# Optimizing Secure Multi-Party Computation in Satellite Proximity Operations

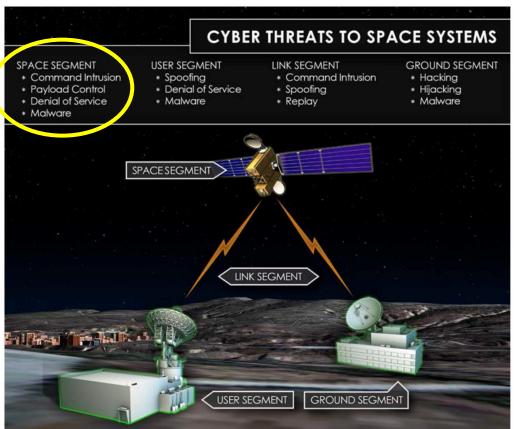


Caroline Fedele University of Florida 7 December 2023














# Security in Space





- Needs for both privacy and security in space
- Collisions have occurred

### **IN-SPACE** Cybersecurity

- Growing number of satellites & expanding private sector
- Motivates autonomy needs
- Rendezvous & Proximity
  Operations (RPO)
- Near-field collision avoidance
  and characterization

















# **General goal:** provide evaluation of secure satellite proximity operations using privacy-preserving computation

Demonstrate use of **secure multiparty computation (SMC)**, a method of operating on encrypted data, allowing private **satellite operations** to be conducted between mutually-distrustful agents

Previous work:

- Investigated where data privacy is needed in space
- Implemented SMC into matrix multiplication, attitude optimization, and other algorithms using the Sharemind SMC toolkit (3+ party, secret-sharing based protocol)
- Benchmarked time and memory overhead between each algorithm without and with SMC Current work:
- Implementing SMC into more satellite proximity algorithms, demonstrating improvements
- Benchmarking various overhead measurements of 20+ secure protocol variants using MP-SPDZ





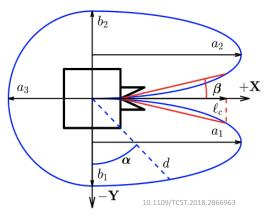








### Motivation: RPO




#### **Rendezvous and Proximity Operations (RPO):**

- o On-board trajectory operation and replanning
  - E.g. docking, on-orbit servicing/refueling, formation flying
- RPO occurs on-board, autonomously
  - $\circ$   $\$  housed in guidance navigation and control (GNC) unit
- Needed at scales of < 500km between satellites</li>

### **Ground station vs On-board Control**

**RPO example: docking** 



|                                | Ground station       | On-Board |  |  |
|--------------------------------|----------------------|----------|--|--|
| Distance between<br>satellites | 1-10 Mm              | < 500 km |  |  |
| Time needed                    | Days-weeks           | < 1 day  |  |  |
| Speed                          | km /sec              | m /sec   |  |  |
| Approach                       | conjunction analysis | RPO      |  |  |



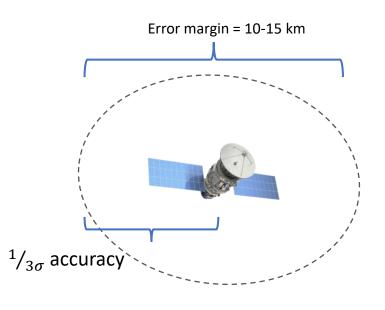











# Problem: Capability Inference

### **Example: Collision Avoidance in RPO**

- Minimum data to share with other satellites
  - position, velocity covariance

#### Stochastic systems

- Probabilistic, not deterministic
- Covariance matrices = quantify uncertainty
  - defined by ellipsoid
- Measure of TRUST, decisions based on accuracy



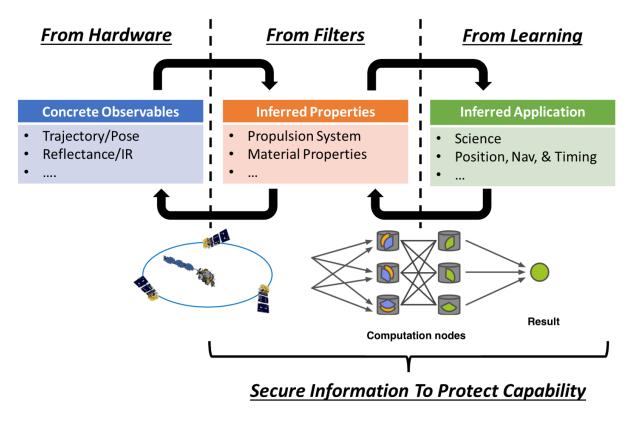
Problem: knowledge of error margins (covariance matrices) can lead to inferences on satellite capabilities, purpose, etc.

