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4,\‘:'/’ Protecting Information

« RT6 focuses on methods to protect against indirect
vulnerabilities caused by adversarial observation of
computation, communication, and mission execution

* Major initiatives this year:

e Protecting information through Nose-adang mecaia
examination of entropy and Markov oy and st
. . perrormance
decision processes
* Differential privacy

access control, and
machine learning

- (e.g., barrier certificates)
for verifying privacy

 Systems approaches to privacy, / %
system-theoretic principles
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\/, Mission-Critical Information

« Entropy maximization in Markov
decision processes subject to
temporal logic constraints

 Synthesize constrained, entropy-
maximizing strategies

* The higher the entropy, the less
predictable

 Convex-optimization-based synthesis

« Entropy maximization in partially
observable Markov decision
processes

 Extension to decision making with
limited information at runtime

UF|FLORIDA



,%,\'3'/’ ies and Information Leakage

* Least inferable policies 1
in partially-observable -..::....HEE o .ni
Markov decision k
 Accounts for both the Least inferable policy Maximum-entropy policy
amount and
informativeness of the
adversary’s observation
* Minimizing information )
leakage regarding high- QO ‘
level task specification - H

UF|FLORIDA



X\@/’, Differential Privacy

 Dirchlect mechanism for differential privacy on the
user simplex

 Provides differential privacy to Markov decision process
properties

« Ensures recipient of data cannot learn anything
meaningful from privatized simplex data

 Error bounds and guidelines for privacy calibration
in differentially-private Kalman Filtering

* First control-theoretic guidelines for calibrating
differential privacy

» Differentially private controller synthesis with metric
temporal logic specifications
« Multi-agent control policies with differential privacy

UFiiickivh &) Duke




4,\'3'/’ Systems and Access Control

 Privacy-preserving secure localization
« Extension of privacy-preserving local optimization to
embedded device processors
» Framework for secure machine learning
* Interpretable security reference monitor
design with applications to
autonomous agents
* Access control policy
« Framework for reasoning

Attack Graph File DAC/MAC Ground Truth Comparison

Real-System (Ideal)
Processes/Files

’ Policy Instantiation

about disparate access
policies in embedded
devices

[ File/ Object

UF|FLORIDA



Access Control Policy
Analysis for

Embedded Devices




,%,‘\‘3’/’ Embedded Devices

 Embedded agents and the operating systems that
they run are subject to numerous methods for
protecting on-device information

« Example: Android OS — the world’s most popular
operating system (mobile and embedded devices)

» Numerous ways of protecting access to on-device
critical information
* Discretionary access controls
- Mandatory access controls
 Linux capabilities
« Middleware protections/SECCOMP

« Many attack surfaces

UF|FLORIDA



4,*\'3'/, 1soning about Access Control

 Challenge: there is no way to currently reason about
the myriad access control mechanisms

» Consequence: access policies from different
mechanisms not in concert with each other, may be
mutually conflicting

» What objects and processes can be accessible to
untrusted processes?

UF|FLORIDA



,%f\w/, BigMAC Design

- Examine, recover, simulate, fully instantiate files,
process, IPC from an extracted firmware image

i Simul ate bOOt Attack Graph File DAC/MAC Ground Truth Comparison
process to recover
types instantiated

at runtime

* Process hierarchy
and process
metadata

Runtime
Ctxj - [ Ctxj untime 1000
Extraction [CEL5

on:,i,, °

p Real-System (Ideal)
nstanfliaz‘ed Poicy, G Process Tree Processes/Files |
"aph Credentials

v
Policy Instantiation
'—| Processes/Objects |

SEPolicy Parsing
-—| Type Relations |

Filesystem Extraction
b—| DAC/CAP/Labels |

Firmware

Filesystems

[ File/ Object . Subject / Process <> IPC Object

UF|FLORIDA



4,\‘:’/’ Policy Recovery

* Decompile binary SEPolicy into connected multi-
edge directed graph using Access Vector rules

