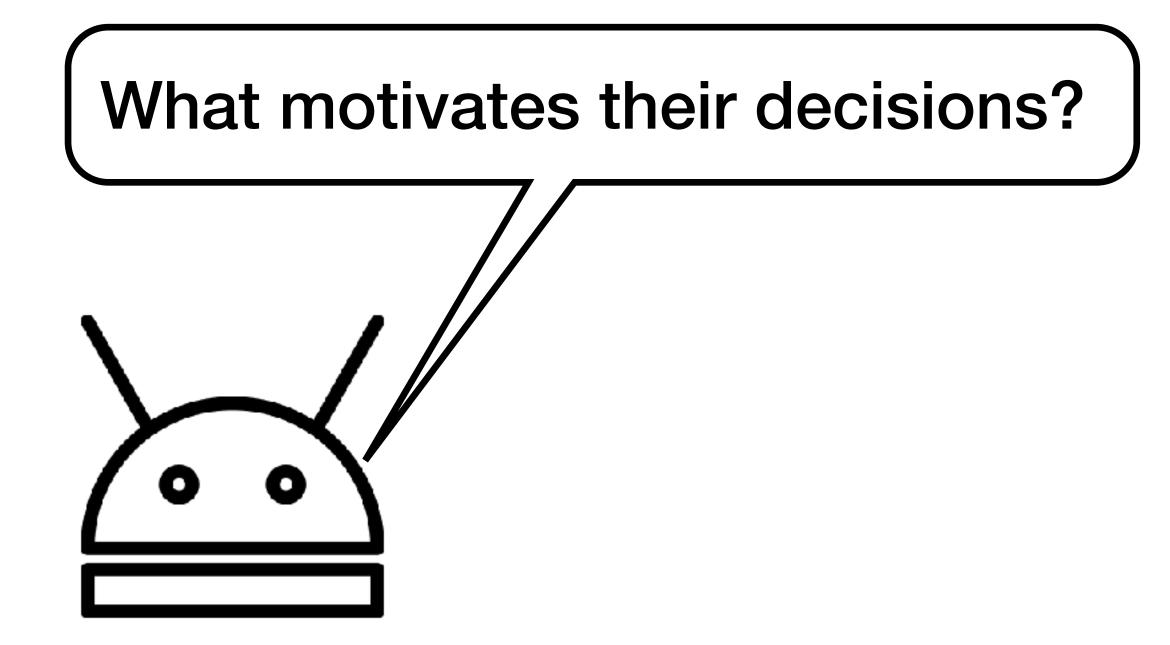
Inverse Games: Inferring Motives from Interactions

Yue Yu

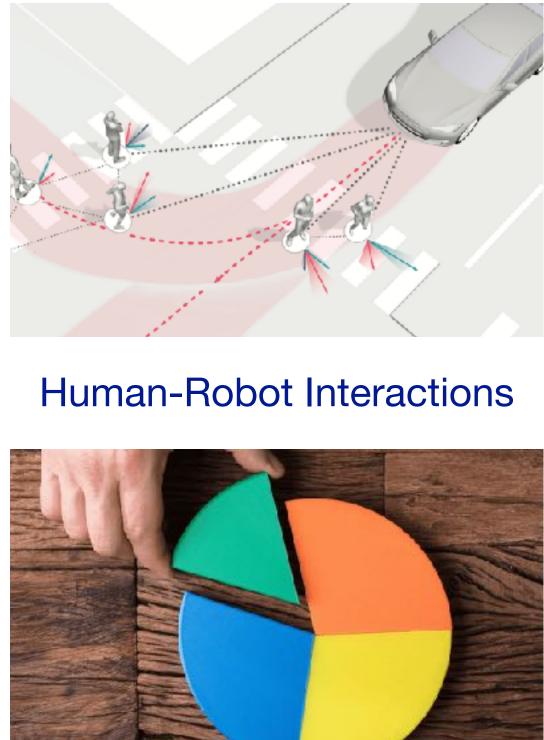
Collaborators: Shenghui Chen, Jacob Levy, David Fridovich-Keil, Negar Mehr, Ufuk Topcu