Solution: protect error margins using privacy-preserving computation
















### **Characterization Problem**

















### **Privacy-Preserving Computation (PPC)**

- Allows for data to remain encrypted during computation
- Protects **physical integrity** of satellite during RPO and **data privacy** keeping data encrypted

### Secure Multiparty Computation (SMC):

- Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a function on their inputs, without revealing information about inputs (millionaire's problem)
  - 1. 2-Party Computation (2PC): e.g. Yao's garbled or BMR, binary circuit representation
  - 2. Secret sharing: 3+ parties, arithmetic circuit representation

### Homomorphic Encryption (HE):

- Fully or Partially *homomorphic encryption* (FHE/PHE)
- "holy grail" of cryptography, providing strongest privacy guarantees at the cost of efficiency













Mod 2<sup>k</sup>

SPDZ2k

N/A

Semi2k

Brain / Rep3

/ PS / SY

Rep3

Rep4

Dealer

Table of supported protocols

#### **Security Models**

- Honest vs. dishonest majority assumption of behavior of parties
- Semi-honest vs. malicious corruption passive vs. active adversary

#### **Computation Domain**

Mathematical structure of secret info

- Usually ring structure defined by integer operation with modulus or Galois (finite) field
- Binary circuits or arithmetic circuits
  - Mod prime, mod power 2

#### **Underlying Primitives**

- Secret Sharing
- Garbled Circuits
- Oblivious Transfer
- Homomorphic Encryption









Security model

majority

majority

majority

majority

Semi-honest.

Malicious, dishonest

Covert. dishonest

dishonest majority

Malicious. honest

Semi-honest, honest

Malicious, honest

Semi-honest, dealer

supermajority



Mod prime / GF(2<sup>n</sup>)

MASCOT / LowGear /

CowGear / ChaiGear

Semi / Hemi / Temi /

Shamir / Rep3 / PS / SY

Shamir / ATLAS / Rep3

HighGear

Soho

Rep4

Dealer



|     | SA | N |
|-----|----|---|
| Hı. | эΠ |   |

Bin. SS

Tiny /

Tinier

N/A

SemiBin

Rep3 /

Rep3 /

CCD

Rep4

Dealer

CCD / PS

Garbling

BMR

N/A

BMR

BMR

BMR

N/A

N/A

Yao's GC /



### MP-SPDZ vs. Sharemind

| Sharemind                                             | MP-SPDZ                                            |  |  |
|-------------------------------------------------------|----------------------------------------------------|--|--|
| Ease of use for industry & non-security professionals | Prominent tool for academic research uses          |  |  |
| C++ and proprietary SecreC code                       | Python                                             |  |  |
| 1 SMC approach – linear secret sharing (3+ parties)   | Over 30 SMC variants (GC, OT, FHE, SS)             |  |  |
| 1 security model (semi-honest)                        | 3 security models (semi-honest, malicious, covert) |  |  |
| 1 trust option (honest majority)                      | 2 trust options (honest or dishonest majority)     |  |  |
| Black box – cannot see or modify source code          | White box – can see and modify source code         |  |  |