 Subject graph includes all types and attributes used during
SELinux MAC type enforcement

 Instantiate on filesystem through type enforcement rules
C . S (OJ ’Cp)\ S
p - T ]
* Build dataflow graph from subject graph to examine paths
and edges where privilege escalation may occur

- Bipartite graph, worst case O(|S| * |O])edges,
O(|S] + [O]) nodes o

Dataflow

_ Flat Dataflow
(G4 F— nsantato —( 1) P metentated
— pa,-Se _Yag,\,‘\(\\‘

Process Tree

E)( Z"/'act
A
F _— S , P
Backing Files Subjects Processes
— e

—_——
UNIVERSITY f g““wmk)%‘,, '4
) Duk Ay @ TEXAS
UF [FLORIDA @ Duke /&%
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,%,\w/’ Evaluation/Case Study

* Over 98% of DAC and MAC data recovered

» Approx. 75% of processes (mostly missing app level)

160
140 B Correct
mmm Different DAC/Cap.
't:':; 120 Extra
[]
3 100
3 80
@
3]
o
T
o

60
40
i N
0 . . .
Samsung S7 Pixel 1 (7.1.2) Pixel 1 (8.1.0) Pixel 1 (9.0.0)
Edge (7.0.0)

Recovered by BigMAC

* Prolog-based query engine filter
MAC,DAC, CAP, ext. surfaces

« Found additional attack paths for
existing CVE

Dig,
A
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s Pair Found
. Missing Native
Missing App

= 2 I )
1B

Samsung S7 Pixel 1 (7.1.2) Pixel 1 (8.1.0)

Edge (7.0.0)

Pixel 1 (9.0.0)

Ground truth, running device

process:zygote
<CAP_SYS_ADMIN>
|

crash_dump_exec:transition

| process:crash_dump l— vold:ptrace —>

*x:write —)| <various_files>

process:vold
<uid=0>




A Learning
Mechanism for
Learning Systems
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‘\/’ Motivation

Secure solutions to learning problems requires cooperation
between many research disciplines.

Learnable Problem Setting Waterfall

User Expertise and Goals (Deployment) I
Safety Requirements

Functional Metrics (Reward & Objective functions) I
Data and Label Engineering

Domain-specific Engineering (domain knowledge)

Applications (shared modular subsystems)

>

Analysis

Problem Concreteness

New Constructions (PreProcess++, Train++, Predict++)

Pattern Recognition (PreProcess,Train, Predict) I

Hardware and Frameworks

Systemization Landscape

. Machine Learning (ML) Adversarial ML (AML) Privacy ML
Interpretable ML AML Defenses Systems Security
Verifiable ML

Duke

UNIVERSITY
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'J Motivation

 Secure solutions to learning problems requires cooperation
between many research disciplines.

« However, learning systems research tends to be conducted in an
ad-hoc manner:
« Threat modeling has only recently received attention from ML researchers.

« If the threat model is known, choosing among seemingly competing
frameworks can be difficult.

Differentially Empirical risk
Private Models Mminimization

UFsioRich &)

Ty



4,\'3'/’ Motivation

 Secure solutions to learning problems requires cooperation
between many research disciplines.

« However, learning systems research tends to be conducted in an
ad-hoc manner:
» Threat modeling has only recently received attention from ML researchers.

 If the threat model is known, choosing among seemingly competing
frameworks can be difficult.

 Lack of clarity mitigates cross-pollination between each research discipline,
causes external observers to question what progress has been made.
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4,\‘3’/, Motivation

 Secure solutions to learning problems requires cooperation
between many research disciplines.

« However, learning systems research tends to be conducted in an
ad-hoc manner:

» Threat modeling has only recently received attention from ML researchers.

 If the threat model is known, choosing among seemingly competing
frameworks can be difficult.

 Lack of clarity mitigates cross-pollination between each research discipline,
causes external observers to question what progress has been made.