Inverse Games: Explaining and Predicting Interactions



Yue Yu–UT Austin

Service Provider Competition

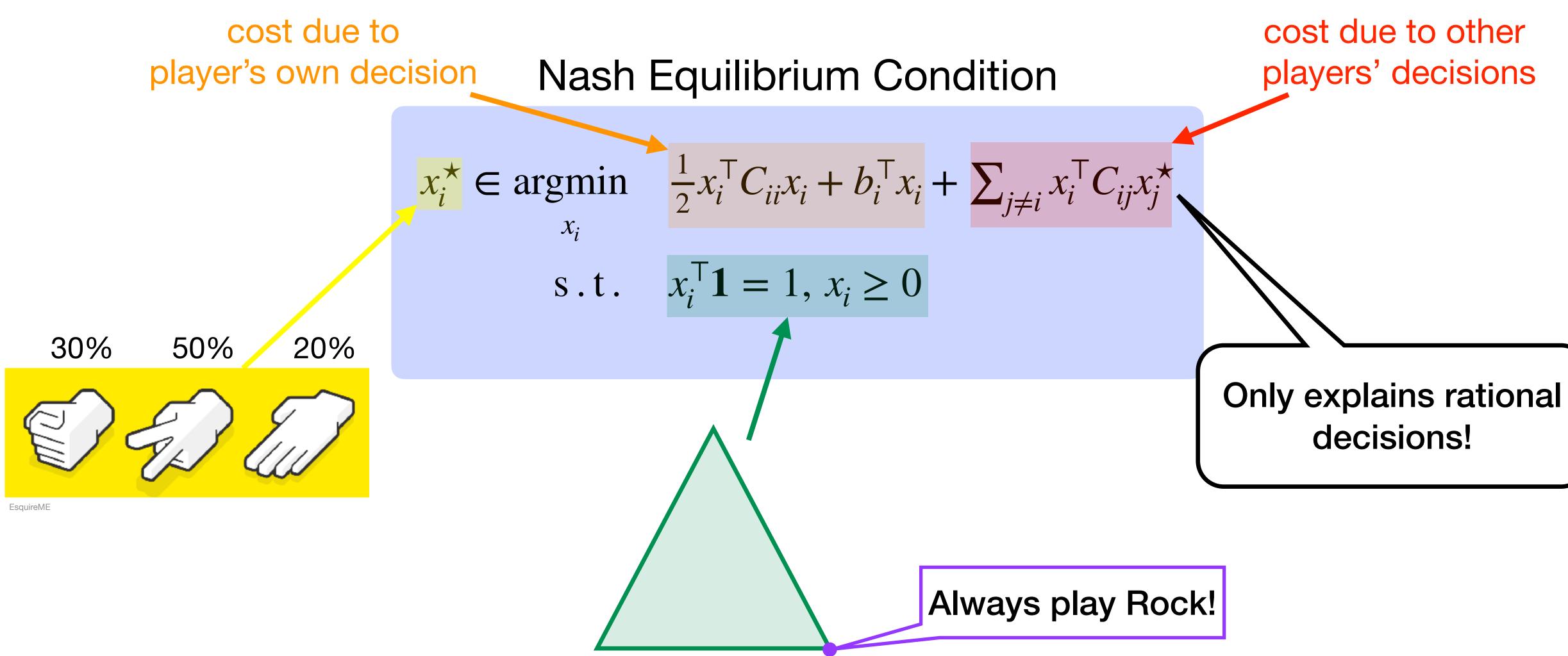


Multiagent Coordination

Resource Allocation

https://smallbusinessbonfire.com https://ai.stanford.edu/blog https://www.collinsaerospace.com https://www.gsquaredcfo.com/blog

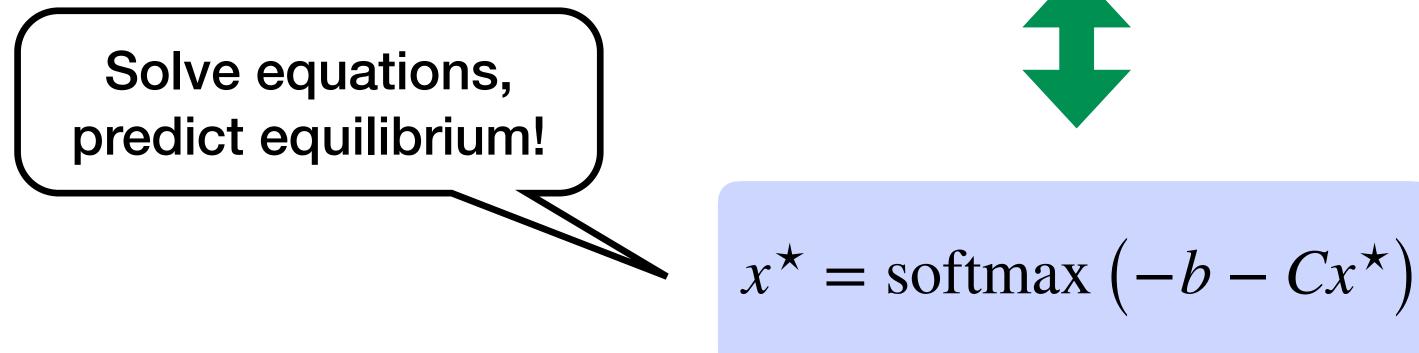
Nash Equilibrium in Discrete Games



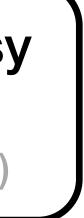
Bounded Rationality: Modeling Noisy Decision-Making

