Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra
 Assured Autonomy in Contested Environments (AACE)
 Program Review (Fall 2023)

Hans Riess
Joint work with Michael M. Zavlanos (PI)
Duke University, Department of Electrical \& Computer Engineering
August 2, 2023

Duke

Objectives

"Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra

- Formulate a general multi-agent planning problem
- Introduce a novel mathematical theory for solving the problem.
- Survey our current efforts to extend our decentralized methods to more general linear temporal logic (LTL) formal verification \& synthesis problems.

Recent Publications

H. Riess, G. Henselman-Petrusek, M. Munger, R. Ghrist, Z. Bell, M. Zavlanos, (2023) "Network preference dynamics using lattice theory" (submitted).
H. Riess, M. Munger, \& M. Zavlanos (2023). Max-Plus synchronization in decentralized trading systems. 2023 IEEE Conference on Decision and Control.
H. Riess \& R. Ghrist (2022). Diffusion of information on networked lattices by gossip. 2022 IEEE Conference on Decision and Control. Ghrist, R., \& Riess, H. (2022). Cellular sheaves of lattices and the Tarski Laplacian. Homology, Homotopy and Applications, 24(1), 325-345.

Motivation

Decentralized Autonomy \& Coordination

- Heterogeneous autonomous agents
- Decentralized synthesis of task schedules
- E.g. intermittent connectivity control (Kantaros-Zavlanos 2016)
- Complex interactions between agents
- Synchrony v.s. Concurrency

Multi-Agent Coordination

Motivation

Duke

Synchronization
 Motivation

- Agreement between agents in the discrete time domain
- Synchrony: groups of agents executing events at (approximately) the same time

Multi-Agent Task Planning

Multi-Agent Task Planning

Task specifications with temporal constraints

- Autonomous agents: $u, v \in \mathscr{A}=\{1,2, \ldots, N\}$
- Events: $i \in\{1,2, \ldots, M\}$ (e.g. actions, tasks)
- Events assigned to agents: $\mathscr{T} \subseteq \mathscr{N} \times \mathscr{A}$
- Transitions times between events: $\tau_{i, j}^{u} \geqslant 0$.
- Temporal constraints on the order of events
- Temporal constraints on coupled events
- Communication links between agents

Problem: Compute a global schedule satisfying constraints.

Multi-Agent Task Planning

Task specifications with temporal constraints
Communication between agents: undirected graph, $\mathscr{G}=(\mathscr{N}, \mathscr{E})$

Multi-Agent Task Planning

Task specifications with temporal constraints

Transitions between tasks \& durations: weighted directed graph

Task 1 can be performed only after Task 2 and Task 3 is performed;
Task 2 or Task 3 can only be performed after Task 1 is performed.

Multi-Agent Task Planning

Task specifications with temporal constraints

Event graphs represented by matrices

$$
\mathbf{A}=\left[\begin{array}{ccc}
-\infty & \tau_{2,1}^{u} & \tau_{3,1}^{u} \\
\tau_{1,2}^{u} & -\infty & -\infty \\
\tau_{1,3}^{u} & -\infty & -\infty
\end{array}\right]
$$

\qquad

If $\mathbf{x}_{u} \in \mathbb{R}_{+}^{3}$ is a vector encoding starting times of each task for Agent u, then

$$
\left[\begin{array}{ccc}
-\infty & \tau_{2,1}^{u} & \tau_{3,1}^{u} \\
\tau_{1,2}^{u} & -\infty & -\infty \\
\tau_{1,3}^{u} & -\infty & -\infty
\end{array}\right] \boxplus\left[\begin{array}{c}
x_{1}^{u} \\
x_{2}^{u} \\
x_{3}^{u}
\end{array}\right]=\left[\begin{array}{c}
\max \left\{x_{1}^{u}-\infty, x_{2}^{u}+\tau_{2,1}^{u}, x_{3}^{u}+\tau_{3,1}^{u}\right\} \\
\max \left\{x_{1}^{u}+\tau_{1,2}^{u}, x_{2}^{u}-\infty, x_{3}^{u}-\infty\right\} \\
\max \left\{x_{1}^{u}+\tau_{1,3}^{u}, x_{2}^{u}-\infty, x_{3}^{u}-\infty\right\}
\end{array}\right]=\left[\begin{array}{c}
\max \left\{x_{2}^{u}+\tau_{2,1}^{u}, x_{3}^{u}+\tau_{3,1}^{u}\right\} \\
x_{1}^{u}+\tau_{1,2}^{u} \\
x_{1}^{u}+\tau_{1,3}^{u}
\end{array}\right]
$$

