Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra Assured Autonomy in Contested Environments (AACE)

Assured Autonomy in Contested Env Program Review (Fall 2023)

Hans Riess

Joint work with Michael M. Zavlanos (PI) Duke University, Department of Electrical & Computer Engineering August 2, 2023

Objectives "Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra

- Formulate a general **multi-agent planning problem**
- Introduce a novel **mathematical theory** for solving the problem.
- Survey our current efforts to extend our decentralized methods to more general linear temporal logic (LTL) formal verification & synthesis problems.

Recent Publications

theory" (submitted). H. Riess, M. Munger, & M. Zavlanos (2023). Max-Plus synchronization in decentralized trading systems. 2023 IEEE Conference on Decision and Control.

H. Riess & R. Ghrist (2022). Diffusion of information on networked lattices by gossip. 2022 IEEE Conference on Decision and Control. Ghrist, R., & Riess, H. (2022). Cellular sheaves of lattices and the Tarski Laplacian. Homology, Homotopy and Applications, 24(1), 325-345.

- H. Riess, G. Henselman-Petrusek, M. Munger, R. Ghrist, Z. Bell, M. Zavlanos, (2023) "Network preference dynamics using lattice

Juke

Motivation Decentralized Autonomy & Coordination

- Heterogeneous autonomous agents
- Decentralized synthesis of task schedules
- E.g. intermittent connectivity control (Kantaros-Zavlanos 2016)
- Complex interactions between agents
- Synchrony v.s. Concurrency

Multi-Agent Coordination Motivation

Synchrony

Control

Autonomy

Synchronization Motivation

- Synchrony: groups of agents executing events at (approximately) the same time
- Agreement between agents in the discrete time domain

Multi-Agent Task Planning Task 7 Task 6 Task 5 Task 4 Task 2 Task 3 Task 1 Task 0

Agent 1

- Autonomous agents: $u, v \in \mathcal{A} = \{1, 2, ..., N\}$
- Events: $i \in \{1, 2, \dots, M\}$ (e.g. actions, tasks)
- Events assigned to agents: $\mathcal{T} \subseteq \mathcal{N} \times \mathcal{A}$
- Transitions times between events: $\tau_{i,i}^u \ge 0$.
- Temporal constraints on the order of events
- Temporal constraints on coupled events
- Communication links between agents

Problem: Compute a global schedule satisfying constraints.

7

Communication between agents: **undirected** graph, $\mathcal{G} = (\mathcal{N}, \mathcal{E})$

Transitions between tasks & durations: weighted **directed** graph

Task 1 can be performed only after Task 2 and Task 3 is performed; Task 2 or Task 3 can only be performed after Task 1 is performed.

Event graphs represented by matrices

$$\mathbf{A} = \begin{bmatrix} -\infty & \tau_{2,1}^{u} & \tau_{3}^{u} \\ \tau_{1,2}^{u} & -\infty & - \\ \tau_{1,3}^{u} & -\infty & - \end{bmatrix}$$

If $\mathbf{x}_{u} \in \mathbb{R}^{3}_{+}$ is a vector encoding *starting times* of each task for Agent u, then

$$\begin{bmatrix} -\infty & \tau_{2,1}^{u} & \tau_{3,1}^{u} \\ \tau_{1,2}^{u} & -\infty & -\infty \\ \tau_{1,3}^{u} & -\infty & -\infty \end{bmatrix} \boxplus \begin{bmatrix} x_{1}^{u} \\ x_{2}^{u} \\ x_{3}^{u} \end{bmatrix} = \begin{bmatrix} \max\{x_{1}^{u} - \infty, x_{2}^{u} + \tau_{2,1}^{u}, x_{3}^{u} + \tau_{3,1}^{u}\} \\ \max\{x_{1}^{u} + \tau_{1,2}^{u}, x_{2}^{u} - \infty, x_{3}^{u} - \infty\} \\ \max\{x_{1}^{u} + \tau_{1,3}^{u}, x_{2}^{u} - \infty, x_{3}^{u} - \infty\} \end{bmatrix} = \begin{bmatrix} \max\{x_{2}^{u} + \tau_{2,1}^{u}, x_{3}^{u} + \tau_{3,1}^{u}\} \\ x_{1}^{u} + \tau_{1,2}^{u} \\ x_{1}^{u} + \tau_{1,3}^{u} \end{bmatrix}$$

is the time-vector each task is started next. Naturally leads to max-plus algebra approach to synchronization...

