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Objectives
“Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra

> Formulate a general multi-agent planning problem
> Introduce a novel mathematical theory for solving the problem.

> Survey our current efforts to extend our decentralized methods to more general linear temporal
logic (LT'L) formal verification & synthesis problems.
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Motivation

Decentralized Autonomy & Coordination

> Heterogeneous autonomous agents

> Decentralized synthesis of task schedules

> E.g. intermittent connectivity control
(Kantaros-Zavlanos 2016)

> Complex interactions between agents

> Synchrony v.s. Concurrency
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Multi—Agent Coordination
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Synchroniz ation

Motivation

> Agreement between agents in the discrete time domain

> Synchrony: groups of agents executing events at
(approximately) the same time
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Multi-Agent Task Planning
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Multi-Agent Task Planning

Task specifications with temporal constraints

Complete Task

> Autonomous agents: u,v € & = {1,2,..., N}

> Events: i € {1,2,..., M} (e.g. actions, tasks)

4

" 1 Send Packet

> Events assigned to agents: 7 C A X o

\"4

» Transitions times between events: Tl.”j > 0.

Agent 2
> Temporal constraints on the order of events
> Temporal constraints on coupled events Buffering
> Communication links between agenes ¢
Agent 1
Problem: Compute a global schedule satisfying constrains. Duke
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Multi-Agent Task Planning

Task specifications with temporal constraints

Communication between agents: undirected graph, & = (//, &)
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Multi-Agent Task Planning

Task specifications with temporal constraints

Transitions between tasks & durations: weighted directed graph

Task 1 can be performed only after Task 2 and Task 3 is performed;
Task 2 or Task 3 can only be performed after Task 1 is performed.
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Multi-Agent Task Planning

Task specifications with temporal constraints

Event graphs represented by matrices

@

A = le,z —00 —00 —> l“(A)/Z’;3
T3

— u
T1,2

[f'x, € R: is a vector encoding starting times of each task for Agent u, then

— OO0
u
112

u
113

u
1
— 0

— OO0

u
31

— OO0

— OO0

x|
X

X3

max{x; — 0o, x; + Tﬁ‘,l, X3 + Tg{l}

max{x; + 7|5, X5 — 00, X3 — 00}

max{x; + 7|3, Xy — 00, X3 — 00}

max{x; + 75‘,1, X3 + T§‘,1}

Xft + Ti/t,z

X{t + Ti/t,3

is the time-vector each task is started next. Naturally leads to max-plus algebra approach to
synchronization...
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Why Max-Plus Algebra?

Max-plus linear systems theory

> Discrete event systems (DESs): x(k+ 1) = AFHx(k) = A “H x(0)

> Concepts, properties, techniques from conventional linear system theory translate to max-plus systems

theory

xX(k+1) = A(k) Hx(k) v B(k) H u(k)
y(k+1) = Clk) Hx(k+ 1)

The “linear algebra of combinatorics” (Butkovi¢, 2003)

* AMEHx =b,(minmal) set covering

* x = AHx Vb, shortest path (Bellman-Ford)

* AHx = 1+X, maximum cycle mean

Duke
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Max-Plus Algebra

Replace “plus” with “max” and “times” with “plus”

> Linear algebra over the max-plus semiring (also called a diod)
R . = (IR U {—oo},max, — oo, + ,O)

> Max—plus matrix-vector multiplication generalizes linear transformations

[A B x]; = max[A] + [x], i=12,...,m
=t

defining a max-plus linear transformation A : R, — R”

> Linear with respect to point-wise max (V) & scalar addition:

A (X1VX2) — A Xl VA X2
AH X+ h) = AHXx+h

Duke
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Min-Plus Algebra

Replace “plus” with “min” and “times” with “plus”
> Linear algebra over the min-plus semiring (also called a diod)

mi

R . = (RU {oo},min,oo,+,0)

> Min—plus matrix-vector multiplication generalizes linear transformations

[B y]] — nlllIl[B]]’l —+ [Y]l, ] — 1,2,...,n

1 1 " . m n
defining a max-plus linear transformation B : R”. — R” .