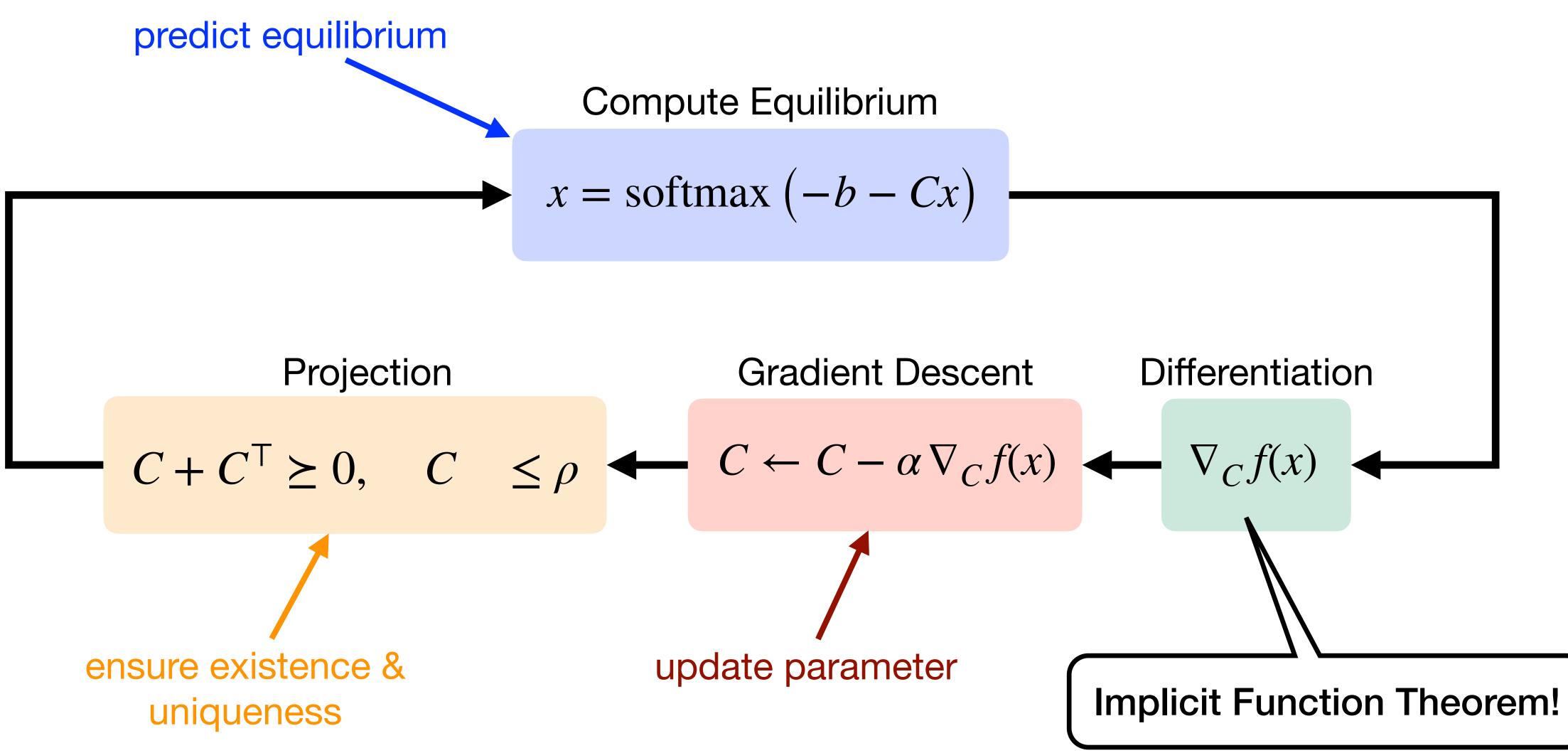
Quantal Response Equilibrium Condition

s.t. $x_i^{\top} \mathbf{1} = 1, x_i \ge 0.$



 $x_i^{\star} \in \underset{x_i}{\operatorname{argmin}} \quad \frac{1}{2} x_i^{\top} C_{ii} x_i + b_i^{\top} x_i + \sum_{j \neq i} x_i^{\top} C_{ij} x_j^{\star} + x_i^{\top} \ln(x_i)$ Entropy captures noisy behavior! McKelvey & Palfrey ('95, '98)





Yue Yu–UT Austin

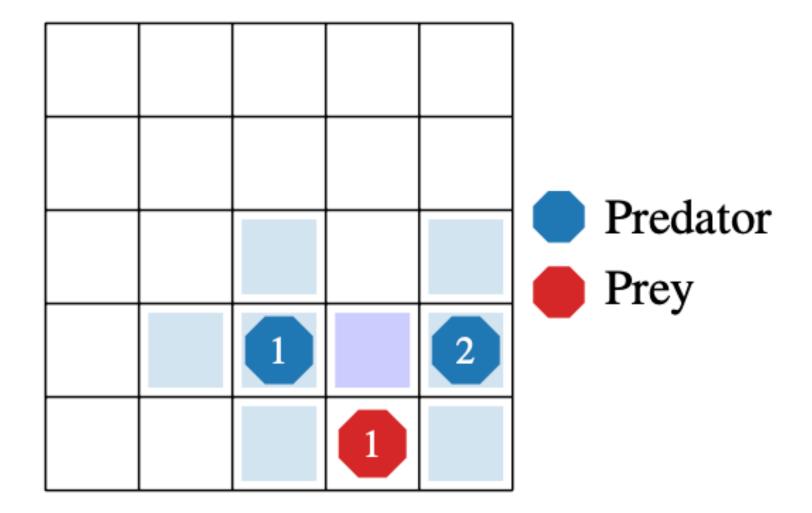
Learning Motives via Implicit Differentiation

$$\max\left(-b-Cx\right)$$

Differentiating through Optimization

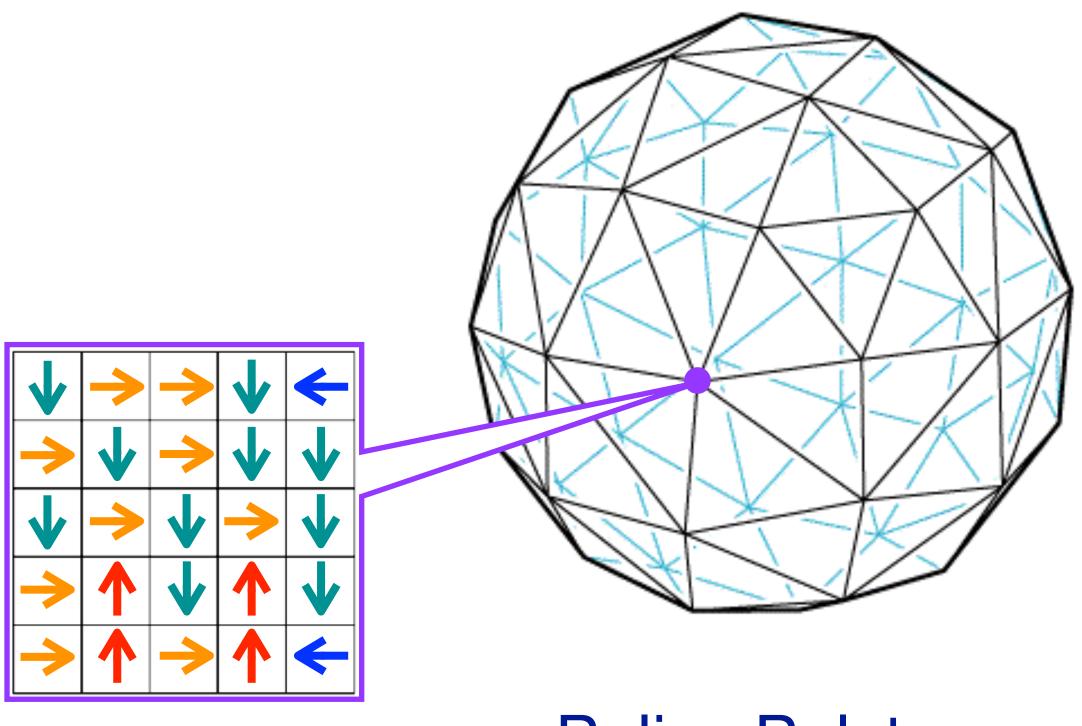
Research Area	Optimization	Differentiation	Problem Dimensio		
Deep Learning	ReLU, Sigmoid, Softmax Amos('19)	Explicit function	Ridiculously high		
Inverse Learning Bilevel Optimization	Convex Optimization Agrawal et al ('19)	Least-squares	High		
Games Inverse Learning	Nonlinear Least-Squares Amos ('22), Yu et al ('22)	Least-squares	Medium (so far)		

What about Games with Dynamic Decision-Making?



