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Offline Reinforcement Learning with Off-Policy Evaluation

§ Off-policy evaluation (OPE) is important for filling the gap 
between training offline reinforcement learning (RL) 
controllers and choosing which one to deploy online
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Variational Latent Branching Model (VLBM) for OPE (ICLR23)

Encoder
Decoder

• Formulate a latent space where latent 
variables can transit over time 
𝑝! 𝑧" 𝑧"#$, 𝑎"#$

• Both encoder and decoder are LSTMs

• The encoder infuse the knowledge of the 
environment into the latent space

• The decoder generates synthetic trajectories 
over time 

• Recurrent state alignment (RSA)
– To mitigate the effect that decoder starts 

working long after the encoder encodes 
the entire trajectory

– Minimize the mean pairwise error 
between LSTM states of encoder and 
decoder

• Branching for the decoder
– Multiple decoders sample from the 

encoder to reduce variabilities 
possibly caused by, e.g., random 
initialization and stochasticity 
during training

• Overall training objective (maximize)
ELBO – RSA + 
log_likelihood_for_each_branch



Off-Policy Evaluation for Sparse/Human Feedback (NeurIPS23)

Unknown Immediate Human 
Rewards (IHRs)

We assume that the IHRs, 𝑟!ℋ, 
are not observable. Instead, the 
cumulative human return, 
𝐺ℋ = ∑! 𝛾! 𝑟!ℋ, is available at 
the end of each episode (i.e., 
extremely sparse).
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Objective: Given a fixed set of offline 
trajectories collected by a behavioral policy 
𝛽, estimate the expected total human 
return over the unknown state-action 
visitation distribution 𝜌# of the target 
(evaluation) policy 𝜋 -- 𝔼 $,& ∼(![∑! 𝛾!𝑟!ℋ].
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Adversarially Robust Control & Decision Making (ICLR24*, ICRA24*)

Max-Min Optimization

• Inner minimization problem is difficult to solve → local-optimum
• Worst-case optimization can be over-conservative for unrealistic adversary (i.e., overly capable)



Adversarially Robust Control & Decision Making (ICLR24*, ICRA24*)

Max-Min Optimization

Learners 
instead of 

fixed 
adversaries

Efficient approximation of the inner optimization  i.e., the size of adversary herd is upper-bounded to 
obtain sufficient approximation precision.



Adversarially Robust Control & Decision Making (ICLR24*, ICRA24*)

Max-Min Optimization with Adversarial Herd – Optimization Over Worst-k Adversaries

Resolving Potential Over-Pessimism
i.e., modify the objective from optimizing its worst-case performance, 
to optimizing its average performance over the worst-k adversaries

If we choose a set of adversaries that are different enough, then the number of adversaries 
needed to approximate the inner optimization problem is in linear order of the desired precision.

If our objective is to use adversarial herd to approximate accurately with high probability, instead 
of an almost sure approximation, then the number of required adversaries can be reduced.



Adversarially Robust Control & Decision Making (ICLR24*, ICRA24*)

Max-Min Optimization with Adversarial Herd – Optimization Over Worst-k Adversaries



How can we analyze the impact of different 
attack vectors on CPS (i.e., QoC)?



General Vulnerability Analysis 
for False Data-Injection Attacks on Control Systems (TAC24a*, TAC24b) 

The system is 𝜖, 𝛼 -attackable for arbitrarily large 𝛼 and arbitrarily small 𝜖, if the closed-
loop dynamics is incrementally exponentially stable (IES) in the set 𝑆 and the open loop 
dynamics is incrementally unstable in the set 𝑆. 

An attack sequence 

• is strictly stealthy iff 

        𝑲𝑳 𝑸 𝑌)*)+ , 𝑌,&: 𝑌!& ||𝑷 𝑌)*: 𝑌! = 0 

for any 𝑡 ≥ 0, 

• is 𝝐-stealthy if 

        𝑲𝑳 𝑸 𝑌)*)+ , 𝑌,&: 𝑌!& ||𝑷 𝑌)*: 𝑌! ≤ log( +
+)𝝐") for any 𝑡 ≥ 0.



Vulnerability Analysis of mmWave Radars
MadRadar: A Black-Box Physical Layer Attacks (NDSS’24)
False Positive Attacks

Attack Timeline

False Negative Attacks



Vulnerability Analysis of mmWave Radars
MadRadar: A Black-Box Physical Layer Attacks (NDSS’24)
Translation Attacks

Attack Timeline

https://sites.google.com/view/madradar-public/home



mmWave-based Autonomy (ICRA’24*)

Goal: Low-cost (~$100), low-weight solution for 
adversarially robust situational awareness and 
autonomy on computationally constrained devices
• Real-time high-accuracy point clouds on a NUC-powered 

drone using mmWave sensing



mmWave-based Autonomy (ICRA’24*)



mmWave-based Autonomy (ICRA’24*)

New Environments Aggressive Maneuvers

Input radar data, ground truth point cloud, and predicted point cloud



RadNav

• Goal: Navigate through an environment using only radar and traditional 
odometry sensors



Thank you