Why Max-Plus Algebra? Max-plus linear systems theory

- Discrete event systems (DESs): $\mathbf{x}(k+1) = \mathbf{A} \boxplus \mathbf{x}(k) = \mathbf{A}^{\boxplus k} \boxplus \mathbf{x}(0)$
- theory

The "linear algebra of combinatorics" (Butkovič, 2003)

- $A \boxplus x = b$, (minmal) set covering
- $\mathbf{x} = \mathbf{A} \boxplus \mathbf{x} \lor \mathbf{b}$, shortest path (Bellman-Ford)
- A \boxplus x = λ + x, maximum cycle mean

Concepts, properties, techniques from conventional linear system theory translate to max-plus systems

$\mathbf{x}(k+1) = \mathbf{A}(k) \boxplus \mathbf{x}(k) \lor \mathbf{B}(k) \boxplus \mathbf{u}(k)$ $\mathbf{y}(k+1) = \mathbf{C}(k) \boxplus \mathbf{x}(k+1)$

Max-Plus Algebra Replace "plus" with "max" and "times" with "plus"

Linear algebra over the max-plus semiring (also called a diod)

- Max-plus matrix-vector multiplication generalizes linear transformations $[\mathbf{A} \boxplus \mathbf{x}]_i = \max_{j=1}^n [\mathbf{A} \sqsubseteq \mathbf{x}]_i = \max_{j=1}^n [\mathbf{A} \boxtimes \mathbf{x}]_j = 1$
 - defining a max-plus linear transformation $A : \mathbb{R}^n_{\max} \to \mathbb{R}^m_{\max}$
- Linear with respect to **point-wise max** (\vee) & scalar addition:

 $\mathbf{A} \boxplus (\mathbf{x}_1 \lor \mathbf{x}_2) :$ $\mathbf{A} \boxplus (\mathbf{x} + h)$

 $\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, -\infty, +, 0)$

$$[\mathbf{A}]_{i,j} + [\mathbf{x}]_j, \quad i = 1, 2, ..., m$$

$$= A \boxplus \mathbf{x}_1 \lor A \boxplus \mathbf{x}_2$$
$$= A \boxplus \mathbf{x} + h$$

Min-Plus Algebra Replace "plus" with "min" and "times" with "plus"

Linear algebra over the min-plus semiring (also called a diod)

Min-plus matrix-vector multiplication generalizes linear transformations $[\mathbf{B} \boxplus \mathbf{y}]_j = \min_{i=1}^m [\mathbf{B}]_i$

defining a max-plus linear transformation $B : \mathbb{R}^m_{\min} \to \mathbb{R}^n_{\min}$

• Linear with respect to **point-wise min** (\land) & scalar addition:

 $\mathbf{B} \boxplus' (\mathbf{y}_1 \land \mathbf{y}_2)$ $\mathbf{B} \boxplus' (\mathbf{y} + h)$

 $\mathbb{R}_{\min} = (\mathbb{R} \cup \{\infty\}, \min, \infty, +, 0)$

$$= \mathbf{B} \boxplus' \mathbf{y}_1 \wedge \mathbf{B} \boxplus' \mathbf{y}_2$$
$$= \mathbf{B} \boxplus' \mathbf{y} + h$$

Residuation Theory Pseudo-inverses of max-plus matrices are min-plus matrices

- Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$. Then, $\overline{\mathbb{R}}^n$ is an ordered <u>lattice</u> with $\mathbf{x} \lor \mathbf{y}$ (join) and $\mathbf{x} \lor \mathbf{y}$ (meet).
- $A^{\sharp}: \mathbb{R}_{\min}^{m} \to \mathbb{R}_{\min}^{n}$ given by

$$A^{\sharp}(\mathbf{y})_{j} = \max_{i=1}^{m} [\mathbf{y}]_{i} - [\mathbf{A}]_{j,i}, \quad j = 1, 2, ..., n$$

such that $A^{\sharp} \boxplus' (A \boxplus x) \ge x$ and $A \boxplus (A^{\sharp} \boxplus' y) \le y$, or, equivalently,

 $A \boxplus x \leq y$ if and only if $x \leq A^{\sharp} \boxplus' y$

- $A^{\sharp}(\mathbf{y}) = \mathbf{A}^{\sharp} \boxplus' \mathbf{y}$ where $\mathbf{A}^{\sharp} \in \mathbb{R}_{\min}^{n \times n}$ is a matrix defined $[\mathbf{A}^{\sharp}]_{i,j} = -[\mathbf{A}]_{j,i}$.
- The vector $\bar{\mathbf{x}} = \mathbf{A}^{\sharp} \boxplus' \mathbf{b}$ is the greatest solution to the equation $\mathbf{A} \boxplus \mathbf{x} = \mathbf{b}$.