> Linear with respect to point-wise min (A) & scalar addition:

BH' (y, Ay, = BH'y, ABH'Yy,
BH (y+h) = BHy+h

13
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Residuation Theory

Pseudo-inverses of max-plus matrices are min-plus matrices

> LetR=RU{—00,0}. Then, R"is an ordered lattice with x V y (join) and x V y (meet).

> Suppose A : Rl . — R  isamax-plus linear transformation. Then, there is a min-plus linear transformation

Ab-R™ R". given by

min

AX(y); = mf?‘alx[y]i —[Al,;, j=12,..n

such that A* [’ (A X) > xand A <Aﬁ / y) <y, or, equivalently,

A HHx

/N

y iftandonlyif x <A'H'y

min

» A¥(y) = A* 'y where A* € R™" is 2 matrix defined [Aﬁ]i,j = —[A];;

» The vector x = A* ' b is the greatest solution to the equation A [ x = b. Duke
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Multi-Agent Task Synchronization

Problem Formulation

Compute initial starting-times for each agent and for each task [x,]; such cthat agents
assigned to the same task start the task at approximately the same time after k occurrences.

> N, agents
> o, events

> G = (N, &), (undirected) communication graph

= 74

> A, € RxXY, max-plus matrices representing local temporal constraints; defined [A,]; ; = =

max >

> T C N XA, relation assigning agents to events

> Tun=tied :(ui),(v,i) € T}, tasks assigned to both (u,v) € &
> M, =19 (.|, number of tasks assigned to both (u,v) € &

> x, € RY, vector of start times for each task for Agent u

> ¢ > 0, synchronization threshold

Duke
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Multi-Agent Task Synchronization

Equilibrium Condition (Mathematical Formulation of the Problem)

Given {A,, € RMMYy . find a vector x(0) € (RY )N such that

max

[La AYEx, - P A*Bx |l <e Yu,v)€ &

u Vv

My, X M .

where P, , € R %™ ™ is the projection onto I, ,, € & for (u,v) € &.

Duke
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Multi—Agent Task Synchronization
Example

—0 171 133

Aj=|7, —00 - T, —00 —00
— 0 1'21,3 — 0 713’3 —00 —00
The executed simultaneously by Agent 1, Agent 2, & Agent 3,

Task 2 by Agent 1 & Agent 2;
by Agent 2 & Agent 3. Duke
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The Tarski Laplacian

Message-Passing
, W _ 4 ——
X, " Av,u (=) " Aﬁ,v (=) " /\ o (=) Xy
(u,v)e& _ o~
Neighbor Encoder Decoder Aggregate Update
1
Graph Laplacian (ubiquitous), [Lx], = Do, - x)
deg(u) ’
(uv)eE®&
|
Graph connection Laplacian (Signer-Wu, 2012), (¥x), = x, O, X
P P >l h (LX) deg(u) Z P, Duke

(uv)E&
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The Tarski Laplacian

Defmition (Riess-Zavlanos, 2023)
The Tarski Laplacian is a map & = (R maX)N — max) defined

residuation
y y /
( /\ W(u, v) +A H’ P(u 9 P,,HA, Xv>
vedu dela ) N © hext &
y projection next time
aggre:gation

M M
where W € RN and A, ER W " M

min max

Notation: in the task assignment problem, detine A, =P, ,EHA,

Duke
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The Tarski Laplacian

Defmition (Riess-Zavlanos, 2023)
The Tarski Laplacian is a map & = (R maX)N — max) defined

Zx),= J\ W], +AL H (A, Hx,)
(u,v)e&

M. xM
where W € RVXN andA CEeER_™ * M

min max

lterative map F(x) = ZL(X) A X and dynamics X(t+1)=F (X)

Theorem 1 (Riess-Zavlanos)

Suppose X,y € Fix(F) C ( Then, x Vy € Fix(%) and x + h € Fix(%).

max )

Duke
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The Tarski Laplacian

Definition (Riess-Zavlanos, 2022)
The Tarski Laplacian is a map & = (R maX)N — max) defined

Zx),= J\ W], +AL H (A, Hx,)
(u,v)e&

M. xM
where W € RVXN andA CEeER_™ * M

min max

lterative map F(x) = ZL(X) A X and dynamics Xt+1)=% (X(t))

Theorem 2 (Riess-Zavlanos)

A, Hx,—A X, < [W1,, for all (u,v) € & if and only if x € Fix(F). Then,

V,Uu

x € Fix(F) if and only if x satisfies the Equilibrium Condition.

