Networks &
Asynchronous
Information
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\‘/’ Network Systems

e Design and analysis challenges for both

controlling agents within a network RT3 will develop analysis, design, and
(stochastic time-varying and random graph synthesis methods foragents within a

. network and over a network to
models) and controlling agents over a generalize existing graph theory-based
network methods and improve the interface and

adaptability between controls and
communications

* Determining conditions under which random
communication graphs attain required
connectivity properties and positioning
agents to achieve network objectives (e.g.,
jamming adversarial networks)

* Develop models where the control system
can adapt in real time as service degrades

 Develop control techniques that allow a VN e
. . 0.0 e®g Jammed Nodes
system to adapt its operation and use of W
network resources based on QoS that the

network is able to provide
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* |nvestigate stability analysis methods for

hybrid dynamic systems incorporating delays RT4 will develop tools for the design of
. . networked hybrid systems resilient to
due to asynchronous communications and delayed and asynchronous information,
. producing novel generalizations of the
com pUtatlons hybrid analysis methods and new insights
into shared computations even beyond
* Explore the utilization of delay bounds to cloud-based collaboration
design asynchrony-tolerant algorithms for
distributed data processing p—
T2 T G(t{)fl_(ag)(,,fN(x,))} T
* Explore m-ethods to automatically delegate oy N Strategies to use
computations based on a problem’s structure exogenous information
to make an endogenous
switch

* Refine switching algorithms for online

optimization and computation to render oy
desired sets invariant o D = )
¢ ll«*(k +1) = 2[| < [|2*(k) — &
. . z'(2)
* Experimentally validate these approaches to Algorithms for optimizing
networked hybrid systems through with intermittent
. . . information flows in
implementation on mobile autonomous networks

agents

Duke

UNIVERSITY
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\/’ Major initiatives this year:

 Developing techniques to
optimize dynamic spectrum
usage in mixed cooperative/
competitive scenarios

i = AN AOS

S — |

 Developing techniques to infer,
attack, and protect vulnerable
portions of networks and
networked agents
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O \/’ Major initiatives this year:

 Developing techniques to
quantify the flow of
information in systems of /Q O\\O
distributed agents, allowing

us to assess robustness or
vulnerabilities to attacks o

 Developing hybrid
continuous/discrete models
for control fusing diverse
physics/communication
events

UF [FLORIDA



O \/’ Major initiatives this year:

 Developing distributed space / \
architectures that can provide /
assured operation of high-value o
assets in contested \ . /
.\./.

environments

* Developing Swarm Shield: A system of
networked space assets to
obfuscate or disaggregate
high-valued assets for
mission assurance

UF [FLORIDA



DARPA SC2
Challenge

Spectrum Collaboration and Competition




-»'s'\wj’ SC2 Problem

* Dynamic spectrum access environment with 5
teams/networks of radios communicating in same
frequency band

« Each team scores points by delivering traffic flows
achieving certain QoS mandates (throughput,
latency, hold time, etc.)

» Other impairments: jammers, active and passive
incumbents that must be protected

Frequency (MHz)
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Jg.\w/, SC2 Problem

- A mixed cooperative/competitive game

min score if min score < scoring threshold

° ’ —
Team’s match score {achieved score if min score > scoring threshold

where min score = minimum among all 5 team score

UFiiskioa €



'_%,\w/’ SC2 Problem

« Adapt strategy in presence of rich but incomplete
information:
* No online scoring information, other than teams’ estimates

» Teams use CIL to report frequency use, radio locations,
performance (score) estimates
« Some CIL veracity checks on spectral use, scores

« Teams do not have to report their true scores when their scores are
above the threshold

« Incumbents report channel usage, interference received
and threshold, threshold violations

« Spectrum sensing to estimate peer channel usage and
detect jamming and active incumbents

UF [FLORIDA



"g\""j’ Everything is adaptive

« PHY: Acquisition, Modulation, Coding, TX Power,
RX Gain

* LL: Channels and Time Slots/Channel,
Mapping of SRCs to Time Slots

* NET: Supported flows, admission control granularity
down to individual files/bursts

 Other: Channels to jam

IIIIIIIIII




\ / ¢ o
'_%,\'/’ Spectrum Access Decisions

 Decision engine determines which flows are
transmitted and in which time/frequency slot
(pocket) they will be transmitted with goal of
maximizing our team’s match score

» Spectrum access action = Pocket Schedule

» Action space is huge!
* 40 channels x 10 time slots = 400 pockets
« As many as 100+ flows
* 1004°° possible pocket schedules!
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\/’ Inputs to Decision Engine

* Set of specified QoS mandates for our team’s flows

« Estimated number of achieved mandates and total mandates for our
network

 Information on throughput per pocket expected between each SRC-
DST pair

» Peer networks’ IDs (identified based on CIL message
characteristics)

« Channels used by our network and by peer networks

 Estimated channel occupancies from our spectrum sensor (PSD
measurements)

« Computed SINRs from our interference map (GPS and voxel info
from CIL messages)

 Estimated achieved and total mandates from competitor networks
(Performance info from CIL messages)

N
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\/’ Decision Engine Design

« No “magic” machine-learning black box that can solve spectrum access
problem

. Ap%?f age-old engineering approach of “divide and conquer”: Break
problem down into smaller pieces:

1.Channel selection
» Determines target set of channels C to be used by our network
* ML and expert system approaches

2.Admission control
* |C| determines number of pockets available
» Estimates number of pockets needed to support each flow
« Iterative process to determine set of flows to admit in order to maximize
points scored

3.Pocket schedule assignment
» Linear program to allocate number of pockets to satisfy latency requirements
of all admitted flows
» Greedy algorithm to assign pockets in each frame to satisfy mandates of all
admitted flows
« Maps to channels in C based on worst-case SINR over links of SRC-DST pairs
in above assignments

UF [FLORIDA



..g\.;,j’ Channel Selection

« Compare performance of two approaches to choosing
number of channels to use:

« Switched System/Controls/Expert System: continually
adapt number of channels with different strategies in
different operating regimes

» Reinforcement Learning: Train different agents to select
number of channels to use for each stage of each scenario
and each individual team

UF [FLORIDA



A 2 .. .
..g-\.;,/, re-competition Comparisons

* Compared in 3-team Alleys of Austin mobile
networking scenario:
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« ML gets better score by aggressively using more
channels in stage 3 When playmg with teams D & E
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,%,\,3,/, Match 7: ES > RL
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 ES less aggressive in using channels in stage 3 leads
to better score when playlng with teams D & G
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Competition Results

®
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Final Results
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\ 2 . .
dg\/’ Discussion
o«

* No “magic” machine-learning black box that can
solve spectrum access problem

* Developed algorithms to achieve robust
communication and spectrum dominance in highly
contested environments

* RL does show potential, but ES was safer and proved
successful
e Matches too short for online version of SARSA

* Not enough training and validation data for ML
* Need a less resource-intensive simulation environment to
train ML algorithms
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