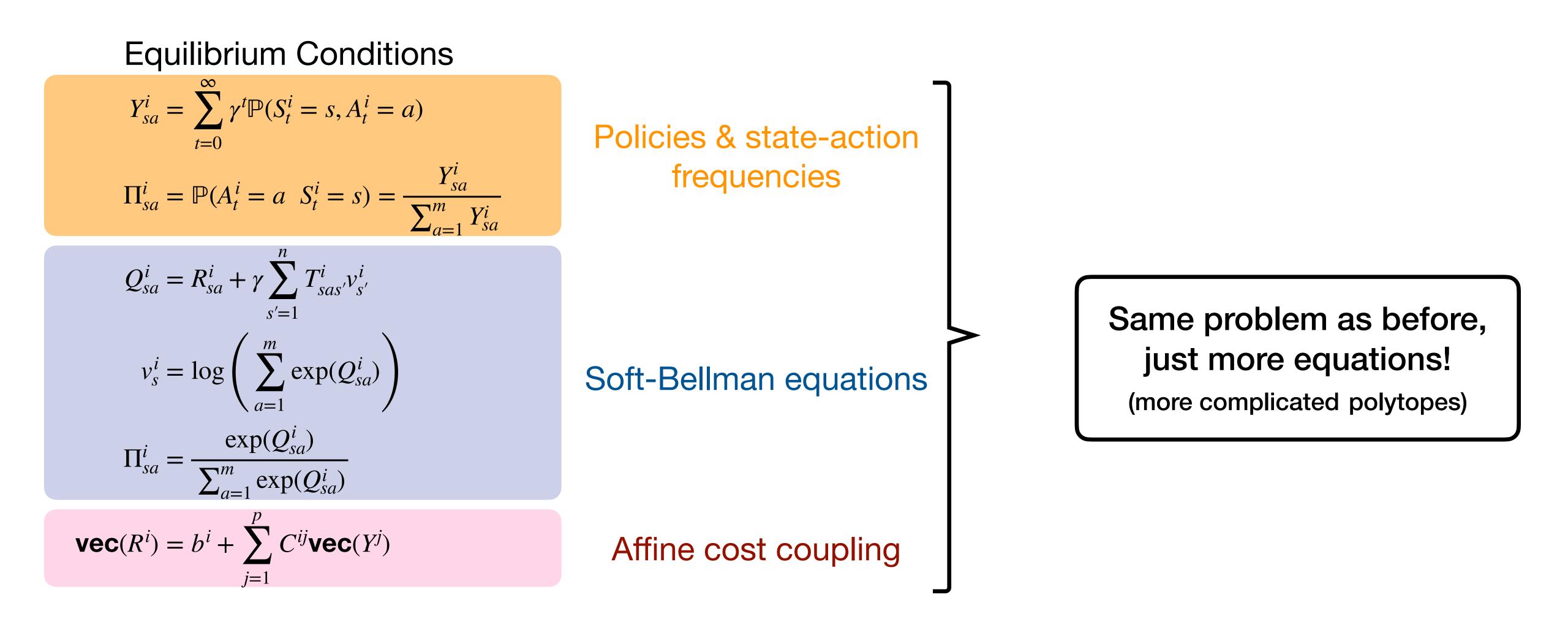
Multiplayer Markov Game

Yue Yu—UT Austin



Policy Polytope

Soft-Bellman Equilibrium in Affine Markov Games



Soft-Bellman Equilibrium in Markov Games

	2	
•		
	1	

A Three-Player Markov Game

Yue Yu–UT Austin

			•			10					
Predator 1	0.46	0.58	0.28	0.38	0.09	-9	8.17	4.95	0.59	0.04	0.03
	0.26	0.05	0.02	0.13	0.11	-8 -7	0.64	0.06	0.24	0.22	0.03
	0.25	0.02	0.05	0.56	1.58	-6 -5	0.14	0.05	0.11	20.66	1.50
	0.26	0.01	0.07	0.07	0.07	-4 -3 -2	2.11	0.03	0.11	0.03	0.03
	0.09	0.17	0.38	0.15	0.08		0.30	0.37	0.12	0.13	0.02
						10					
Predator 2	1.60	0.15	0.42	0.51	0.92	-9	1.54	25.81	0.39	25.58	15.48
	0.12	0.16	0.21	0.25	0.47	-7	0.44	0.95	0.38	0.10	2.88
	1.52	0.04	0.01	0.09	0.11	-5	1.69	11.12	0.04	0.36	3.08
	0.12	0.21	0.08	0.05	0.74	-4	0.68	1.54	0.54	0.06	0.29
	0.12	0.05	0.07	0.27	0.71		0.20	0.10	0.34	4.25	26.57

