊𝑧𝑧
⊤𝑧𝑧

𝑜𝑜 𝑧𝑧,𝑊𝑊𝑜𝑜 = 𝜎𝜎𝑔𝑔 ∘ 𝑊𝑊𝑜𝑜
⊤𝑧𝑧

𝑥𝑥 𝑧𝑧,𝑊𝑊𝑖𝑖 = 𝜎𝜎𝑔𝑔 ∘ 𝑊𝑊𝑖𝑖
⊤𝑧𝑧

𝑐𝑐∗ 𝑧𝑧,𝑊𝑊𝑐𝑐 = 𝜎𝜎𝑐𝑐 ∘ 𝑊𝑊𝑐𝑐
⊤𝑧𝑧

𝑧𝑧 ≜ [𝑥𝑥⊤ℎ⊤]⊤ for some input 𝑥𝑥

�̇�𝑐 = −𝑏𝑏𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑐𝑐Ψ𝑐𝑐 𝑥𝑥, 𝑐𝑐, ℎ,𝜃𝜃
ℎ̇ = −𝑏𝑏ℎℎ + 𝑏𝑏ℎΨℎ(𝑥𝑥, 𝑐𝑐, ℎ, 𝜃𝜃,𝑊𝑊𝑜𝑜)
Ψ𝑐𝑐 𝑥𝑥, 𝑐𝑐, ℎ,𝜃𝜃 = 𝑓𝑓 𝑧𝑧,𝑊𝑊𝑓𝑓 ⊙ 𝑐𝑐 + 𝑥𝑥 𝑧𝑧,𝑊𝑊𝑖𝑖 ⊙ 𝑐𝑐∗ 𝑧𝑧,𝑊𝑊𝑐𝑐
Ψℎ 𝑥𝑥, 𝑐𝑐, ℎ, 𝜃𝜃,𝑊𝑊𝑜𝑜 = 𝑜𝑜 𝑧𝑧,𝑊𝑊𝑜𝑜 ⊙ (𝜎𝜎𝑐𝑐 ∘ Ψ𝑐𝑐 𝑥𝑥, 𝑐𝑐, ℎ,𝜃𝜃)

Contribution

• Previous LSTM models use offline optimization techniques to
train the LSTM weights.

• No online learning of the LSTM

• An adaptive Lyapunov-based LSTM (Lb-LSTM) observer is
developed to estimate unknown system states

• A continuous-time Lb-LSTM NN is formulated
• Stability-driven adaptation laws adjust the LSTM in real-time.

Lyapunov-Based Physics-Informed
Long-Short Term Memory (LSTM)

Neural Network-Based Adaptive
Control

Rebecca G. Hart, Emily J. Griffis, Omkar Sudhir Patil, and Warren E. Dixon

Physics-Inspired Architecture

Physics-Inspired Motivation: To impose constraints derived from
known physical laws on the learning algorithm to reduce the possible
solution space and eliminate invalid solutions resulting from noisy data

26

Physics-Inspired LSTM

Physics-Inspired LSTM Motivation: The presence of history or time-
dependent dynamics in complex systems motivates the desire to capture
these dependencies using a combination of a DNN and LSTM based
approach

Example Systems: Smart Materials and systems that experience
fluid structure interaction or electromagnetic effects.

27

Combined DNN + LSTM architecture described as

DNN LSTM

Simulations

28

Simulations compared a DeLb-PINN controller to a baseline

The simulation results demonstrated a 33.76% improvement over
the baseline method

Composite Adaptive Lyapunov-
Based Deep Neural Network

Control
Omkar Sudhir Patil, Emily J. Griffis, Wanjiku A. Makumi, and Warren E. Dixon

Composite Adaptive DNN

• Emerging Lb-DNNs use adaptation laws where the adaptation is
tracking error-based and only guarantees tracking performance

• No guarantees on weight estimation and function approximation
• Desirable to incorporate a prediction error of the dynamics in the

adaptation law
• We develop a new formulation of a prediction error motivated

from traditional composite adaptive control, that ensures
parameter convergence (function approximation convergence)
provided a PE condition is satisfied

̇̂𝜃𝜃 = Γ −𝑘𝑘�𝜃𝜃 �̂�𝜃 + Φ′⊤ 𝑋𝑋, �̂�𝜃 𝑟𝑟 + 𝛼𝛼3𝐸𝐸

Simulation Results

• Fully-connected DNN with 5 layers and 5
neurons

• Reference Trajectory 𝑥𝑥𝑑𝑑 𝑡𝑡 =
0.25 exp(− sin 𝑡𝑡) [sin 𝑡𝑡 ; cos 𝑡𝑡]

RMS 𝒆𝒆 (deg) RMS 𝒇𝒇 − Φ 𝑋𝑋, �𝜃𝜃

Traditional 0.408 0.455

Composite 0.180 0.130

Acknowledgements

	Recent Advances in Deep Learning
	Second-Order Heterogeneous Multi-Agent Target Tracking without Relative Velocities
	System Dynamics and Objective
	Simulation Results
	Why Deep Learing?
	Approximate Optimal Indirect Herding with a Lyapunov-Based Deep Neural Network
	Simulations
	Approximate Dynamic Programming
	Approximate Optimal Control
	Multi-timescale ICL-Lb-DNN
	Actor-Critic Neural Networks
	Simulation Results
	Obstacle Avoidance Extension
	Obstacle Avoidance Cost Function
	Lyapunov-Based Dropout Deep Neural Network Controller
	Dropout Deep Neural Network
	Dropout Deep Neural Network
	Dropout Deep Neural Network
	Dropout Deep Neural Network
	Dropout Deep Neural Network
	Lyapunov-Based Long-Short Term Memory (Lb-LSTM) Neural Network-Based Adaptive Observer
	System Dynamics and Objective
	LSTM Model
	Contribution
	Lyapunov-Based Physics-Informed Long-Short Term Memory (LSTM) Neural Network-Based Adaptive Control
	Physics-Inspired Architecture
	Physics-Inspired LSTM
	Simulations
	Composite Adaptive Lyapunov-Based Deep Neural Network Control
	Composite Adaptive DNN
	Simulation Results
	Acknowledgements