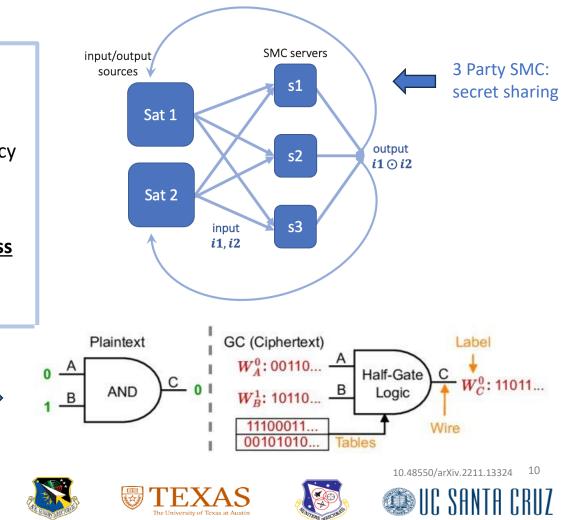
Duke







### SMC on Satellites


### Our purpose

UNIVERSITY of

- Optimize protocol/variants for specific operations, informed by satellite algorithms that need privacy
- Demonstrate reasonable <u>efficiency</u> for each satellite operation
- Guarantees of <u>privacy</u> & <u>correctness</u> for each

2 party SMC:

garbled circuits





# Methodology: Software

| Security    | Parties | Modulo                                                                                                 | Protocol                                                                                                                                                             |
|-------------|---------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 3       | 2 <sup>64</sup><br>128-bit prime<br>128-bit prime                                                      | [AFL <sup>+</sup> 16]<br>[AFL <sup>+</sup> 16]<br>[CDM00]                                                                                                            |
| Semi-honest | 2       | 2 <sup>64</sup><br>128-bit prime<br>128-bit prime<br>128-bit prime                                     | [DEF <sup>+</sup> 19]-<br>[KOS16]-<br>[KPR18]- (semi HE)<br>[KPR18]- (somewhat HE)                                                                                   |
| Covert      | 2       | 128-bit prime                                                                                          | [KPR18]* (semi HE)<br>[KPR18]* (somewhat HE)                                                                                                                         |
| Malicious   | 4       | 2 <sup>64</sup>                                                                                        | [DEK20]                                                                                                                                                              |
| Malicious   | 3       | 2 <sup>64</sup><br>2 <sup>64</sup><br>128-bit prime<br>128-bit prime<br>128-bit prime<br>128-bit prime | [EKO <sup>+</sup> 20] (post-sacrifice)<br>[ADEN19]<br>[LN17] (replicated)<br>[CGH <sup>+</sup> 18] (replicated)<br>[LN17] (Shamir)<br>[CGH <sup>+</sup> 18] (Shamir) |
|             | 2       | 2 <sup>64</sup><br>128-bit prime                                                                       | [DEF <sup>+</sup> 19]<br>[KOS16]                                                                                                                                     |

### **Integrating SMC into satellite operations**

- Testing different RPO algorithms
  - Quadratic Program
  - Conjunction Analysis

### Software toolkit

- MP-SPDZ
  - Platform for 30+ SMC operations
  - System of libraries based in python, designed for easy, even comparison between protocols variants

https://eprint.iacr.org/2020/521.pdf

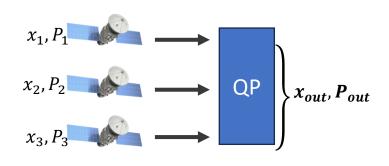


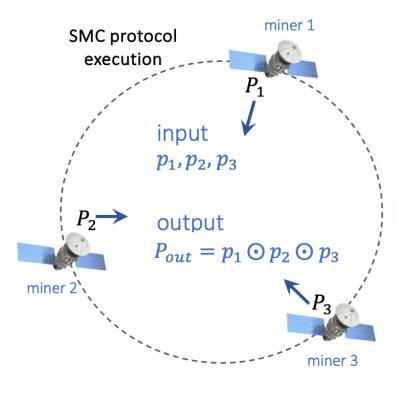












### Algorithm 1: Quadratic Program



### **Quadratic Program: multi-point inspection**

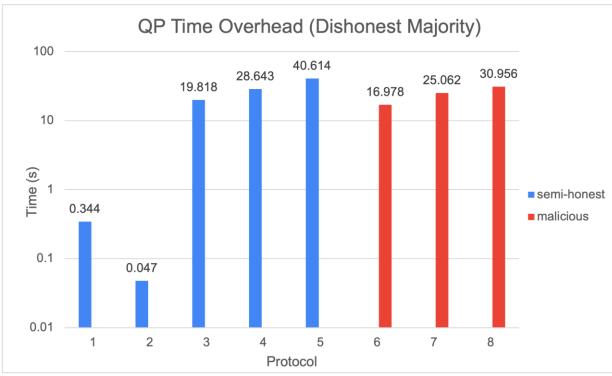
- Sensor Fusion optimization algorithm
- Need 3+ parties for 3 dimensional accuracy (secret sharing or homomorphic encryption)
- INPUT: position vector, *x*, and uncertainty matrix, *P*, for each satellite (only P is private)
- OUTPUT: optimized/most accurate {x, P} pair



















