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Protecting Information

• RT6 focuses on methods to protect against indirect 
vulnerabilities caused by adversarial observation of 
computation, communication, and mission execution

• Major initiatives this year:
• Protecting information through 

examination of entropy and Markov 
decision processes
• Differential privacy
• Systems approaches to privacy, 

access control, and 
machine learning

system-theoretic principles 
(e.g., barrier certificates) 
for verifying privacy

Noise-adding mechanisms 
to tradeoff individual 
privacy and aggregate 
performance
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Mission-Critical Information

• Entropy maximization in Markov 
decision processes subject to 
temporal logic constraints
• Synthesize constrained, entropy-

maximizing strategies
• The higher the entropy, the less 

predictable
• Convex-optimization-based synthesis

• Entropy maximization in partially 
observable Markov decision 
processes
• Extension to decision making with 

limited information at runtime



Policies and Information Leakage

• Least inferable policies 
in partially-observable 
Markov decision
• Accounts for both the 

amount and 
informativeness of the 
adversary’s observation

• Minimizing information 
leakage regarding high-
level task specification



Differential Privacy

• Dirchlect mechanism for differential privacy on the 
user simplex
• Provides differential privacy to Markov decision process 

properties
• Ensures recipient of data cannot learn anything 

meaningful from privatized simplex data
• Error bounds and guidelines for privacy calibration 

in differentially-private Kalman Filtering
• First control-theoretic guidelines for calibrating 

differential privacy
• Differentially private controller synthesis with metric 

temporal logic specifications
• Multi-agent control policies with differential privacy



Systems and Access Control

• Privacy-preserving secure localization
• Extension of privacy-preserving local optimization to 

embedded device processors
• Framework for secure machine learning
• Interpretable security reference monitor 

design with applications to 
autonomous agents

• Access control policy
• Framework for reasoning 

about disparate access 
policies in embedded 
devices



Access Control Policy 
Analysis for 

Embedded Devices

with Grant Hernandez, Dave Tian, Anurag Yadav, and Byron Williams



Embedded Devices

• Embedded agents and the operating systems that 
they run are subject to numerous methods for 
protecting on-device information
• Example: Android OS – the world’s most popular 

operating system (mobile and embedded devices)
• Numerous ways of protecting access to on-device 

critical information
• Discretionary access controls 
• Mandatory access controls
• Linux capabilities
• Middleware protections/SECCOMP

• Many attack surfaces



Reasoning about Access Control

• Challenge: there is no way to currently reason about 
the myriad access control mechanisms
• Consequence: access policies from different 

mechanisms not in concert with each other, may be 
mutually conflicting
• What objects and processes can be accessible to 

untrusted processes?



BigMAC Design

• Examine, recover, simulate, fully instantiate files, 
process, IPC from an extracted firmware image
• Simulate boot 

process to recover
types instantiated
at runtime
• Process hierarchy

and process
metadata
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Policy Recovery

• Decompile binary SEPolicy into connected multi-
edge directed graph using Access Vector rules
• Subject graph includes all types and attributes used during 

SELinux MAC type enforcement
• Instantiate on filesystem through type enforcement rules

• Build dataflow graph from subject graph to examine paths 
and edges where privilege escalation may occur
• Bipartite graph, worst case                           edges, 

nodes
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Evaluation/Case Study

• Over 98% of DAC and MAC data recovered
• Approx. 75% of processes (mostly missing app level)

• Prolog-based query engine filter
MAC,DAC, CAP, ext. surfaces
• Found additional attack paths for

existing CVE

Recovered by BigMAC Ground truth, running device

process:zygote
<CAP SYS ADMIN>

<various files>

process:crash dump process:vold
<uid=0>

crash dump exec:transition

*:write

vold:ptrace



A Learning 
Mechanism for 

Learning Systems

with Washington Garcia, Scott Clouse (AFRL/ACT3)



Motivation

• Secure solutions to learning problems requires cooperation 
between many research disciplines. 
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• Secure solutions to learning problems requires cooperation 
between many research disciplines. 

• However, learning systems research tends to be conducted in an 
ad-hoc manner:
• Threat modeling has only recently received attention from ML researchers. 
• If the threat model is known, choosing among seemingly competing 

frameworks can be difficult.

Empirical risk 
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Private Models
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Motivation

• Secure solutions to learning problems requires cooperation 
between many research disciplines. 

• However, learning systems research tends to be conducted in an 
ad-hoc manner:
• Threat modeling has only recently received attention from ML researchers. 
• If the threat model is known, choosing among seemingly competing 

frameworks can be difficult.
• Lack of clarity mitigates cross-pollination between each research discipline, 

causes external observers to question what progress has been made.

Interpretable MLVerifiable MLPrivacy ML Adversarial MLML

Actual Output:
Ad-hoc, 
Repeated work

External Observers

?



Motivation
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Takeaway:
• Lots of seemingly unrelated research disciplines 

working on related problems
• Unifying them is not immediately obvious
• Has this problem been tackled before?



Anderson research model
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Has this problem been tackled before?