Inverse RL

Proposed

KL-Divergence of Policies

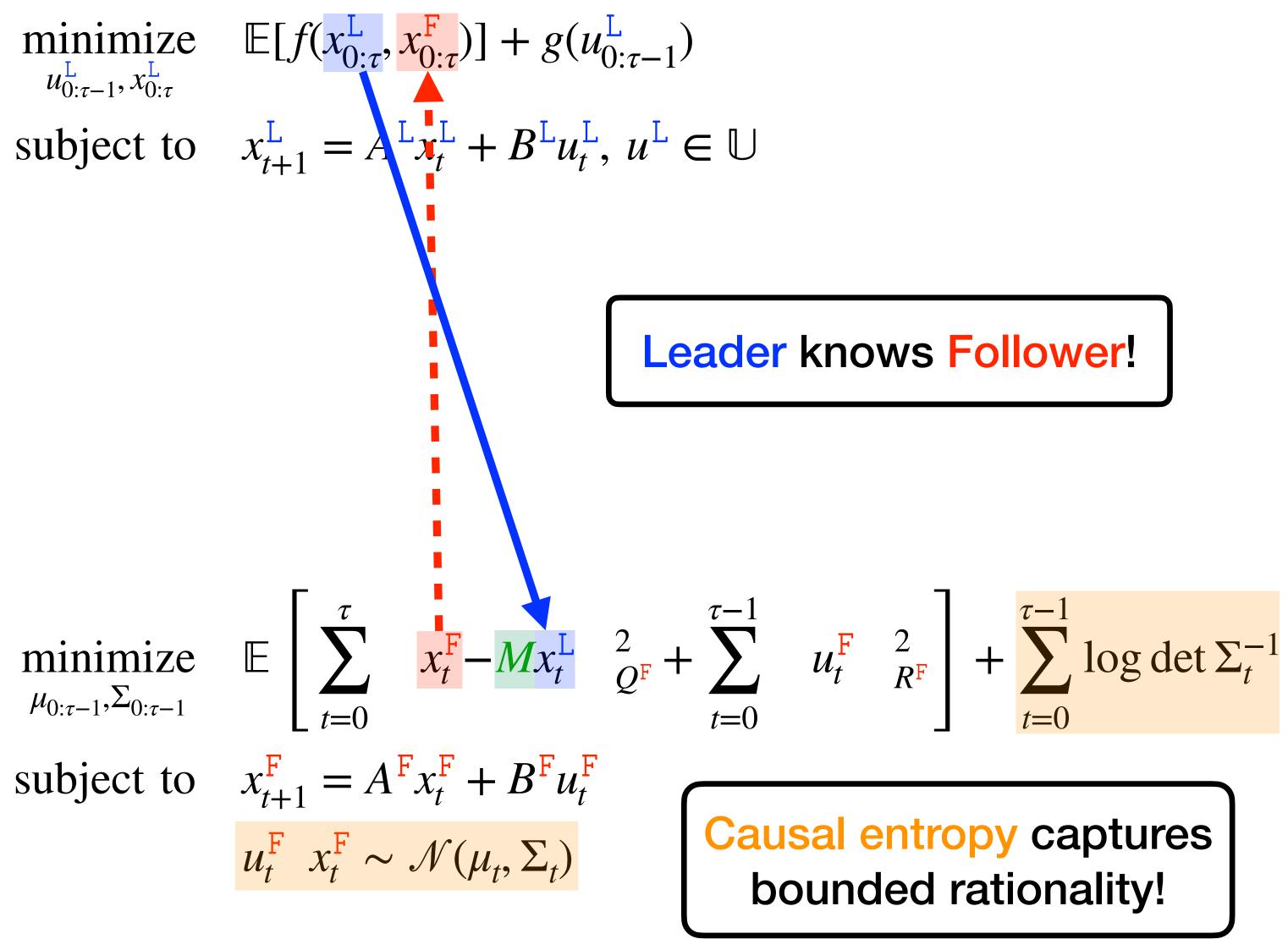
How to Provoke Informative Actions in Games?

The Battle of Seven Potters

Yue Yu–UT Austin

The Potters want to infer which Potter is the bad wizard chasing. What should the Potters do?

Rational Leader (Potters)



Boundedly Rational Follower (Bad Wizard)

Yue Yu—UT Austin

Stackelberg Trajectory Games

What If Leader Does Not Know Follower's Type?

Rational Leader (Potters)

$u_{0:\tau-1}^{L}, x_{0:\tau}^{L}$

Boundedly Rational Follower (Bad Wizard)

minimize $\mu_{0:\tau-1}, \Sigma_{0:\tau-1}$

subject to

Yue Yu–UT Austin

- minimize $\mathbb{E}[f(x_{0:\tau}^{L}, x_{0:\tau}^{F})] + g(u_{0:\tau-1}^{L})$
- subject to $x_{t+1}^{L} = A^{L}x_{t}^{L} + B^{L}u_{t}^{L}, u^{L} \in \mathbb{U}$

Leader only knows $M \in \{M^1, M^2, ..., M^d\}$ How to pinpoint Follower's type?

$$\mathbb{E} \left[\sum_{t=0}^{\tau} x_t^{\mathbf{F}} - M x_t^{\mathbf{L}} \right]_{Q^{\mathbf{F}}}^2 + \sum_{t=0}^{\tau-1} u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} + A^{\mathbf{F}} x_t^{\mathbf{F}} + B^{\mathbf{F}} u_t^{\mathbf{F}} \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{t=0}^{\tau-1} \log \det u_t^{\mathbf{F}} \left[x_t^{\mathbf{F}} - \mathcal{N}(\mu_t, \Sigma_t) \right]_{t=0}^2 + \sum_{$$

What Makes Inference Easy/Difficult?

If $M = M^i$, dynamic programming shows:

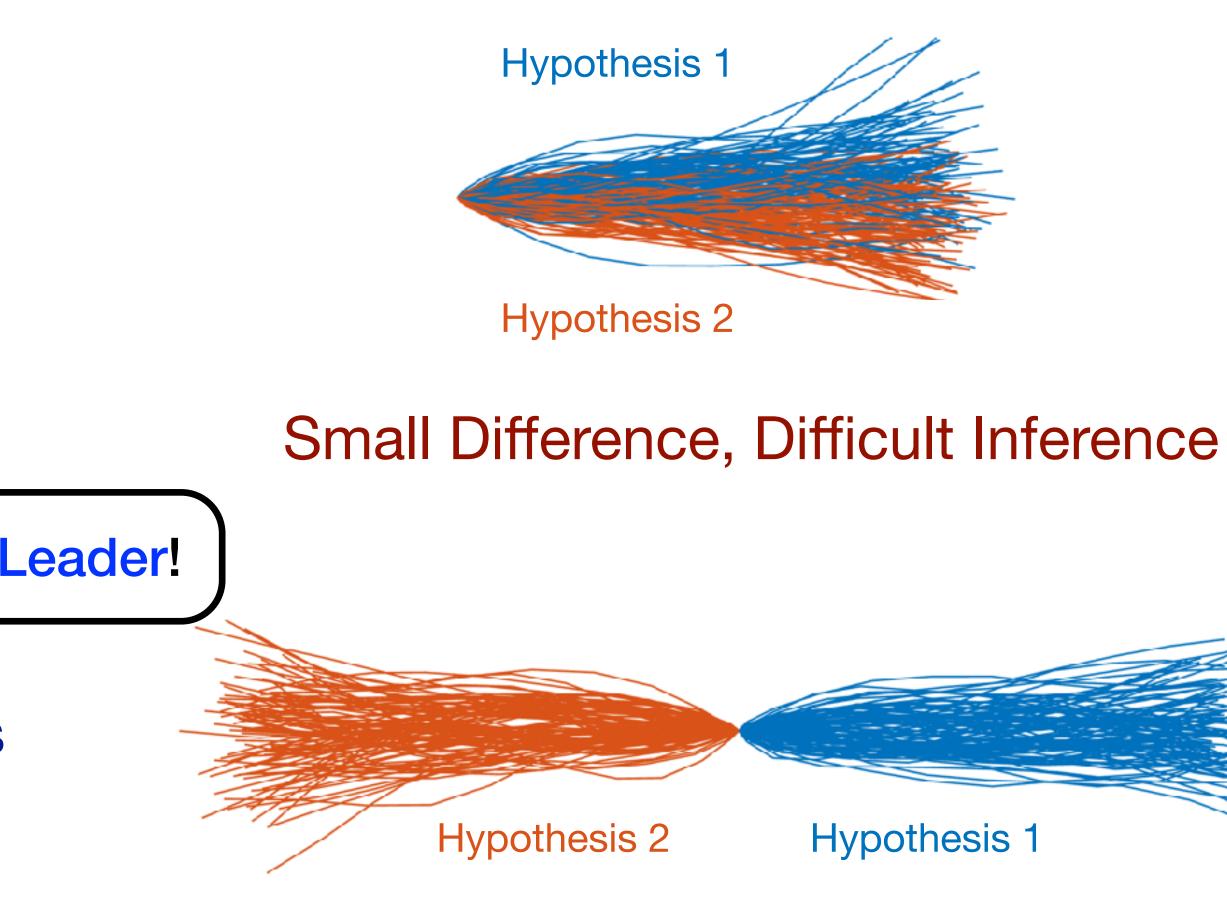
$$x_{t}^{\mathbf{F}} \sim \mathcal{N}(\xi_{t}^{i}, \Lambda_{t}) \begin{cases} q_{t}^{i} = (E_{t}^{\mathbf{F}})^{\mathsf{T}} q_{t+1}^{i} - Q^{\mathbf{F}} M^{i} x_{t}^{\mathsf{L}} \\ \xi_{t+1}^{i} = E_{t}^{\mathbf{F}} \xi_{t}^{i} - F_{t}^{\mathbf{F}} q_{t+1}^{i} \\ \Lambda_{t+1} = E_{t}^{\mathbf{F}} \Lambda_{t} (E_{t}^{\mathbf{F}})^{\mathsf{T}} + F_{t}^{\mathbf{F}} \end{cases}$$

All depends on

KL-divergence between two distributions

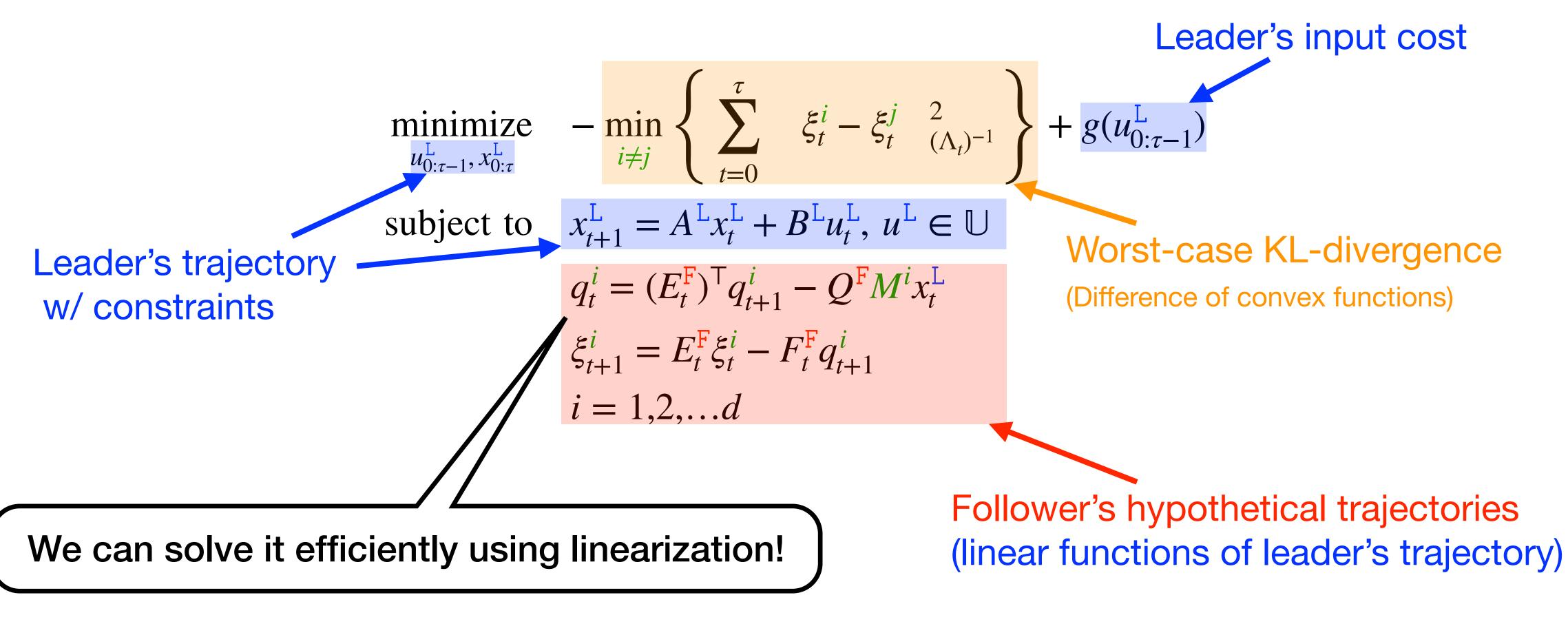
$$D_{KL}\left(\xi_{0:\tau}^{i},\xi_{0:\tau}^{j},\Lambda_{0:\tau}\right) = \sum_{t=0}^{\tau} \xi_{t}^{i} - \xi_{t}^{j} \frac{2}{\Lambda_{t}^{-1}}$$