Potential Output:
Unified proposals

Privacy ML Verifiable ML Interpretable ML Adversarial ML

Duke &% UTEXAS

UNIVERSITY
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\~/ , Motivation

 Secure solutions to learning problems requires cooperation
between many research disciplines.

« However, learning systems research tends to be conducted in an
ad-hoc manner:
» Threat modeling has only recently received attention from ML researchers.

 If the threat model is known, choosing among seemingly competing
frameworks can be difficult.

 Lack of clarity mitigates cross-pollination between each research discipline,
causes external observers to question what progress has been made.

oo ] E] E] . . = E]
Ad-hoc,
Repeated work S 1

? V
External Observers Privacy ML Verifiable ML Interpretable ML Adversarial ML

Duke &% UTEXAS

UNIVERSITY
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Takeaway:

* Lots of seemingly unrelated research disciplines
working on related problems

 Unifying them is not immediately obvious
- Has this problem been tackled before?

UF|FLORIDA
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4'\.-./’ Anderson research model

Has this problem been tackled before?

In 1993, Anderson described cryptographic systems which faced similar
issues:

* Unclear threat models:
« what could happen vs. what was likely to happen.

« Little communication due to centralized certification authority
* crypto systems mainly cared about passing certification

Unifying research in ML with systems security:
» Adopt Anderson’s research model to design secure learning systems

« Organize around system security strategies which manifest within ML
research

UF|FLORIDA



\~/ Proposed Research Model

Analysis
Theoretical Results Empirical Tests
| Decoupling [86] | | Complete Verification |
| Geometry [116] | | Incomplete Verification |
| (¢, 9)-DP Bounds [95] | | Ad-Hoc Methods [3] |

Learning Primitives

Privacy ML Interpretable ML

| Gradient Shaping | | Local Interpretations | DP-Smoothing
| Poison Detection | | Global Interpretations | Polytope Bounding End-to-End Learning

Adversarial Detection

System Security Strategies

Reductionist Kernelization [64] Root of Trust [96] Protection System [98]
Functional Restrictions [8] Sense of Self [100] | Enforcement |
‘\ﬂ Protection States ]
End-to-End Argument [112] | Security Goals |

Anderson Learning
Mechanism [64]
[ Threat Model |
| Correctness |
| Problem Setting |

Duke

UNIVERSITY

TEXA

e University of Texas at Austin
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4,\'.’/ Instantiation of model

Example using:

“Brittle Features of Device Authentication” | ™"

* Ad-hoc empirical test.

* Example: Information gain,

Modify adversary _ _ o _ _ fingerprinting accuracy
Theoretical Results Emmpirical
(originally none for FP [ Deoagting ] Verifcatie
——— 1
system S) mlz_-i_l E Authentication
System

The system uses sense of self to:

* Protect the integrity of network resources,
by offering physical authentication channel.

* Example: Encode the sense of self using
machine learning models.

The system captures:

* Forrest et al. sense of self: encode a
probabilistic definition of normal and abnormal.

Establish likely problem setting (device fingerprints)

Conditions for correctness (true positives/negatives)

Plausible threat model (hard label adversary)

Re-analyze

UF [FLORIDA
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Example using:

“Brittle Features of Device Authentication”

Zeroth Order Optimization

Instantiation of model

Modify adversary

framework -
C(x) == arg max F.(x).
c€ m

(z
____)__)_____

max F.(z’ (z/) (Untargeted) |
CIEORS Reias
T = T () e

1 if Sy« (2') >

o+ (2') == sign (
Gor (@) = sig therw1se

mind(z’,2*) suchthat ¢, (z') =1,

xl

(origi forfE
systers} Z00

Hard label updates based on gradient approximation

.’ft =X+ {tvt(xt, (St) such that

vy (@, 0p) = {Vs(xt’(stmVS(xta(St)Hz» if p=2,

w—_

'Qfglf('VS'(:Et, 507 Tl'p

0,
System Sc
| Mt et Warradceaiie: | I Ro
—

UF [FLORIDA

> Re-analyze
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Example using:

“Brittle Features of Device Authentication”

Baseline Random Greedy A Exploratory A

s

012345678 012345678

S B A

012345678 012345678

012345678 012345678

USB-F | [ B 66% 100% |
G=010 G=010 G=8111 §=1001L0 §=300L0 §=50010
Baseline Random Greedy A Exploratory A

RARE

1 1

Instantiation of model

Modify adversary

(origi forfE
systers} Z00

WDTE [_I 0% I 33% 66% 100% |
G=0+0  G=8+5  G=75+0 §=10040 G=30040 §=500+0 System S«
Baseline Random Greedy A Exploratory A I Resdactioniot Karmbicsts | I R
:: | Feactioss] Restrictions | | Se
0
0246 81012 024681012 0246K1012 024681012 024681012 02 465K1012 Ander
&TID [W o W 39 66% 100% | 2
g=0+0 g=4+0 g=121+9 Gg=100+0 g=300+0 q=500+0 Re—analyze %
s S
UNIVERSITY of Vo ¥ D k TEXAS
UFFiorRiIDA &9 Luke
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Example using:

“Brittle Features of Device Authentication”

Modify adversary _ Analysis = =
Theoretical Results Empirical Texts
(ZOO) | Dyoegliag ] Verilcaice
I Geanxtry I
T e —

Instantiation of model

Es Ll
¢ Sy

L4 o\
'\A Authentication 4/'
} System {

DP-based Randomized Smoothing
Defense (Cohen et al.)

g(zr) = argmax P(f(z +¢) = c¢)
cey

where & ~ N(0, %)

Three Model

Comectneas

Toechlem Setting

Re-analyze

UF [FLORIDA

\ Modifies the system’s sense of self
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P 4 Instantiation of model
* J Example using:

“Brittle Features of Device Authentication”

o =5 e
odify adversary ¢ &/
Ne )/

(200) 5\ N
4
,,,,,,,,, A | - 4,
: l ! -E \L.A Authentication >
__________ ) 'y\ System
| " €

DP-based Randomized Smoothing
Defense (Cohen et al.)

3

N

s\\

> L - & | g(z) = argmax P(f(z +¢) = ¢)
= | cey

_________

= where & ~ N(0, %)

GTID a

Baseline Greedy A

Adversary, A
Adversary, A

\ Modifies the system’s sense of self

Re-analyze
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4,\«’/ Instantiation of model

Example using:

Analysis:

* Ad-hoc empirical test.

”Jack” Audi automated driving system

* Example: Drive a 550-mile
automated test drive.

Modify adversary

(originally none for Jack)

©BT Devices

The system uses end-to-end argument to:

» Offer robustness, through Bayesian
modeling: probabilistic measure of
uncertainty between inputs and outputs.

* Example: Jack can perform probabilistic
reasoning from perception sensor
uncertainties

The system captures:

* Saltzer et al. end-to-end agreements (i.e.,
measures of agreement between inputs and
outputs)

Establish likely problem setting (sensor inputs)

Conditions for correctness (crash avoidance)

Plausible threat model (in this case, innocent)

Re-analyze

UF [FLORIDA
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\/’ Instantiation of model

High-level feedback loop helps visualize gaps in
constructions or analysis.

Analysis Q-
Thearetical Reaults Eanpirical Texts
II i II e Analysis:
\ Does the analysis capture every
‘0" possible failure mode in the current
> threat model?

Constructions:

—-— T . T : Does the existing model of uncertainty
S — ) completely capture each end of the system?

Structure informs of
dependencies

If we change our threat
model, we must re-visit our
security strategies, primitives,
and analysis.

Example: Analysis of Jack in
the innocent setting says little
about the adversarial setting

UF [FLORIDA



 Consider framework in the context of human-
machine cooperation systems

* Verification of reinforcement learning agent policies

» Apply and implement on autonomous agents

UF|FLORIDA