In 1993, Anderson described cryptographic systems which faced similar 
issues:
• Unclear threat models: 

• what could happen vs. what was likely to happen.
• Little communication due to centralized certification authority

• crypto systems mainly cared about passing certification

Unifying research in ML with systems security: 
• Adopt Anderson’s research model to design secure learning systems
• Organize around system security strategies which manifest within ML 

research



Proposed Research Model
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Figure 2. Interaction of Anderson’s learning mechanism as it is instantiated through system security strategies. The system security strategies are implicitly
manifested within many works related to ML and AML. Anderson’s learning mechanism informs the constant feedback loop of security strategies, new
constructions, and analysis.

application, image recognition. The Train function outputs a
linear classifier which is assumed to be well regularized, and
thus originally satisfies the author’s notion of correctness. In
order to correctly attack the integrity of the classifier C, Tanay
et al. establish two properties with respect to the correctness of
C: 1) the performance on natural images remains unaffected,
but 2) vulnerability to adversarial examples is increased. This
is done in practice by “tilting” the decision boundary of C by
an arbitrary tilting factor k 2 R. Tanay et al. extend this further
to fully connected layers in an MLP by tilting in the lowest
d 2 R principal components of movement in the layer’s feature
mapping. The model is essentially forced to attend to the d
directions which align closest with its weights, even if other
directions have higher magnitude. The alteration is designed
by the adversary to be imperceptible by manual verification.
The work by Tanay et al. is similar to other poisoning attacks
reviewed by Biggio and Roli [2] and Papernot et al. [9]. The

threat model allows the adversary to either control the model’s
algorithms (PreProcess, Train, Predict), or the data which is
fed to Train for instantiating the model. We see that as in
Thompson’s example, the vulnerability is patched in by a re-
training scheme.

Gradient Shaping & Poison Detection. Approaches to
trust for learning systems rely on either detecting a poisoning
attack, or bounding the effect of individual samples. For
example, Ma et al. propose the use of differential privacy
primitives as a defense from synthetic data poisoning attacks
for simple Logistic Regression models [41]. Under the DP-
learning framework, the model is trained such that no partic-
ular sample influences the model beyond a particular clipping
bound. Thus lineage of trust is effectively ignored in favor
of simply distrusting all future samples and limiting their
influence by a provable bound. Hong et al. later showed that



Instantiation of model
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Example using:
“Brittle Features of Device Authentication”

Establish likely problem setting (device fingerprints)

Conditions for correctness (true positives/negatives)

Plausible threat model (hard label adversary)

The system captures:

• Forrest et al. sense of self: encode a 
probabilistic definition of normal and abnormal.

The system uses sense of self to:

• Protect the integrity of network resources, 
by offering physical authentication channel.

• Example: Encode the sense of self using 
machine learning models. 

Analysis:

• Ad-hoc empirical test.

• Example: Information gain, 
fingerprinting accuracyModify adversary

(originally none for FP 
systems)

Re-analyze

Pattern Recognition



Instantiation of model
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Example using:
“Brittle Features of Device Authentication”

Modify adversary

(originally none for FP 
systems) ZOO

Zeroth Order Optimization 
framework

Hard label updates based on gradient approximation

Re-analyze



Instantiation of model
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Example using:
“Brittle Features of Device Authentication”

Modify adversary

(originally none for FP 
systems) ZOO

Re-analyze

GTID

WDTF

USB-F

High False 

Positives



Instantiation of model
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Example using:
“Brittle Features of Device Authentication”

Modify adversary

(ZOO)

Re-analyze

Pattern Recognition

DP-based Randomized Smoothing 
Defense (Cohen et al.)

Modifies the system’s sense of self



Instantiation of model
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Example using:
“Brittle Features of Device Authentication”

Modify adversary

(ZOO)

Re-analyze

Pattern Recognition

DP-based Randomized Smoothing 
Defense (Cohen et al.)

Modifies the system’s sense of self

GTID



Instantiation of model
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Example using:
”Jack” Audi automated driving system

©BT Devices

Establish likely problem setting (sensor inputs)

Conditions for correctness (crash avoidance)

Plausible threat model (in this case, innocent)

The system captures:

• Saltzer et al. end-to-end agreements (i.e., 
measures of agreement between inputs and 
outputs)

The system uses end-to-end argument to:

• Offer robustness, through Bayesian 
modeling: probabilistic measure of 
uncertainty between inputs and outputs. 

• Example: Jack can perform probabilistic 
reasoning from perception sensor 
uncertainties

Analysis:

• Ad-hoc empirical test.

• Example: Drive a 550-mile 
automated test drive.

Modify adversary

(originally none for  Jack)

Re-analyze



Instantiation of model

Florida institute for Cybersecurity Research 55

High-level feedback loop helps visualize gaps in 
constructions or analysis.

Analysis:

Does the analysis capture every 
possible failure mode in the current 
threat model?

©BT Devices

Constructions: 

Does the existing model of uncertainty 
completely capture each end of the system?

Structure informs of 
dependencies

If we change our threat 
model, we must re-visit our 
security strategies, primitives, 
and analysis.

Example: Analysis of Jack in 
the innocent setting says little 
about the adversarial setting



Next Steps

• Consider framework in the context of human-
machine cooperation systems

• Verification of reinforcement learning agent policies

• Apply and implement on autonomous agents

Florida institute for Cybersecurity Research 56