is the time-vector each task is started next. Naturally leads to max-plus algebra approach to synchronization...

Why Max-Plus Algebra?
 Max-plus linear systems theory

- Discrete event systems (DESs): $\mathbf{x}(k+1)=\mathbf{A} \boxplus \mathbf{x}(k)=\mathbf{A}^{\boxplus k} \boxplus \mathbf{x}(0)$
- Concepts, properties, techniques from conventional linear system theory translate to max-plus systems theory

$$
\begin{array}{rr}
\mathbf{x}(k+1)= & \mathbf{A}(k) \boxplus \mathbf{x}(k) \vee \mathbf{B}(k) \boxplus \mathbf{u}(k) \\
\mathbf{y}(k+1)= & \mathbf{C}(k) \boxplus \mathbf{x}(k+1)
\end{array}
$$

The "linear algebra of combinatorics" (Butkovič, 2003)

- $\mathbf{A} \boxplus \mathbf{x}=\mathbf{b}$, (minmal) set covering
- $\mathbf{x}=\mathbf{A} \boxplus \mathbf{x} \vee \mathbf{b}$, shortest path (Bellman-Ford)
- $\mathbf{A} \boxplus \mathbf{x}=\lambda+\mathbf{x}$, maximum cycle mean

Max-Plus Algebra

Replace "plus" with "max" and "times" with "plus"

- Linear algebra over the max-plus semiring (also called a diod)

$$
\mathbb{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,-\infty,+, 0)
$$

- Max-plus matrix-vector multiplication generalizes linear transformations

$$
[\mathbf{A} \boxplus \mathbf{x}]_{i}=\max _{j=1}^{n}[\mathbf{A}]_{i, j}+[\mathbf{x}]_{j}, \quad i=1,2, \ldots, m
$$

defining a max-plus linear transformation $A: \mathbb{R}_{\text {max }}^{n} \rightarrow \mathbb{R}_{\text {max }}^{m}$

- Linear with respect to point-wise $\max (\mathrm{V}) \&$ scalar addition:

$$
\begin{array}{rr}
\mathbf{A} \boxplus\left(\mathbf{x}_{1} \vee \mathbf{x}_{2}\right)= & \mathbf{A} \boxplus \mathbf{x}_{1} \vee \mathbf{A} \boxplus \mathbf{x}_{2} \\
\mathbf{A} \boxplus(\mathbf{x}+h)= & \mathbf{A} \boxplus \mathbf{x}+h
\end{array}
$$

Min-Plus Algebra

Replace "plus" with "min" and "times" with "plus"

- Linear algebra over the min-plus semiring (also called a diod)

$$
\mathbb{R}_{\min }=(\mathbb{R} \cup\{\infty\}, \min , \infty,+, 0)
$$

- Min-plus matrix-vector multiplication generalizes linear transformations

$$
[\mathbf{B} \boxplus \mathbf{y}]_{j}=\min _{i=1}^{m}[\mathbf{B}]_{j, i}+[\mathbf{y}]_{i}, \quad j=1,2, \ldots, n
$$

defining a max-plus linear transformation $B: \mathbb{R}_{\text {min }}^{m} \rightarrow \mathbb{R}_{\text {min }}^{n}$