Yue Yu–UT Austin



Big Difference, Easy Inference

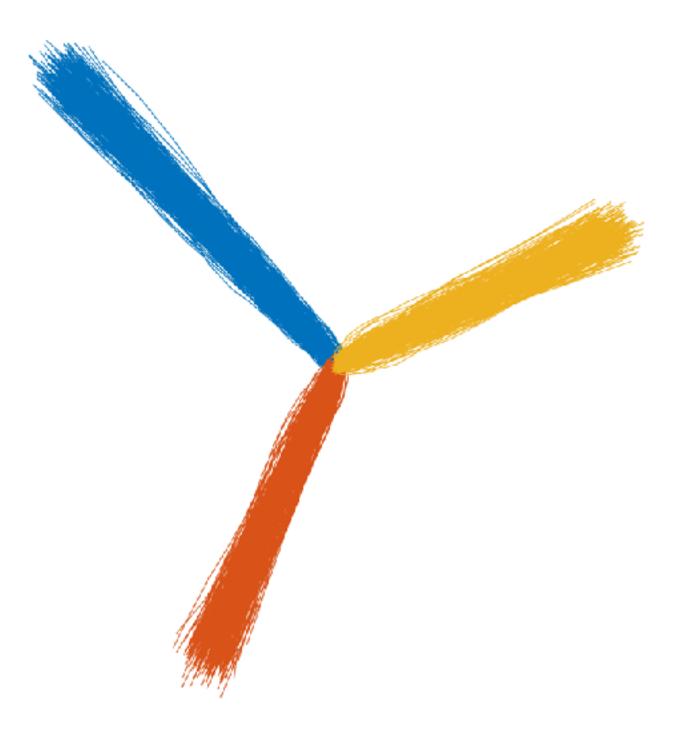
Maximizing Differences in Follower's Responses



Numerical Experiments: Multiple Targets vs One Chaser

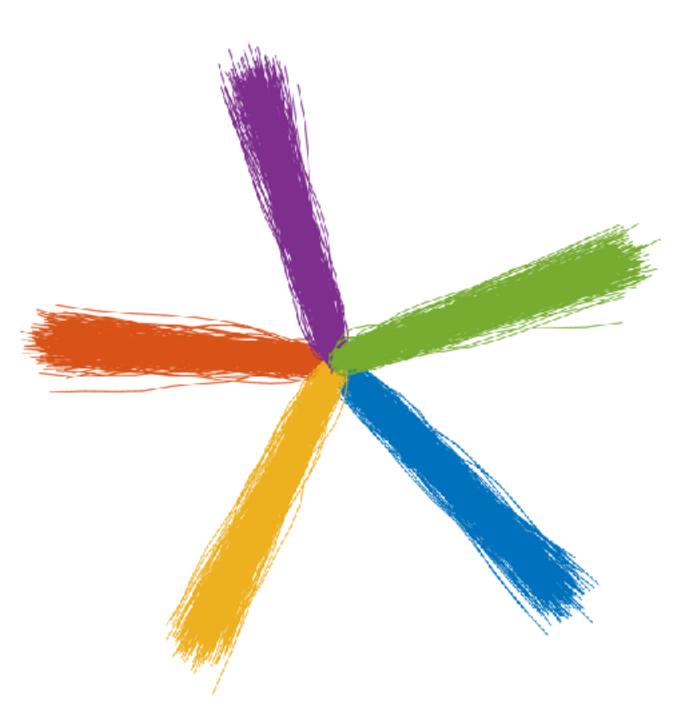
- Leader controls multiple agents, Follower controls one single agent
- Leader knows that Follower is chasing one agent, but not which one