• Suppose $A : \mathbb{R}^n_{\max} \to \mathbb{R}^m_{\max}$ is a max-plus linear transformation. Then, there is a min-plus linear transformation

Multi-Agent Task Synchronization **Problem Formulation**

- \mathcal{N} , agents
- ► A, events
- $\mathcal{G} = (\mathcal{N}, \mathcal{E})$, (undirected) communication graph
- $A_u \in \mathbb{R}_{\max}^{M \times M}$, max-plus matrices representing local temporal constraints; defined $[A_u]_{i,j} = \tau_{i,i}^u$
- $\mathcal{T} \subseteq \mathcal{N} \times \mathcal{A}$, relation assigning agents to events
- $\mathcal{T}_{(u,v)} = \{i \in \mathscr{A} : (u,i), (v,i) \in \mathcal{T}\}, \text{ tasks assigned to both } (u,v) \in \mathscr{E}$
- $M_{(u,v)} = |\mathcal{T}_{(u,v)}|$, number of tasks assigned to both $(u,v) \in \mathscr{E}$
- $\mathbf{x}_u \in \mathbb{R}^M_+$, vector of start times for each task for Agent *u*
- $\epsilon > 0$, synchronization threshold

Compute initial starting-times for each agent and for each task $[\mathbf{x}_{\mu}]_{i}$ such that agents assigned to the same task start the task at approximately the same time after k occurrences.

Multi-Agent Task Synchronization

Equilibrium Condition (Mathematical Formulation of the Problem) Given $\{\mathbf{A}_{u} \in \mathbb{R}_{\max}^{M \times M}\}_{u \in \mathcal{N}}$, find a vector $\mathbf{x}(0) \in (\mathbb{R}_{+}^{M})^{N}$ such that where $\mathbf{P}_{(u,v)} \in \mathbb{R}_{\max}^{M_{(u,v)} \times M}$ is the projection onto $\mathcal{T}_{(u,v)} \subseteq \mathscr{A}$ for $(u,v) \in \mathscr{E}$.

- $\|\mathbf{P}_{(u,v)} \boxplus \mathbf{A}_{u}^{k} \boxplus \mathbf{x}_{u} \mathbf{P}_{(u,v)} \boxplus \mathbf{A}_{v}^{k} \boxplus \mathbf{x}_{u}\|_{\infty} < \epsilon \quad \forall (u,v) \in \mathscr{E}$

Multi-Agent Task Synchronization Example

The Task 1 executed simultaneously by Agent 1, Agent 2, & Agent 3; Task 2 by Agent 1 & Agent 2; Task 3 by Agent 2 & Agent 3.

Graph connection Laplacian (Signer-Wu, 2012), $(\mathscr{L}\mathbf{x})_u = \mathbf{x}_u - \frac{1}{\deg(u)} \sum_{(u,v) \in \mathscr{C}} w_{u,v} \mathbf{O}_{v,u} \mathbf{x}_v$

 \mathcal{C} $(u,v)\in\mathcal{E}$

$$V_{u,v}(x_u - x_v)$$

The Tarski Laplacian

Definition (Riess-Zavlanos, 2023) The Tarski Laplacian is a map $\mathscr{L}: (\mathbb{R}_{\max}^{M})^{N} \to (\mathbb{R}_{\max}^{M})^{N}$ defined

$$\left(\mathscr{L}\mathbf{x}\right)_{u} = \bigwedge_{v \in \mathscr{N}_{u}} \underbrace{W(u, v)}_{\text{delay}} + \mathbf{A}_{u}^{\sharp}$$

where $\mathbf{W} \in \mathbb{R}_{\min}^{N \times N}$ and $\mathbf{A}_{u,v} \in \mathbb{R}_{\max}^{M_{(u,v)} \times M_{u}}$

