Optimizing Secure Multi-Party Computation

In Satellite Proximity Operations




Security in Space

Needs for both privacy
Gy USER SEGMENT LINK SEGMENT GROUND SEGMENT and security in space

+ Command Intrusion + Spoofing * Command Intrusion + Hacking
* Payload Control * Denial of Service « Spoofing « Hijacking
* Denial of Service * Malware * Replay * Malware
*+ Malware

Collisions have occurred

IN-SPACE Cybersecurity

« Growing number of satellites &
expanding private sector

* Motivates autonomy needs

* Rendezvous & Proximity
Operations (RPO)

 Near-field collision avoidance
and characterization
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ag-\‘,.j , Project Overview

General goal: provide evaluation of secure satellite proximity operations
using privacy-preserving computation

Demonstrate use of secure multiparty computation (SMC), a method of operating on encrypted
data, allowing private satellite operations to be conducted between mutually-distrustful agents

Previous work:
* Investigated where data privacy is needed in space

* Implemented SMC into matrix multiplication, attitude optimization, and other algorithms
using the Sharemind SMC toolkit (3+ party, secret-sharing based protocol)

* Benchmarked time and memory overhead between each algorithm without and with SMC

Current work:
* Implementing SMC into more satellite proximity algorithms, demonstrating improvements

* Benchmarking various overhead measurements of 20+ secure protocol variants using MP-SPDZ
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4—\.,./, Motivation: RPO

Rendezvous and Proximity Operations (RPO): RPO example: docking

o On-board trajectory operation and replanning b

o E.g. docking, on-orbit servicing/refueling, formation flying

o RPO occurs on-board, autonomously a3

o housed in guidance navigation and control (GNC) unit

o Needed at scales of < 500km between satellites

Ground station vs On-board Control

Distance between 1-10 Mm <500 km
satellites
Time needed Days-weeks <1 day
Speed km /sec m /sec
Approach conjunction analysis RPO
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,,g-\,:./, Problem: Capability Inference

Example: Collision Avoidance in RPO
Error margin = 10-15 km

e Minimum data to share with other satellites A

r |
* position, velocityf.covariance P -
‘ /, \\
/7 \\

Stochastic systems

|
* Probabilistic, not deterministic \ !
\ 1
* Covariance matrices = quantify uncertainty ‘ \\\ Y / S
* defined by ellipsoid Y36 accuracy ~._ 7

-
S~aa -

e Measure of TRUST, decisions based on accuracy

» Problem: knowledge of error margins (covariance matrices) can lead to inferences on satellite
capabilities, purpose, etc.

» Solution: protect error margins using privacy-preserving computation
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,.g\;:(J Characterization Problem

I . I .
From Hardware I From Filters I From Learning

I
' I I
Concrete Observables Inferred Properties

|
|
* Trajectory/Pose ;P Propulsion System
* Reflectance/IR | ° Material Properties
I L]
|

Inferred Application

* Science
* Position, Nav, & Timing

oo SR

: =

Result
Computation nodes

\ J
|

Secure Information To Protect Capability
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dg\,j, Vacy-Preserving Computation

Privacy-Preserving Computation (PPC)
* Allows for data to remain encrypted during computation

* Protects physical integrity of satellite during RPO and data privacy keeping data encrypted

Secure Multiparty Computation (SMC):

* Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a
function on their inputs, without revealing information about inputs (millionaire’s problem)

1. 2-Party Computation (2PC): e.g. Yao’s garbled or BMR, binary circuit representation

2. Secret sharing: 3+ parties, arithmetic circuit representation

Homomorphic Encryption (HE):
* Fully or Partially homomorphic encryption (FHE/PHE)

*  “holy grail” of cryptography, providing strongest privacy guarantees at the cost of efficiency
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,xg-\/ Multi-Party Computation Tool

. 4

Security Models
* Honest vs. dishonest majority — assumption of behavior of parties

* Semi-honest vs. malicious corruption — passive vs. active adversary

CompUtatlon Domain Security model Mod prime / GF(2”n) Mod 24k Bin. SS Garbling
Mathematical structure of secret info Malicious, dishonest MASCOT / LowGear / SPDZ2k Tiny / BMR
*  Usually ring structure defined by majority HighGear Tinier
mteggr o.p.eratl.on with modulus or gc;}fsmydishonest CowGear / ChaiGear A A .
Galois (finite) field
. . . . L. . Semi-honest, Semi / Hemi / Temi / Semi2k SemiBin Yao's GC /
* Binary circuits or arithmetic circuits dishonest majority Soho BMR
° H Malicious, honest . Brain / Rep3 Rep3 /
Mod prime, mod power 2 majostor Shamir / Rep3 / PS / SY e TGS BMR
Underlying Primitives Semi-honest, honest gy i/ ATIAS / Rep3 Rep3 R BMR
majority CCD
* Secret Sharing -
o ﬁﬂéﬁﬁgfo:ffe“ Rep4 Rep4 Rep4 N/A
* Garbled Circuits
.. Semi-honest, dealer Dealer Dealer Dealer N/A
* Oblivious Transfer