- Linear with respect to point-wise $\boldsymbol{\operatorname { m i n }}(\wedge) \&$ scalar addition:

$$
\begin{array}{rlr}
\mathbf{B} \boxplus^{\prime}\left(\mathbf{y}_{1} \wedge \mathbf{y}_{2}\right) & = & \mathbf{B} \boxplus^{\prime} \mathbf{y}_{1} \wedge \mathbf{B} \boxplus^{\prime} \mathbf{y}_{2} \\
\mathbf{B} \boxplus^{\prime}(\mathbf{y}+h) & = & \mathbf{B} \boxplus^{\prime} \mathbf{y}+h
\end{array}
$$

Residuation Theory

Pseudo-inverses of max-plus matrices are min-plus matrices

- Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$. Then, $\overline{\mathbb{R}}^{n}$ is an ordered lattice with $\mathbf{x} \vee \mathbf{y}$ (join) and $\mathbf{x} \vee \mathbf{y}$ (meet).
- Suppose $A: \mathbb{R}_{\max }^{n} \rightarrow \mathbb{R}_{\max }^{m}$ is a max-plus linear transformation. Then, there is a min-plus linear transformation $A^{\sharp}: \mathbb{R}_{\text {min }}^{m} \rightarrow \mathbb{R}_{\text {min }}^{n}$ given by

$$
A^{\sharp}(\mathbf{y})_{j}=\max _{i=1}^{m}[\mathbf{y}]_{i}-[\mathbf{A}]_{j, i}, \quad j=1,2, \ldots, n
$$

such that $\mathbf{A}^{\sharp} \boxplus^{\prime}(\mathbf{A} \boxplus \mathbf{x}) \geqslant \mathbf{x}$ and $\mathbf{A} \boxplus\left(\mathbf{A}^{\sharp} \boxplus^{\prime} \mathbf{y}\right) \leqslant \mathbf{y}$, or, equivalently,

$$
\mathbf{A} \boxplus \mathbf{x} \leqslant \mathbf{y} \quad \text { if and only if } \quad \mathbf{x} \leqslant \mathbf{A}^{\sharp} \boxplus^{\prime} \mathbf{y}
$$

- $A^{\sharp}(\mathbf{y})=\mathbf{A}^{\sharp} \boxplus^{\prime} \mathbf{y}$ where $\mathbf{A}^{\sharp} \in \mathbb{R}_{\min }^{n \times n}$ is a matrix defined $\left[\mathbf{A}^{\sharp}\right]_{i, j}=-[\mathbf{A}]_{j, i}$.
- The vector $\overline{\mathbf{x}}=\mathbf{A}^{\sharp} \boxplus^{\prime} \mathbf{b}$ is the greatest solution to the equation $\mathbf{A} \boxplus \mathbf{x}=\mathbf{b}$.

Multi-Agent Task Synchronization

Problem Formulation

Compute initial starting-times for each agent and for each task $\left[\mathbf{x}_{u}\right]_{i}$ such that agents assigned to the same task start the task at approximately the same time after k occurrences.

- \mathcal{N}, agents
- \mathscr{A}, events
- $\mathscr{G}=(\mathcal{N}, \mathscr{E})$, (undirected) communication graph
- $\mathbf{A}_{u} \in \mathbb{R}_{\text {max }}^{M \times M}$, max-plus matrices representing local temporal constraints; defined $\left[\mathbf{A}_{u}\right]_{i, j}=\tau_{j, i}^{u}$
- $\mathscr{T} \subseteq \mathscr{N} \times \mathscr{A}$, relation assigning agents to events
- $\mathscr{T}_{(u, v)}=\{i \in \mathscr{A}:(u, i),(v, i) \in \mathscr{T}\}$, tasks assigned to both $(u, v) \in \mathscr{E}$
- $M_{(u, v)}=\left|\mathscr{T}_{(u, v)}\right|$, number of tasks assigned to both $(u, v) \in \mathscr{E}$
- $\mathbf{x}_{u} \in \mathbb{R}_{+}^{M}$, vector of start times for each task for Agent u
- $\epsilon>0$, synchronization threshold