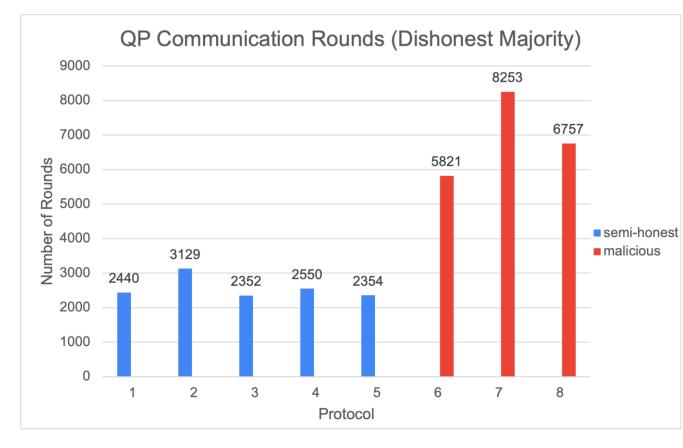



1-8 correspond to different arithmetic circuit protocols

#### Most efficient $\rightarrow$ #2 = semi2k, modulo 2^k oblivious transferbased protocol















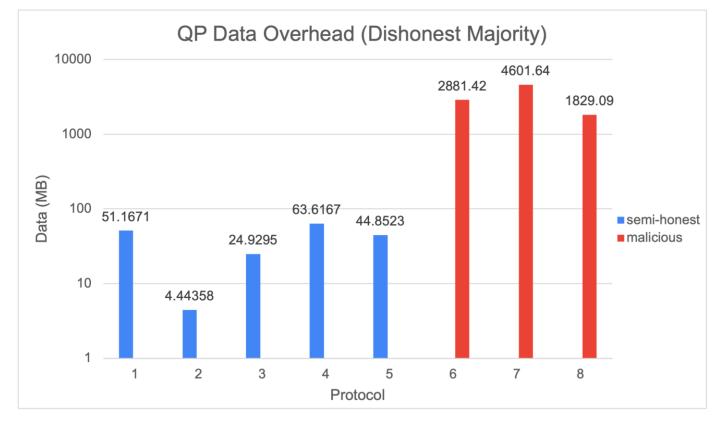



# - Higher number of rounds for Malicious model

### - significant factor in space applications


















Most efficient time and memory  $\rightarrow$  #2 = semi2k, modulo 2^k oblivious transfer-based protocol

















Further motivation for MP-SPDZ

- approx. 1 order of magnitude improvement over Sharemind
- about 2 orders of magnitude greater than without SMC (state-of-the-art)
- QP: need < 10 s to compute. This is < 0.1 s so well within efficiency















### Algorithm 2: Alfano's Method

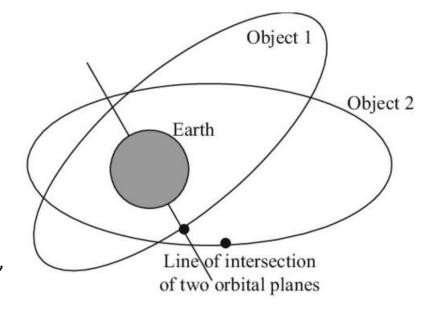


### Alfano's Method: conjunction analysis

- Calculate collision probability between two spherical objects
- Assume linear orbital dynamics: one satellite stationary relative to other
- 2 party SMC problem, no trusted 3<sup>rd</sup> party (Garbled Circuits or Oblivious Transfer)
- INPUT = {x<sub>1,2</sub>, v<sub>1,2</sub>, R<sub>1,2</sub>, C<sub>1,2</sub> } for satellite 1 and 2, only covariance matrices, C<sub>1,2</sub>, are private
- OUTPUT = *p*, probability of collision

$$p \leftarrow \frac{1}{2\pi\sigma_x\sigma_y} \int_{-R}^{R} \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} f(x, y) dy dx$$










where  $f(x,y) = \exp\left[\frac{-1}{2}\left[\left(\frac{x-x_m}{\sigma_x}\right)^2 + \left(\frac{y-y_m}{\sigma_y}\right)^2\right]\right]$ 