*  Homomorphic Encryption Table of supported protocols
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MP-SPDZ vs. Sharemind

UF|

Ease of use for industry & non-security professionals

C++ and proprietary SecreC code

1 SMC approach — linear secret sharing (3+ parties)

1 security model (semi-honest)

1 trust option (honest majority)

Black box — cannot see or modify source code

UNIVERSITY of

FLORIDA

Prominent tool for academic research uses

Python

Over 30 SMC variants (GC, OT, FHE, SS)

3 security models (semi-honest, malicious, covert)

2 trust options (honest or dishonest majority)

White box — can see and modify source code
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x\*«j) SMC on Satellites

SMC servers

Our purpose

sources ' 3 Party SMC:
* Optimize protocol/variants for secret sharing
specific operations, informed by

satellite algorithms that need privacy output

i10i2
* Demonstrate reasonable efficiency
for each satellite operation

e Guarantees of privacy & correctness
for each

'
Plaintext I GC (Ciphertext)
& Kl | Wwe:00110... 2
2 party SMC: AND C o1 B
o ‘ B Wa: 10110... —
garbled circuits ey ! of
i 11100011...
I 00101010... | Tables
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,g-\/, Methodology: Software

Security Parties  Modulo Protocol Integrating SMC into satellite operations
264 [AFL*16]

3 128-bit prime [AFL*16] * Testing different RPO algorithms
128-bit prime [CDMO00] .
Semi-honest e [DEF*19]- o Quadratic Program
128-bit prime [KOS16]- : : :
2 128-bit prime  [KPR18]- (semi HE) © ConjunCtlon Ana lySIS
128-bit prime [KPR18]- (somewhat HE)
o [KPR18]* (semi HE)

Covert 2 128bitprime  (epRig)* (somewhat HE) Software toolkit

Malicious 4 204 [DEK20] . MP-SPDZ
264 [EKO™20] (post-sacrifice) i
24 [ADEN19] o Platform for 30+ SMC operations

3 128-bit prime [LN17] (replicated)

Malicious 128-bit prime  [CGH"18] (replicated) o System of libraries based in python,
128-bit prime  [LN17] (Shamir) desi df .
128-bit prime [CGH" 18] (Shamir) esigned for easy, ever'l comparison

, 2 [DEF*19] between protocols variants
128-bit prime [KOS16]
https.//eprint.iacr.org/2020/521.pdf 11
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,-g—\.,,,/} Algorithm 1: Quadratic Program

Quadratic Program: multi-point inspection SMC protocol mi”E-’r 1
* Sensor Fusion optimization algorithm execution __---- a> 3
* Need 3+ parties for 3 dimensional accuracy P,
(secret sharing or homomorphic encryption) . J
y input |
« INPUT: position vector, x, and uncertainty / P1, P2 P3 \
matrix, P, for each satellite (only P is private) :' = \
« OUTPUT: optimized/most accurate {x, P} pair ' I‘)Z output .'

a> 2 Pour =p1Op20p3 [/
X1, Pl % — miner 2\\\ \Pg I/,

X, P i ——»
X3, P3 % —>

> Xouts Pou e -7
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.g\ié Evaluation: Quadratic Program

QP Time Overhead (Dishonest Majority)

100
40.614
28.643 25062 30.956
19.818 16.978 :
10

@
g 1 m semi-honest
= 0.344 m malicious

0.1

0.047 1-8 correspond to
I different arithmetic
0.01 circuit protocols
1 2 3 4 5 6 7 8
Protocol

Most efficient 2 #2 = semi2k,
modulo 27k oblivious transfer-
based protocol
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.g\ié Evaluation: Quadratic Program

QP Communication Rounds (Dishonest Majority)

9000
8253
8000
7000 6757
- Higher number of
8 6000 5821 8 -
= rounds for Malicious
& 5000 model
ks
S 4000 m semi-honest
_E 3129 m malicious
3 3000 2550 . .
z 2440 2352 2354 - significant factor in
2000 space applications
1000
0
1 2 3 4 5 6 7 8
Protocol
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.g\ié Evaluation: Quadratic Program

QP Data Overhead (Dishonest Majority)

