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= Off-policy evaluation (OPE) is important for filling the gap

between training offline reinforcement learning (RL)
controllers and choosing which one to deploy online
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* Formulate a latent space where latent  Recurrent state alignment (RSA) * Branching for the decoder
variables can transit over time — To mitigate the effect that decoder starts ~ — Multiple decoders sample from the
Po (Ztlzt—1: at—l) working long after the encoder encodes encoder to reduce variabilities

possibly caused by, e.g., random
initialization and stochasticity
during training

* Both encoder and decoder are LSTMs the entire trajectory
— Minimize the mean pairwise error

* The encoder infuse the knowledge of the
between LSTM states of encoder and

environment into the latent space
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Unknown Immediate Human
Rewards (IHRs)
We assume that the IHRs, rt}[,
are not observable. Instead, the
cumulative human return,
G¥ =Y, ytrt, is available at
the end of each episode (i.e.,
extremely sparse).

Objective: Given a fixed set of offline
trajectories collected by a behavioral policy
[, estimate the expected total human
return over the unknown state-action
visitation distribution p™ of the target
H
].
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Off-Policy Evaluation for Sparse/Human Feedback (NeurlPS23)
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Adversarially Robust Control & Decision Making (ICLR24*, ICRA24%)

Max-Min Optimization

A T (0, ¢)

49

* Inner minimization problem is difficult to solve - local-optimum
* Worst-case optimization can be over-conservative for unrealistic adversary (i.e., overly capable)



Duke

PRATT SCHOOL of
ENGINEERING

Adversarially Robust Control & Decision Making (ICLR24*, ICRA24%)

Max-Min Optimization

max min R(#, ¢) = max min min R(6, ¢)
0 hed 0O g . b cb seld)ly

u» #2000
O

Learners
instead of
fixed

adversaries

Efficient approximation of the inner optimization i.e., the size of adversary herd is upper-bounded to
obtain sufficient approximation precision.
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Max-Min Optimization with Adversarial Herd — Optimization Over Worst-k Adversaries

max min R(6, ¢) max min L R(0, ¢;)

0cO pcd A )
0€0 ¢, . bmed 1y 44
O @&
D O Resolving Potential Over-Pessimism
O i i.e., modify the objective from optimizing its worst-case performance,
O to optimizing its average performance over the worst-k adversaries

If we choose a set of adversaries that are different enough, then the number of adversaries
needed to approximate the inner optimization problem is in linear order of the desired precision.

If our objective is to use adversarial herd to approximate accurately with high probability, instead
of an almost sure approximation, then the number of required adversaries can be reduced.
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Adversarially Robust Control & Decision Making (ICLR24*, ICRA24%)

Max-Min Optimization with Adversarial Herd — Optimization Over Worst-k Adversaries
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How can we analyze the impact of different
attack vectors on CPS (i.e., QoC)?
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General Vulnerability Analysis Duke
for False Data-Injection Attacks on Control Systems (TAC24a*, TAC24b) i schooLy

~
/An attack sequence Ye Stealthy
Attack J
s strictly stealthy iff Generator

___________________
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KL(Q(Y=3, Y& Y)||IP(Y_w: Y;)) = 0

foranyt = 0,
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KL(Q(V=4L, Y& Y ||P(Y_w: V) < log

&

~
The system is (E, a)-attackable for arbitrarily large & and arbitrarily small ¢, if the closed-
loop dynamics is incrementally exponentially stable (IES) in the set S and the open loop
L dynamics is incrementally unstable in the set S.
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Vulnerability Analysis of mmWave Radars

MadRadar: A Black-Box Physical Layer Attacks (NDSS’24)
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https://sites.google.com/view/madradar-public/home
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Goal: Low-cost (~$100), low-weight solution for
adversarially robust situational awareness and
autonomy on computationally constrained devices

* Real-time high-accuracy point clouds on a NUC-powered
drone using mmWave sensing
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mmWave-based Autonomy (ICRA’2
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RadNav

* Goal: Navigate through an environment using only radar and traditional
odometry sensors
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