# Takeaway





Source: verdict.co.uk

#### **Current Work:**

- Optimizing MP-SPDZ protocols for QP algorithm
- Testing Alfano's method with MP-SPDZ
- AIAA (SciTech) Conference paper accepted

#### **Future Work:**

- Cybersecurity Conference paper in February (USENIX '24)
- Further examinations of space characterization issue and areas where privacy can be beneficial

















Kevin Butler Tyler Lovelly Chris Petersen Carson Stillman









uke







# **Evaluation: Matrix Multiplication**



100000  $y = 4E - 11x^{4.5234}$ ..... 10000  $y = 4E - 11x^{4.0693}$ 1000 time (log s) 100 10 1 500 1000 1500 2000 2500 0.1 0.01 matrix size (bytes)

**Matrix Multiplication** 

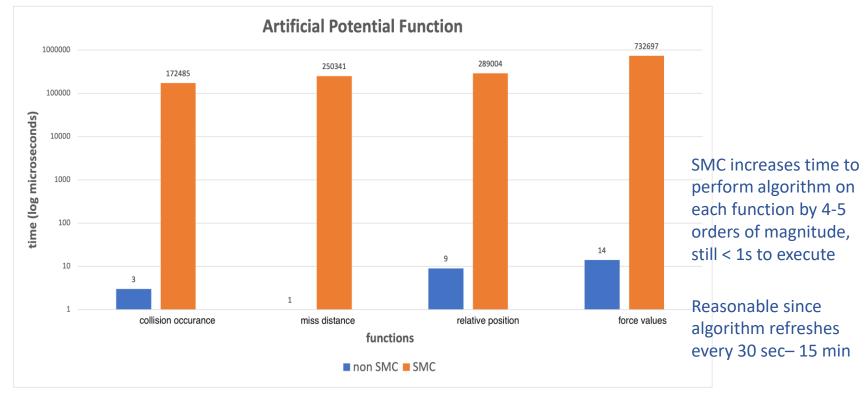
non smc smc

SMC increases time to perform algorithm on each matrix by 1-1.5 orders of magnitude