Multi-Agent Task Synchronization

Equilibrium Condition (Mathematical Formulation of the Problem)
Given $\left\{\mathbf{A}_{u} \in \mathbb{R}_{\max }^{M \times M}\right\}_{u \in \mathcal{N}}$, find a vector $\mathbf{x}(0) \in\left(\mathbb{R}_{+}^{M}\right)^{N}$ such that

$$
\left\|\mathbf{P}_{(u, v)} \boxplus \mathbf{A}_{u}^{k} \boxplus \mathbf{x}_{u}-\mathbf{P}_{(u, v)} \boxplus \mathbf{A}_{v}^{k} \boxplus \mathbf{x}_{u}\right\|_{\infty}<\epsilon \quad \forall(u, v) \in \mathscr{E}
$$

where $\mathbf{P}_{(u, v)} \in \mathbb{R}_{\max }^{M_{(u v)}} \times{ }^{M}$ is the projection onto $\mathscr{T}_{(u, v)} \subseteq \mathscr{A}$ for $(u, v) \in \mathscr{E}$.

Multi-Agent Task Synchronization

Example

The Task 1 executed simultaneously by Agent 1, Agent 2, \& Agent 3;
Task 2 by Agent 1 \& Agent 2;
Task 3 by Agent 2 \& Agent 3.

The Tarski Laplacian

Graph Laplacian (ubiquitous), $[\mathbf{L x}]_{u}=\frac{1}{\operatorname{deg}(u)} \sum_{(u, v) \in \mathscr{C}} w_{u, v}\left(x_{u}-x_{v}\right)$
Graph connection Laplacian (Signer-Wu, 2012), $(\mathscr{L} \mathbf{x})_{u}=\mathbf{x}_{u}-\frac{1}{\operatorname{deg}(u)} \sum_{(u, v) \in \mathscr{E}} w_{u, v} \mathbf{O}_{v, u} \mathbf{x}_{v}$

The Tarski Laplacian

Definition (Riess-Zavlanos, 2023)
The Tarski Laplacian is a map $\mathscr{L}:\left(\mathbb{R}_{\max }^{M}\right)^{N} \rightarrow\left(\mathbb{R}_{\max }^{M}\right)^{N}$ defined
aggregation
where $\mathbf{W} \in \mathbb{R}_{\min }^{N \times N}$ and $\mathbf{A}_{u, v} \in \mathbb{R}_{\max }^{M_{\omega u v}} \times M_{u}$

Notation: in the task assignment problem, define $\mathbf{A}_{u, v}:=\mathbf{P}_{(u, v)} \boxplus \mathbf{A}_{u}$.

The Tarski Laplacian

Definition (Riess-Zavlanos, 2023)
The Tarski Laplacian is a map $\mathscr{L}:\left(\mathbb{R}_{\max }^{M}\right)^{N} \rightarrow\left(\mathbb{R}_{\max }^{M}\right)^{N}$ defined

$$
\mathscr{L}(\mathbf{x})_{u}=\bigwedge_{(u, v) \in \mathscr{E}}[\mathbf{W}]_{u, v}+\mathbf{A}_{u, v}^{\sharp} \boxplus \boxplus^{\prime}\left(\mathbf{A}_{v, u} \boxplus \mathbf{x}_{v}\right)
$$

where $\mathbf{W} \in \mathbb{R}_{\min }^{N \times N}$ and $\mathbf{A}_{u, v} \in \mathbb{R}_{\text {max }}^{M_{u(u)}} \times M_{u}$.

$$
\text { Iterative map } \mathscr{F}(\mathbf{x})=\mathscr{L}(\mathbf{x}) \wedge \mathbf{x} \text { and dynamics } \mathbf{x}(t+1)=\mathscr{F}(\mathbf{x})
$$

Theorem I (Riess-Zavlanos)
Suppose $\mathbf{x}, \mathbf{y} \in \operatorname{Fix}(\mathscr{F}) \subseteq\left(\mathbb{R}_{\max }^{M}\right)^{N}$. Then, $\mathbf{x} \vee \mathbf{y} \in \operatorname{Fix}(\mathscr{F})$ and $\mathbf{x}+h \in \operatorname{Fix}(\mathscr{F})$.