Notation: in the task assignment problem, define $\mathbf{A}_{u,v} := \mathbf{P}_{(u,v)} \boxplus \mathbf{A}_{u}$.

residuation $\overset{\sharp}{}_{u} \boxplus' \left(\mathbf{P}_{(u,v)}^{\sharp} \boxplus' \left(\mathbf{P}_{(u,v)} \boxplus \mathbf{A}_{v} \boxplus \mathbf{x}_{v} \right) \right)$ next time projection

aggregation

The Tarski Laplacian

Definition (Riess-Zavlanos, 2023) The Tarski Laplacian is a map $\mathscr{L}: (\mathbb{R}_{\max}^M)^N \to (\mathbb{R}_{\max}^M)^N$ defined

$$\mathscr{L}(\mathbf{x})_{u} = \bigwedge_{(u,v)\in\mathscr{E}} [\mathbf{W}]$$

where $\mathbf{W} \in \mathbb{R}_{\min}^{N \times N}$ and $\mathbf{A}_{u,v} \in \mathbb{R}_{\max}^{M_{(u,v)} \times M_{u}}$. **Theorem 1** (Riess-Zavlanos)

Suppose $\mathbf{x}, \mathbf{y} \in \operatorname{Fix}(\mathscr{F}) \subseteq (\mathbb{R}_{\max}^{M})^{N}$. Then, $\mathbf{x} \lor \mathbf{y} \in \operatorname{Fix}(\mathscr{F})$ and $\mathbf{x} + h \in \operatorname{Fix}(\mathscr{F})$.

 $V]_{u,v} + \mathbf{A}_{u,v}^{\sharp} \boxplus' \left(\mathbf{A}_{v,u} \boxplus \mathbf{x}_{v} \right)$

Iterative map $\mathcal{F}(\mathbf{x}) = \mathscr{L}(\mathbf{x}) \wedge \mathbf{x}$ and dynamics $\mathbf{x}(t+1) = \mathcal{F}(\mathbf{x})$

The Tarski Laplacian

Definition (Riess-Zavlanos, 2022) The Tarski Laplacian is a map $\mathscr{L}: (\mathbb{R}^M_{\max})^N \to (\mathbb{R}^M_{\max})^N$ defined

$$\mathscr{L}(\mathbf{x})_u = \bigwedge_{(u,v)\in\mathscr{E}} [\mathbf{W}]$$

where $\mathbf{W} \in \mathbb{R}_{\min}^{N \times N}$ and $\mathbf{A}_{u,v} \in \mathbb{R}_{\max}^{M_{(u,v)} \times M_{u}}$.

Theorem 2 (Riess-Zavlanos)

 $\|\mathbf{A}_{u,v} \boxplus \mathbf{x}_{u} - \mathbf{A}_{v,u} \boxplus \mathbf{x}_{v}\|_{\infty} \leq [\mathbf{W}]_{u,v}$ for all $(u,v) \in \mathscr{E}$ if and only if $\mathbf{x} \in Fix(\mathscr{F})$. Then, $\mathbf{x} \in Fix(\mathcal{F})$ if and only if \mathbf{x} satisfies the Equilibrium Condition.

 $V]_{\mu,\nu} + \mathbf{A}_{\mu,\nu}^{\sharp} \boxplus' \left(\mathbf{A}_{\nu,\mu} \boxplus \mathbf{x}_{\nu} \right)$

Iterative map $\mathcal{F}(\mathbf{x}) = \mathcal{L}(\mathbf{x}) \wedge \mathbf{x}$ and dynamics $\mathbf{x}(t+1) = \mathcal{F}(\mathbf{x}(t))$

Convergence Analysis Two convergence regimes: $\alpha > 0$, $\alpha = 0$

Compute fixed points via the heat equation

 $\mathbf{x}(k+1) = \mathscr{L}(\mathbf{x}(k)) \wedge \mathbf{x}(k)$

with initial condition $\mathbf{x}(0) \in (\mathbb{R}^D)^N$

Gradients vanish

 $\|\mathbf{x}(k) - \mathbf{x}(k+1)\|_{\infty}$ $\alpha(k) =$ $\|\mathbf{x}(k) - \mathbf{x}(k) \wedge \mathscr{L}(\mathbf{x}(k))\|_{\infty}$ =

Theorem 3 (Riess-Zavlanos)

Let $\mathcal{F} = \mathscr{L} \wedge I$. The operator $\mathcal{F} : (\mathbb{R}^D)^N \to (\mathbb{R}^D)^N$ Furthermore, $\alpha(k) \to \alpha$ as $k \to \infty$ for some $\alpha \ge$

$$\mathbb{R}^{D}$$
)^N is non-expansive in the ℓ_{∞} -norm. ≥ 0 .