### **Evaluation: APF**

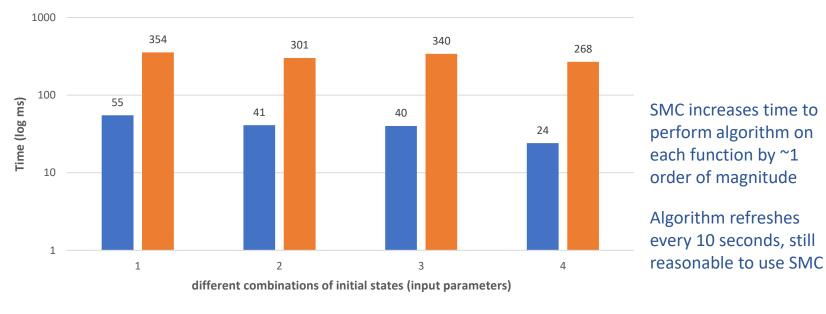




UF FLORIDA










DUC SANTA CRUZ



### **Evaluation:** Optimization



Attitude optimization

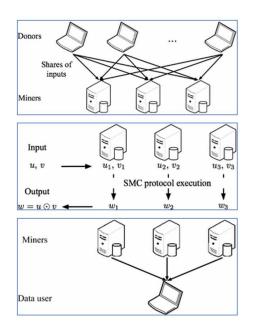
non SMC SMC

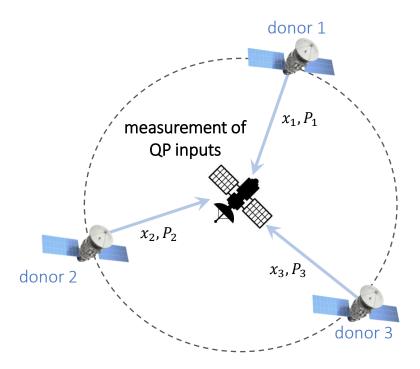













### **Optimization Algorithm**

satellite setup

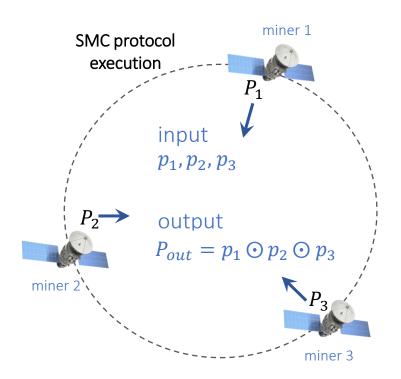




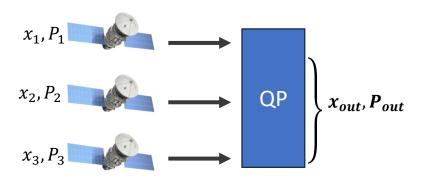







uke








-8- 11-

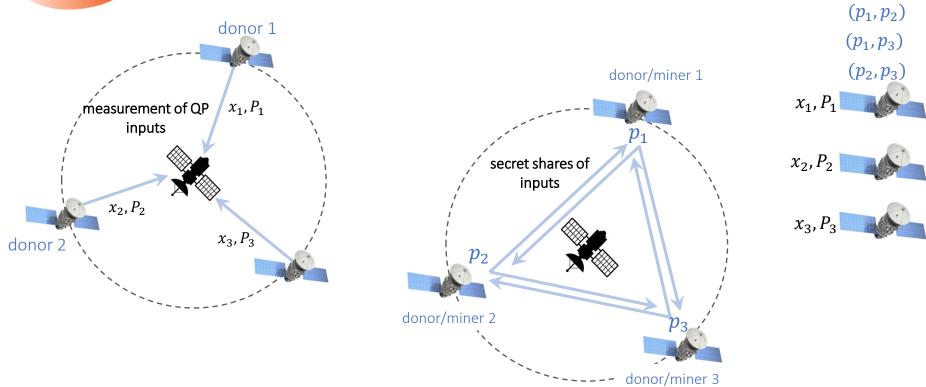


 $(p_1, p_2)$  $(p_1, p_3)$  $(p_2, p_3)$ 
















8- ...





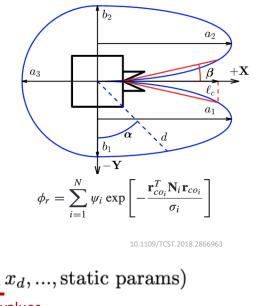











# Docking Algorithm



#### Another example: Artificial Potential Function (APF)

- Scenario: docking & collision avoidance at close range
  - On-board trajectory control
- Linear (relative) equations of motion

#### **Keep-out zone potential**



subsystem inputs (vehicle dynamics)  $f_{x}, f_{y}, \tau$ GNC  $\phi_{r} = \sum_{i=1}^{N} \psi_{i} \exp \left[ -\frac{\mathbf{r}_{co_{i}}^{T} \mathbf{N}_{i} \mathbf{r}_{c}}{\sigma_{i}} \right]$ (control parameters (static table)  $\mathbf{x}_{d}$ human control (on-board flexibility)  $\mathbf{x}_{d}$   $\mathbf{GNC}$   $\mathbf{v}_{ctrl}$   $\mathbf{v}_{i} = apf(f_{x}, f_{y}, \tau, x_{d}, ..., static params)$ encrypted values















| Well-un          |                                                                   |                       | <u>Link</u><br>Strong security<br>nderstood threat m<br>ed comms security |          |                            |
|------------------|-------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|----------|----------------------------|
| We<br>Huma       | User<br>ong ground<br>eak space s<br>in control/ii<br>in-space co | ecurity<br>nteraction |                                                                           |          | Deputy                     |
|                  |                                                                   |                       |                                                                           | Deputy   | Object of<br>investigation |
| VERSITY of ORIDA |                                                                   | Dukersty              | TEXAS<br>The University of Texas at A                                     | S austin | UC SANTA CRUZ              |