The Tarski Laplacian

Definition (Riess-Zavlanos, 2022)
The Tarski Laplacian is a map $\mathscr{L}:\left(\mathbb{R}_{\max }^{M}\right)^{N} \rightarrow\left(\mathbb{R}_{\max }^{M}\right)^{N}$ defined

$$
\mathscr{L}(\mathbf{x})_{u}=\bigwedge_{(u, v) \in \mathscr{E}}[\mathbf{W}]_{u, v}+\mathbf{A}_{u, v}^{\sharp} \boxplus{ }^{\prime}\left(\mathbf{A}_{v, u} \boxplus \mathbf{x}_{v}\right)
$$

where $\mathbf{W} \in \mathbb{R}_{\min }^{N \times N}$ and $\mathbf{A}_{u, v} \in \mathbb{R}_{\max }^{M_{u, v}} \times M_{u}$.

$$
\text { Iterative map } \mathscr{F}(\mathbf{x})=\mathscr{L}(\mathbf{x}) \wedge \mathbf{x} \text { and dynamics } \mathbf{x}(t+1)=\mathscr{F}(\mathbf{x}(t))
$$

Theorem 2 (Riess-Zavlanos)
$\left\|\mathbf{A}_{u, v} \boxplus \mathbf{x}_{u}-\mathbf{A}_{v, u} \boxplus \mathbf{x}_{v}\right\|_{\infty} \leq[\mathbf{W}]_{u, v}$ for all $(u, v) \in \mathscr{E}$ if and only if $\mathbf{x} \in \operatorname{Fix}(\mathscr{F})$. Then, $\mathbf{x} \in \operatorname{Fix}(\mathscr{F})$ if and only if \mathbf{x} satisfies the Equilibrium Condition.

Convergence Analysis

Two convergence regimes: $\alpha>0, \alpha=0$

- Compute fixed points via the heat equation

$$
\mathbf{x}(k+1)=\mathscr{L}(\mathbf{x}(k)) \wedge \mathbf{x}(k)
$$

with initial condition $\mathbf{x}(0) \in\left(\mathbb{R}^{D}\right)^{N}$

- Gradients vanish

$$
\begin{aligned}
\alpha(k) & = & \|\mathbf{x}(k)-\mathbf{x}(k+1)\|_{\infty} \\
& = & \|\mathbf{x}(k)-\mathbf{x}(k) \wedge \mathscr{L}(\mathbf{x}(k))\|_{\infty}
\end{aligned}
$$

Theorem 3 (Riess-Zavlanos)
Let $\mathscr{F}=\mathscr{L} \wedge I$. The operator $\mathscr{F}:\left(\mathbb{R}^{D}\right)^{N} \rightarrow\left(\mathbb{R}^{D}\right)^{N}$ is non-expansive in the ℓ_{∞}-norm.
Furthermore, $\alpha(k) \rightarrow \alpha$ as $k \rightarrow \infty$ for some $\alpha \geqslant 0$.

Recap

Theoretical Results

Theorem I

Suppose $\mathbf{x}, \mathbf{y} \in \operatorname{Fix}(\mathscr{F}) \subseteq\left(\mathbb{R}_{\max }^{M}\right)^{N}$. Then, $\mathbf{x} \vee \mathbf{y} \in \operatorname{Fix}(\mathscr{F})$ and $\mathbf{x}+h \in \operatorname{Fix}(\mathscr{F})$.

Theorem 2

$$
\left\|\mathbf{A}_{u, v} \boxplus \mathbf{x}_{u}-\mathbf{A}_{v, u} \boxplus \mathbf{x}_{v}\right\|_{\infty} \leq[\mathbf{W}]_{u, v} \text { for all }(u, v) \in \mathscr{E} \text { if and only if } \mathbf{x} \in \operatorname{Fix}(\mathscr{F}) .
$$

Theorem 3

The operator $\mathscr{F}:\left(\mathbb{R}^{D}\right)^{N} \rightarrow\left(\mathbb{R}^{D}\right)^{N}$ is non-expansive in the ℓ_{∞}-norm. Furthermore, $\alpha(k) \rightarrow \alpha$ as $k \rightarrow \infty$ for some $\alpha \geqslant 0$.