10000
4601.64
2881.42
1829.09
1000
Most efficient time and
= memory =2 #2 = semi2k,
= modulo 2”7k oblivious
e 100 oo 63.6167 :
e . 44.8523 msemi-honest  transfer-based protocol
o 24.9295 mmalicious
10
4.44358 I I
1 I
1 2 3 4 5 6 7 8
Protocol
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Evaluation: Quadratic Program

QP Comparison Between Methods QP Data Comparison Between Methods
1 5
a5 4.28 4.44
1.60E-01
4
0.1 4.70E-02 .
w 0 3
aé 0.01 e 25
= = 2 1.8
15
0.001
1
1.60E-04 0.5
0.0001 - 0
no SMC Sharemind Semi2k no SMC Sharemind Semi2k

Further motivation for
MP-SPDZ

UF [FL.ORIDA
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- approx. 1 order of magnitude improvement over Sharemind
- about 2 orders of magnitude greater than without SMC (state-of-the-art)

- QP: need < 10 s to compute. This is < 0.1 s so well within efficiency
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x\’/’ Algorithm 2: Alfano’s Method

Alfano’s Method: conjunction analysis

e Calculate collision probability between two
spherical objects

* Assume linear orbital dynamics: one satellite
stationary relative to other

e 2 party SMC problem, no trusted 3 party
(Garbled Circuits or Oblivious Transfer)

* INPUT ={x1 5,V 2, R1,, C;, }forsatellite 1 and 2, Line\of intersection
only covariance matrices, C; ,, are private of two orbital planes

OUTPUT = p, probability of collision

VR? 22

f(z,y)dydz  where f(z,y) = exp [71 [(mxm): (yym)zl-

VRZ—z2 Oz

10.1007/978-981-10-2963-9_5 17
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Takeaway

Current Work:
* Optimizing MP-SPDZ protocols for QP algorithm
* Testing Alfano’s method with MP-SPDZ

AIAA (SciTech) Conference paper accepted

Future Work:

e Cybersecurity Conference paper in February
(USENIX ’24)

* Further examinations of space characterization
issue and areas where privacy can be beneficial

Source: verdict.co.uk
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.g\sé’} Valuation: Matrix Multiplication

Matrix Multiplication

100000
y = 4E-11x%5%3 -0
0000 e
e .
1000 y = 4E-11x00652..®
w100 e ® nonsmc
¥ Ee 18
= ‘ L ] smc
E
= 10 .
--.- .‘..- . .
Y SMC increases time to
! perform algorithm on each
0 500 1000 1500 2000 2500 .
¢ matrix by 1-1.5 orders of
01 magnitude
‘
0.01

matrix size (bytes)
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1000000
100000
10000

1000

time (log microseconds)
8

UNIVERSITY of

FLORIDA

172485

collision occurance

Evaluation: APF

Artificial Potential Function

250341

miss distance

UNIVERSITY

functions

H®non SMC mSMC

289004

9
3
] :

relative position

The University of Texas at Austin

14

732657

force values

SMC increases time to
perform algorithm on
each function by 4-5
orders of magnitude,
still < 1s to execute

Reasonable since
algorithm refreshes
every 30 sec— 15 min
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x\f} Evaluation: Optimization

Attitude optimization

1000

324 301 340 268
100 55

41 40 SMC increases time to
24 perform algorithm on

each function by ~1

10 order of magnitude

Algorithm refreshes
every 10 seconds, still

2 3 4

reasonable to use SMC

Time (log ms)

1

different combinations of initial states (input parameters)

B non SMC mSMC
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,,J Optimization Algorithm

satellite setup

donor 1
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g QP inputs N
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' SMC protoci)l execution '
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Data user
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miner 1
SMC protocol £
execution __---- %
/,’ Pl \\\\
y Input ‘l
/
l’ pl’ pz’ p3 \\
\
II “
: 1
1
P> output /
\/ "v\ I
.Q 2 Pour =p1OP20OPp3
\ /I
miner 2% /
\\\ \P3! ":
SN __-- -7 miner 3
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Another example: Artificial Potential Function (APF)

e Scenario: docking & collision avoidance at close
range

* On-board trajectory control

* Linear (relative) equations of motion

. .f:!:s fyaT
subsystem inputs

(vehicle dynamics) I

output to
4\trl

control parameters q

(static table)

T
human control — el

(on-board flexibility)

UF [FL.ORIDA
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Docking Algorithm

Keep-out zone potential

b

as ﬁ +X

10.1109/TCST.2018.2866963

U
=y | D = apf(fz, fy,T: Za, ..., static params)
v

encrypted values
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Ground Link
Strong security Strong security
Well-understood threat model Well-understood threat model
Easier to manage/update systems Established comms security practice

User
Strong ground security
Weak space security
Human control/interaction
Need in-space cooperation

Object of \
investigation \

UNIVERSITY of

UF FLORIDA
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