3 leading agents



Yue Yu–UT Austin

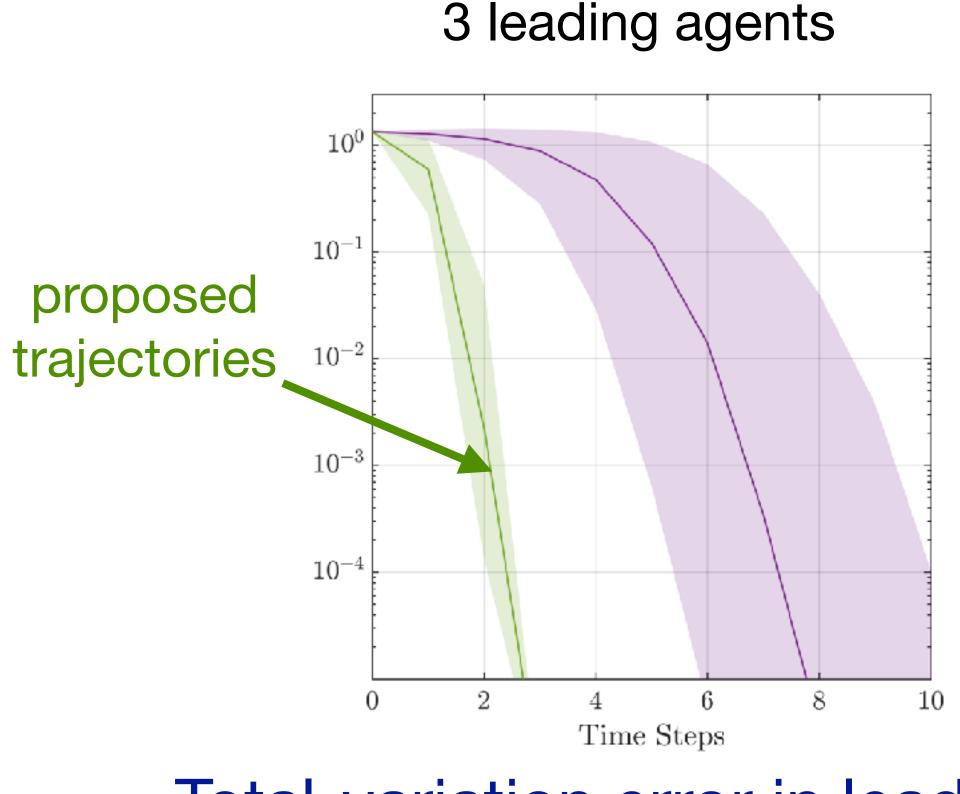
5 leading agents



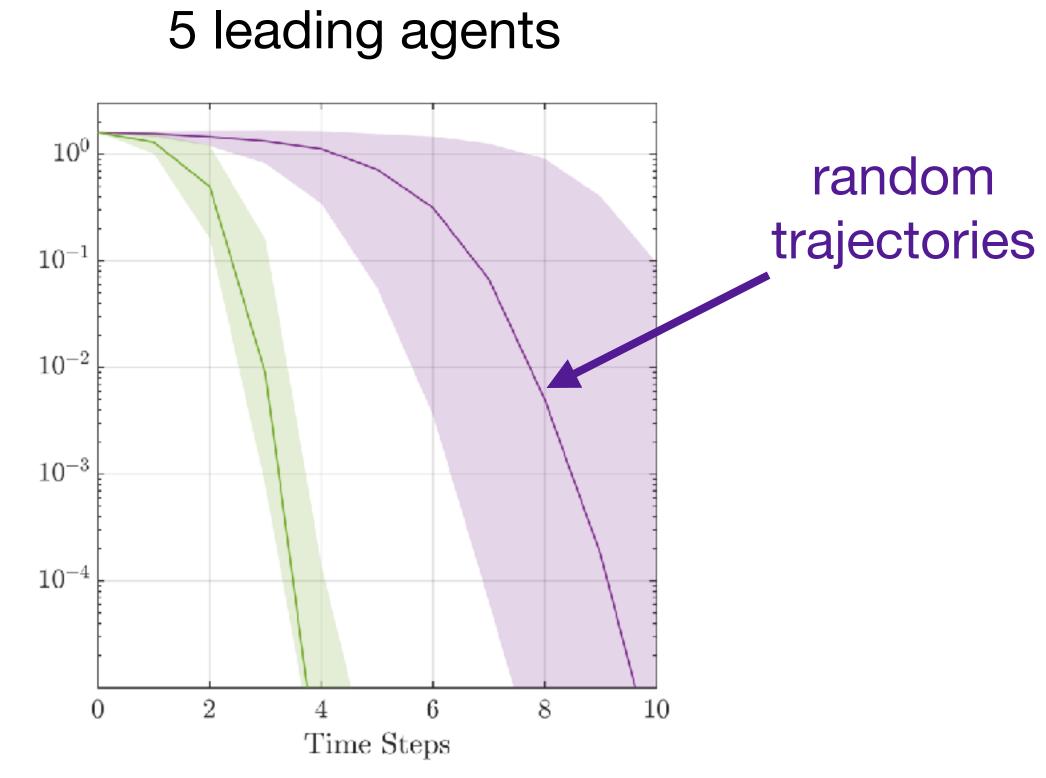
Follower's trajectory distributions under different hypothesis

Numerical Experiments: Multiple Targets vs One Chaser

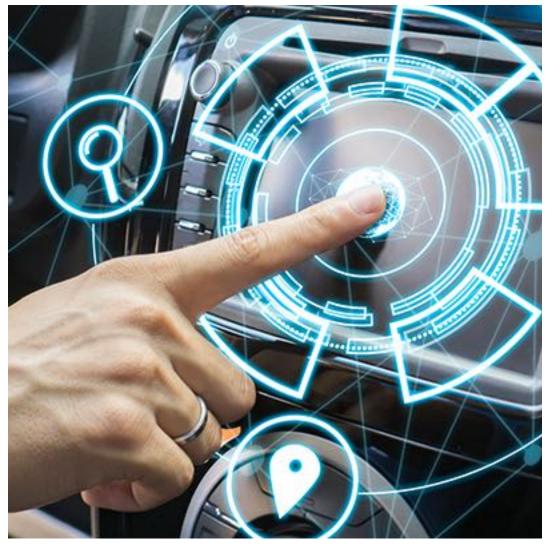
- Leader controls multiple agents, Follower controls one single agent
- Leader knows that Follower is chasing one agent, but not which one



Total-variation error in leader's belief when using Bayesian learning

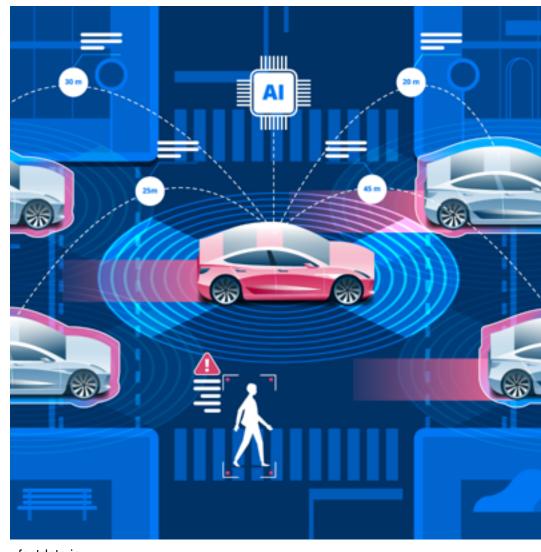


Shared Autonomy



futurebridge.com

Mixed Autonomy



fastdata.io

Yue Yu–UT Austin

Cyberattacks & Defense

secplicity.org