Duke
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Convergence Analysis

Two convergence regimes: a > 0, a =0

> Compute fixed points via the heat equation

x(k+ 1) = Z (x(k)) A x(k)

with initial condition x(0) € (RP)"

» Gradients vanish

a(k) =

Theorem 3 (Riess-Zavlanos)

Let F = L AL The operator F : (

H{D)N—> (

[x(k) — x(k + 1)
1x(k) = x(k) A Z (x(K)) |l

RD

N

Furthermore, a(k) — a as k - oo for some a = 0.

22

is non-expansive in the € -norm.
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Recap

Theoretical Results

Theorem 1

Suppose X,y € Fix(F) C (Rﬂn{ax)N, Then, x Vy € Fix(¥) and x + h € Fix(%).

Theorem 2

| A x —A X,|l oo < [W1,, for all (u,v) € & if and only if x € Fix(F).

u,v u V,U

Theorem 3

N N . L
The operator F (IRD ) (IRD ) is non-expansive in the € -norm. Furthermore, a(k) - o

as k = oo for some o

%
0.

\V

Duke

23




Convergence

Convergence

a(k) = |[x(k + 1) = x(k) ||

—_—— =0
— 0 > ()

lterations (t)
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Convergence

l.oss
1.2 g

A\

\

| £(x) = max |lA X —A X
g’ 1 0 ‘ (x) (u,v)EX%H u,v U v,y v”oo
S \\
\\\\\‘ ________________________________________________
0.9} \\\\{
AN
\ N\
0.8} \EE—
0 1 2 3 4 5 6 7 3

[terations (t)

Duke

25




Scalability

Scalability
500+
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Runtime of the tropical Tarski Laplacian in the number of agents and the

dimension (number of events).
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Towards Decentralized Formal Verification
Linear Temporal Logic (LTL)

[LTL is a langue for model—checking for formal verification and control synthesis.

loloiApy | 79| gUp, | O | O | Qv

Our Framework

> Atomic propositions: ® = {7} },c .y er 5@
» Constraints on the order of tasks $<AT13
o= A= ( A ) '
e jeP (i) ()@

> Constraints on synchronization of tasks ®

P! @
Vi = Ok< /\ ”i> ©

w

wed, N DU.ke
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Towards Decentralized Model Checking

What’s Next
Robust & adaptive schedule synchrony

Lattice Graph Diffusion = Model Checking

» Time-invariant temporal constraints

> Delays and feedback through control inputs residuation

(SZX)M — /\ W(u, v) +A5 / <P1(iu,v) / (P(u,v) A Xv)>
> Dynamic topology & multi-hop synchronization. P ‘

projection next time

aggregation

Asynchronous schedule updates

Expanding the language

» Expanding constraints on the order of events

» Expanding constraints on synchronization of events.  a={d: -» =

Higher order LTL. /\ O( /\ ”f;) V.S. Ok( /\ ”VZV)

e veE, wed
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Beyond Schedules

Lattice Graph Diffusion = Model Checking

> Knowledge diffusion

» Preference dynamics

Control

Inputs

Convergence Complexity

Periodic
Orbits

Analysis

Lattice
Dynamical Systems Utility
Functions
Equilibrium x(t+1) = F (x(t), u(t)) f:L—=R
Points x(0) € £V

29
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Conclusion
“Synchronizing Tasks in Multi-Agent Systems with Max-Plus Algebra

> Formulated a general multi-agent planning problem
> Introduced a novel mathematical theory for solving the problem.

> Surveyed our current efforts to extend our decentralized methods to more general linear
temporal logic (LTL) formal verification & synthesis problems.
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Thank you. Questions?
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