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Inverse Games:  
Explaining and Predicting Interactions

What motivates their decisions?
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Service Provider Competition Human-Robot Interactions

Multiagent Coordination Resource Allocation

https://smallbusinessbonfire.com  https://ai.stanford.edu/blog
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Nash Equilibrium in Discrete Games

Nash Equilibrium Condition
cost due to other


 players’ decisions
cost due to 


player’s own decision

Only explains rational 
decisions!
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Always play Rock!
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Bounded Rationality: Modeling Noisy Decision-Making 

x⋆
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1
2 x⊤
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i Cijx⋆
j + x⊤

i ln(xi)

s . t . x⊤
i 1 = 1, xi ≥ 0.

Quantal Response Equilibrium Condition

x⋆ = softmax (−b − Cx⋆)

Solve equations, 
predict equilibrium!

Entropy captures noisy  
behavior! 

McKelvey & Palfrey (’95, ’98) 
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Learning Motives via Implicit Differentiation 

x = softmax (−b − Cx)

C + C⊤ ⪰ 0, | |C | | ≤ ρ ∇C f(x)

Compute Equilibrium

Projection Differentiation

C ← C − α∇C f(x)

Gradient Descent

ensure existence & 
uniqueness

predict equilibrium 

update parameter
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Implicit Function Theorem!
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Differentiating through Optimization  

Research Area Optimization Differentiation Problem Dimension

Deep Learning ReLU, Sigmoid, Softmax

Amos(’19) Explicit function Ridiculously high

Inverse Learning

Bilevel Optimization

Convex Optimization

Agrawal et al (’19) Least-squares High

Games

Inverse Learning

Nonlinear Least-Squares

Amos (’22), Yu et al (’22) Least-squares Medium (so far)
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What about Games with Dynamic Decision-Making?

Multiplayer Markov Game Policy Polytope
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Soft-Bellman Equilibrium in Affine Markov Games

Equilibrium Conditions
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Same problem as before,  
just more equations! 

(more complicated polytopes)

Policies & state-action 
frequencies

Soft-Bellman equations 

Affine cost coupling 
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Soft-Bellman Equilibrium in Markov Games

KL-Divergence of Policies
A Three-Player 

Markov Game
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Predator 1

Predator 2

Proposed Inverse RL
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How to Provoke Informative Actions in Games?  
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Stick 
Together

Split 
Up

The Battle of Seven Potters

The Potters want to infer which Potter is the bad 
wizard chasing. What should the Potters do?

Yue Yu—UT Austin



minimize
μ0:τ−1,Σ0:τ−1

𝔼 [
τ

∑
t=0

| |x𝙵
t −Mx𝙻

t | |2
Q𝙵 +

τ−1

∑
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| |u𝙵
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∑
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t + B𝙵u𝙵
t

u𝙵
t |x𝙵

t ∼ 𝒩(μt, Σt)

Boundedly Rational Follower 

(Bad Wizard)

Causal entropy captures 
bounded rationality!

Stackelberg Trajectory Games
minimize

u𝙻
0:τ−1, x𝙻

0:τ

𝔼[ f(x𝙻
0:τ, x𝙵

0:τ)] + g(u𝙻
0:τ−1)

subject to x𝙻
t+1 = A𝙻x𝙻

t + B𝙻u𝙻
t , u𝙻 ∈ 𝕌

Rational Leader

(Potters)

Leader knows Follower!
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What If Leader Does Not Know Follower’s Type?

Leader only knows 
How to pinpoint Follower’s type?

M ∈ {M1, M2, …, Md}
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Rational Leader

(Potters)
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Boundedly Rational Follower 

(Bad Wizard)
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What Makes Inference Easy/Difficult?

x𝙵
t ∼ 𝒩(ξi

t , Λt)

qi
t = (E𝙵

t )⊤qi
t+1 − Q𝙵Mix𝙻

t

ξi
t+1 = E𝙵

t ξi
t − F𝙵

t qi
t+1

Λt+1 = E𝙵
t Λt(E𝙵

t )⊤ + F𝙵
t

If           , dynamic programming shows:M = Mi

Small Difference, Difficult Inference

Hypothesis 1

Hypothesis 2

Big Difference, Easy Inference

Hypothesis 1Hypothesis 2

12

KL-divergence between two distributions

DKL (ξi
0:τ, ξj

0:τ, Λ0:τ) =
τ

∑
t=0

| |ξi
t − ξj

t | |2
Λ−1

t

All depends on Leader!
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u𝙻
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i≠j {

τ

∑
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0:τ−1)

subject to x𝙻
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qi
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t )⊤qi
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t
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t+1 = E𝙵

t ξi
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t qi
t+1

i = 1,2,…d

Follower’s hypothetical trajectories 

(linear functions of leader’s trajectory)

Worst-case KL-divergence

(Difference of convex functions) 

Maximizing Differences in Follower’s Responses

We can solve it efficiently using linearization!
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Leader’s trajectory

 w/ constraints 

Leader’s input cost
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Numerical Experiments: Multiple Targets vs One Chaser

3 leading agents

Follower’s trajectory distributions under different hypothesis

5 leading agents
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•Leader controls multiple agents, Follower controls one single agent

•Leader knows that Follower is chasing one agent, but not which one

Yue Yu—UT Austin



Numerical Experiments: Multiple Targets vs One Chaser

Total-variation error in leader’s belief when using Bayesian learning 
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proposed 

trajectories

random 

trajectories

3 leading agents 5 leading agents

•Leader controls multiple agents, Follower controls one single agent

•Leader knows that Follower is chasing one agent, but not which one

Yue Yu—UT Austin



Future Directions
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Mixed Autonomy

fastdata.io

Shared Autonomy

futurebridge.com

Cyberattacks & Defense

secplicity.org
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