Recap Theoretical Results

Theorem 1

Suppose $\mathbf{x}, \mathbf{y} \in \text{Fix}(\mathcal{F}) \subseteq (\mathbb{R}_{\max}^{M})^{N}$. Then, $\mathbf{x} \lor \mathbf{y} \in \text{Fix}(\mathcal{F})$ and $\mathbf{x} + h \in \text{Fix}(\mathcal{F})$. Theorem 2 $\|\mathbf{A}_{u,v} \boxplus \mathbf{x}_{u} - \mathbf{A}_{v,u} \boxplus \mathbf{x}_{v}\|_{\infty} \leq [\mathbf{W}]_{u,v}$ for all $(u,v) \in \mathscr{E}$ if and only if $\mathbf{x} \in \operatorname{Fix}(\mathscr{F})$. Theorem 3

The operator $\mathcal{F}: (\mathbb{R}^D)^N \to (\mathbb{R}^D)^N$ is non-expansive in the ℓ_{∞} -norm. Furthermore, $\alpha(k) \to \alpha$ as $k \to \infty$ for some $\alpha \ge 0$.

Convergence

Convergence

Scalability

Runtime of the tropical Tarski Laplacian in the number of agents and the dimension (number of events).

Towards Decentralized Formal Verification Linear Temporal Logic (LTL) LTL is a langue for model-checking for formal verification and control synthesis. $\pi \mid \varphi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \varphi_1 \mathsf{U} \varphi_2 \mid \bigcirc \varphi \mid \bigcirc \varphi \mid \bigcirc \varphi \mid \Diamond \varphi$

Our Framework

- Atomic propositions: $\Phi = \{\pi_i^v\}_{i \in \mathcal{A}, v \in \mathcal{N}}$
- Constraints on the order of tasks

$$\varphi_{v} = \bigwedge_{i \in \mathscr{A}} \neg \pi_{v}^{i} \cup \left(\bigwedge_{j \in \mathscr{P}_{v}(i)} \pi_{v}^{j}\right)$$

Constraints on synchronization of tasks

$$\psi_i = \bigcirc^k \left(\bigwedge_{w \in \mathscr{A}_i} \pi_w^i\right)$$

Towards Decentralized Model Checking What's Next

Robust & adaptive schedule synchrony

- Time-invariant temporal constraints
- Delays and feedback through control inputs
- Dynamic topology & multi-hop synchronization. Asynchronous schedule updates

Expanding the language

- Expanding constraints on the order of events
- Expanding constraints on synchronization of events.

Higher order LTL:
$$\bigwedge_{i \in \mathscr{A}} \diamondsuit \left(\bigwedge_{v \in \mathscr{A}_i} \pi_v^i \right) v.s. \bigcirc^k \left(\bigwedge_{w \in \mathscr{A}_i} \pi_v^i \right) v.s.$$

Lattice Graph Diffusion ⇒ Model Checking

Beyond Schedules

Periodic

Orbits

Points

- Knowledge diffusion
- Preference dynamics

Conclusion

"Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra

- Formulated a general **multi-agent planning problem**
- Introduced a novel mathematical theory for solving the problem.
- temporal logic (LTL) formal verification & synthesis problems.

Recent Publications

H. Riess, G. Henselman-Petrusek, M. Munger, R. Ghrist, Z. Bell, M. Zavlanos, (2023) "Network preference dynamics using lattice theory" (submitted). H. Riess, M. Munger, & M. Zavlanos (2023). Max-Plus synchronization in decentralized trading systems. 2023 IEEE Conference on Decision and Control.

H. Riess & R. Ghrist (2022). Diffusion of information on networked lattices by gossip. 2022 IEEE Conference on Decision and Control. Ghrist, R., & Riess, H. (2022). Cellular sheaves of lattices and the Tarski Laplacian. Homology, Homotopy and Applications, 24(1), 325-345.

Surveyed our current efforts to extend our decentralized methods to more general linear

Juke

Thank you. Questions?