Convergence

Convergence

Duke

Convergence

Loss

Scalability

Runtime of the tropical Tarski Laplacian in the number of agents and the dimension (number of events).

Towards Decentralized Formal Verification

Linear Temporal Logic (LTL)

LTL is a langue for model-checking for formal verification and control synthesis.

$$
\pi|\varphi| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \varphi_{1} \cup \varphi_{2}|\bigcirc \varphi| \square \varphi \mid \diamond \varphi
$$

Our Framework

- Atomic propositions: $\Phi=\left\{\pi_{i}^{v}\right\}_{i \in \mathscr{A}, v \in \mathcal{N}}$
- Constraints on the order of tasks

$$
\varphi_{v}=\bigwedge_{i \in \mathscr{A}} \neg \pi_{v}^{i} \cup\left(\bigwedge_{j \in \mathscr{P}_{v}(i)} \pi_{v}^{j}\right)
$$

- Constraints on synchronization of tasks

$$
\psi_{i}=\bigcirc^{k}\left(\bigwedge_{w \in \mathscr{A}_{i}} \pi_{w}^{i}\right)
$$

Duke

Towards Decentralized Model Checking
 What's Next

Robust \& adaptive schedule synchrony

- Time-invariant temporal constraints

$$
\text { Lattice Graph Diffusion } \Rightarrow \text { Model Checking }
$$

- Delays and feedback through control inputs
- Dynamic topology \& multi-hop synchronization.

Asynchronous schedule updates
Expanding the language

- Expanding constraints on the order of events
- Expanding constraints on synchronization of events.

$$
\text { Higher order LTL: } \bigwedge_{i \in \mathscr{A}} \diamond\left(\bigwedge_{v \in \mathscr{A}_{i}} \pi_{v}^{i}\right) \text { v.s. } \bigcirc^{k}\left(\bigwedge_{w \in \mathscr{A}_{i}} \pi_{w}^{i}\right)
$$

$$
(\mathscr{L} \mathbf{x})_{u}=\underbrace{\bigwedge_{v \in \mathcal{N}_{u}} \underbrace{W(u, v)}_{\text {delay }}+\underbrace{\mathbf{A}_{u}^{\sharp} \boxplus^{\prime} \underbrace{\left(\mathbf { P } _ { (u , v) } ^ { \sharp } \boxplus ^ { \prime } \left(\mathbf{P}_{(u, v)}\right.\right.}_{\text {next time }} \boxplus \underbrace{\left.\mathbf{A}_{v} \boxplus \mathbf{x}_{v}\right)}_{v})}_{\text {projection }})}_{\text {aggregation }}
$$

Beyond Schedules

$$
\text { Lattice Graph Diffusion } \Rightarrow \text { Model Checking }
$$

- Knowledge diffusion
- Preference dynamics

Duke

Conclusion
 "Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra

- Formulated a general multi-agent planning problem
- Introduced a novel mathematical theory for solving the problem.
- Surveyed our current efforts to extend our decentralized methods to more general linear temporal logic (LTL) formal verification \& synthesis problems.

Recent Publications

H. Riess, G. Henselman-Petrusek, M. Munger, R. Ghrist, Z. Bell, M. Zavlanos, (2023) "Network preference dynamics using lattice theory" (submitted).
H. Riess, M. Munger, \& M. Zavlanos (2023). Max-Plus synchronization in decentralized trading systems. 2023 IEEE Conference on Decision and Control.
H. Riess \& R. Ghrist (2022). Diffusion of information on networked lattices by gossip. 2022 IEEE Conference on Decision and Control. Ghrist, R., \& Riess, H. (2022). Cellular sheaves of lattices and the Tarski Laplacian. Homology, Homotopy and Applications, 24(1), 325-345.

Thank you. Questions?

